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ABSTRACT

Log- aesthetic curves include the logarithmic (equiangular) spiral, clothoid, and

involute curves. Although most of these are expressed only by an integral form of the

tangent vector, it is possible to interactively generate and deform them, and they are

expected to be utilized in industrial and graphical design. The discrete log- aesthetic

filter based on the formulation of the log- aesthetic curve has successfully been

introduced to avoid strong constraints on the designer's activity, to allow free design,

and to embed the properties of the log- aesthetic curves for complicated shapes with

both increasing and decreasing curvature. In this paper, to define the log- aesthetic

surface and develop surface filters based on its formulation, we first reformulate the

log- aesthetic curve with variational principles. Then, we propose several new

functionals to be minimized for free- form surfaces and define the log- aesthetic

surface. Furthermore, we propose new discrete surface filters based on the log-

aesthetic surface formulation.

Keywords: log- aesthetic curve and surface, variational principle, digital filter.

DOI: 10.3722/cadaps.2012.901- 914

1 INTRODUCTION

Due to developments in measurement and information technology, reverse engineering can be used to

generate digital models on computers from 3- dimensional physical models in clay or wood. As free-

form surfaces are frequently used for aesthetic design and their measurement data are usually huge

and have errors, it is very difficult to generate high- quality digital models with smooth changes of

curvature from such data.
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The log- aesthetic curves include the logarithmic (equiangular) curve (the slope of the LCG:

logarithmic curvature graph 1 ), the clothoid curve ( 1 ), the circle involute ( 2 ), and Nielsen’s

spiral ( 0 ). Recently the generalized Cornu spiral [12] has been reported to include several log-

aesthetic curves as its curvature profile is given by a rational linear function and so its LCG gradient is

given by a straight line function [11]. It is possible to generate and deform the log- aesthetic curve in

real- time even if expressed by integral forms using the unit tangent vectors as integrands ( 21, )

and they are expected to be useful in practical applications [1, 20]. Furthermore, Ziatdinov et al. [28]

recently showed that the log- aesthetic curve can be parametrically expressed in terms of incomplete

gamma functions, which gives an exact analytic representation of a curve segment for any real value of

 and the computation time for generating a log- aesthetic curve segment using the incomplete

gamma functions is about 10 times faster than that using direct numerical integration. The discrete

log- aesthetic filter based on the formulation of the log- aesthetic curve has successfully been

introduced to avoid strong constraints on the designer's activity, to allow free design and to embed

the properties of the log- aesthetic curves for complicated curves with both increasing and decreasing

curvature [21].

Therefore, in this paper, we first define the log- aesthetic surface in two ways—one utilizes the

self- affinity of the surface and the other is based on the variational principle. Then, we propose a

discrete filter named log- aesthetic surface filter that removes noise from a set of points obtained by a

3D laser range scanner, smooths them out, and make the surface log- aesthetic.

The rest of the paper is organized as follows. Section 2 describes related work and section 3

discusses the self- affinity of the surface and the formulation of the log- aesthetic surface using it.

Section 4 explains the formulation of the log- aesthetic surface based on the variational principle.

Section 5 introduces a new discrete surface filter based on the log- aesthetic surface. Finally, we

conclude the paper in section 6 with a discussion of future work.

2 PRELATED WORK

In this section, we discuss related research on the log- aesthetic curve, curvature based energy

functionals, for fair surfaces, and discrete filters.

2.1 Log-aesthetic Curve

“Aesthetic curves” were proposed by Harada et al. [7] as curves whose logarithmic distribution

diagram of curvature (LDDC) can be approximated by a straight line. Miura et al. [17, 18] derived

analytical solutions of the curves whose logarithmic curvature graph (LCG) —an analytical version of the

LDDC [7] is strictly given by a straight line and proposed these lines as general equations of aesthetic

curves. Furthermore, Yoshida and Saito [26] analyzed the properties of the curves expressed by the

general equations and developed a new method to interactively generate a curve by specifying two end

points and the tangent vectors with three control points as well as the slope of the straight line of the

LCG. In this research, we call the curves expressed by the general equations of aesthetic curves the

“log- aesthetic curves.”

The problems of the connection of multiple log- aesthetic segments was dealt with by Miura et al.

[20] and an input method of the compound- rhythm log- aesthetic curve consisting of two log- aesthetic

curve segments connected with C3 continuity was proposed by Agari [1]. Furthermore, an extension of

the planar log- aesthetic curve into space—the log- aesthetic space curve—was proposed by Miura et al.

[19], and it was classified by Yoshida and Saito [27]. This section discusses several important

properties of log- aesthetic curves. Note that an aesthetic curve is a curve whose logarithmic curvature

graph is given by a straight line.
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2.1.1 General equations of aesthetic curves

For a given curve, we assume the arc length of the curve and the radius of curvature are denoted by

and , respectively. The horizontal axis of the logarithmic curvature graph measures and the

vertical axis measures . If the LCG is given by a straight line, there

exists a constant such that the following equation is satisfied:

(2.1)

where is a constant. The above equation is called the fundamental equation of aesthetic curves [8].

Rewriting Eqn. (2.1), we obtain:

(2.2)

Hence, there is some constant such that:

(2.3)

From the above equation, when , the first general equation of aesthetic curves

(2.4)

is obtained. If , we obtain the second general equation of aesthetic curves aesthetic curves

(2.5)

A curve that satisfies Eqn. (2.4) or Eqn. (2.5) is called a log- aesthetic curve.

2.1.2 Parametric expressions log-aesthetic curves

In this subsection, we will show parametric expressions of the log- aesthetic curves.

We assume that a curve )(sC satisfies Eqn. (2.4). Then

(2.6)

As is the arc length, (for example, refer to [5]) and there exists satisfying the

following two equations:

(2.7)

Since ,

(2.8)

If ,

(2.9)

If the start point of the curve is given by )0(0 CP  ,

(2.10)

For the second general equation of aesthetic curves expressed by Eqn. (2.9),
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(2.12)

Therefore the curve is given by

(2.13)

2.2 Curvature Based Energy Functionals for Fair Curves and Surfaces

Most surface energy functionals for fair surfaces are related to energy functionals designed for curves.

We can design various surface energy functionals by selecting different properties of the curves on the

surface to measure curvature or change in curvature and by considering special subsets of the surface

curves, i.e., geodesics, lines of curvature [13].

2.2.1 Bending energy

The bending energy functional is a generalization of Bernoulli’s “elastica” energy that measures the

square of curvature ݏଶ݀ߢ∫ integrated over the length of a given curve. For curves on a surface, we

usually consider only the normal curvature (ߠ)௡ߢ . This curvature is a function of the principal

curvature ௠ߢ) ௔௫,ߢ௠ ௜௡) parameterized by the angle ߠ made with the first principal direction. The

following functional is often used for the bending energy functional ஻ܧ as an area integral of the

surface,

஻ܧ = ௠ߢ)∫ ௔௫
ଶ + ௠ߢ ௜௡

ଶ ܣ݀( (2.14)

The above equation can be reformulated as follows:

஻ܧ = ௠ߢ)∫ ௔௫
ଶ + ௠ߢ ௜௡

ଶ ) = −ܣଶ݀ܪ∫4 ܣ݀ܩ∫2 (2.15)

where ܪ and ܭ are the mean and Gaussian curvatures, respectively. Note that the bending energy is

shift- invariant because the area is expanded or shrunk at the square of the dimensional scaling factor,

but the square of the curvature is inversely decreased or increased at the same rate.

2.2.2 MVS energy

Moreton and Séquin [24] introduced the “MVS” functional that measures curvature variation by

integrating the squares of derivatives of the principal curvatures in their respective principal directions.

Multiplication of the area term is for scale invariance [23].

ெܧ ௏ௌ = ∫(
ௗ఑೘ ೌೣ

ௗ௘೘ ೌೣ

ଶ
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ܣ݀∫�ܣ݀( (2.15)

where ௠݁ ௔௫ and ௠݁ ௜௡ are principal curvature directions.

2.2.3 MVS
cross

energy

Joshi and Séquin [13] introduced the “MVS
cross

” functional that adds the change in normal curvature

along the in- line direction to the MVS functional.
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The MVS
cross

energy of a surface roughly measures the deviation of the surface from a perfect sphere or

a cylinder.

As discussed above, many types of functional for fair surfaces have been proposed, but for aesthetic

design, designers usually do not use them for practical design because the controllability of the surface

deformation is not high enough and it takes a great deal of time to minimize the functional for

surfaces.
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2.3 Discrete Filter

For the generation of high- quality surfaces used for car styling design, Farin et al. [6] proposed a

surface smoothing method that sequentially selects a point on the curve for each character line of the

surface where the curvature variation criterion introduced is the highest in the curve and locally

smooth the curve around the point. In their method, a B- spline curve is first fitted to an input

sequence of points. Then, such a point is extracted where the difference in the third derivative, or the

derivative of the curvature is the largest and removes a knot corresponding to the point. By repeating

this process, the shape of the curve can be modified to have a smooth curvature plot whose horizontal

axis is the arc length and vertical axis is the curvature. Eck and Jaspert proposed a method to use the

difference in curvature calculated discretely as a local criterion as a fairing method of a sequence of

points without B- spline curves [4]. Wagner proposed a method to smooth trajectories of robot

manipulation using fourth differences of the sequence of points instead of curvature [25]. Based on the

method proposed by Wagner, Higashi and Yamada made it applicable to a curve with a non- uniform

knot vector by replacing the fourth difference with the fourth divided difference and extended it to

discrete surfaces that may have defect points [9, 10].

The methods mentioned above are for aesthetic design and they can yield curves and surfaces of a

certain quality from the viewpoint of monotonicity of the curvature variation, or smoothness, but they

do not remove the curvature instability that exists in polynomial curves like B- spline noted by Miura

[16]. On the other hand, the log- aesthetic filter [21] can control the curvature. The discrete log-

aesthetic filter does not minimize any integral quantities or perturb the positions of the points to

minimize any objective functions. It finds locally the most approximate log- aesthetic curve for a given

set of points and fits the points to the selected log- aesthetic curve. This is the main difference

between methods that do and do not have desired shape targets as the log- aesthetic curve.

To generate a high- quality surface for aesthetic design, it is desirable to solve the true nonlinear

minimization problem as reported by Moreton and Séquin [22] and Joshi and Séquin [13]. Schneider

and Kobbelt [24] solved the nonlinear equation ܪ∆ = 0 where ܪ is the mean curvature, and Bobenko

and Schröder minimized the discrete Willmore flow [2]. Eigensatz et al. applied a bilateral filter directly

to the discrete mean curvature function [5]. At present, for surface fairing it is not possible to obtain

both capability of representation flexibility and high quality required for aesthetic design by

minimizing objective functions based on the variational principle.

In this paper, instead of minimizing a specific functional, we propose a surface filter that makes

the surface have a specified Gaussian curvature distribution in a similar way for the discrete log-

aesthetic filter to give the curve a specified curvature distribution.

3 SELF-AFFINITY OF SURFACE

In this and the following section, we discuss how to extend the log- aesthetic curve formulation into a

surface. Research on the log- aesthetic surface was initiated by Kanaya et al. [14], and Hadara et al. [8]

proposed the log- aesthetic curved surfaces, but the formulations of such surfaces have yet to be

established.

3.1 Correspondences among Differential Geometrical Quantities

As the log- aesthetic curve describes the relationship between its radius of curvature and arc length, it

is necessary to specify some quantities corresponding to them to extend it into a surface. As pointed

out by Miura et al. [21], among the arc length s, the curvature   and the arc length of its image in the

indicatrix of tangents, there is such a relationship that s
s

/
0

lim 


 , and it is similar to
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SSK S /'lim 0 where K is Gaussian curvature, S is the area of a surface ),S( vu , and 'S is the area of

the Gaussian map [4]. Hence, we let the curvature of the curve  and the arc length s correspond to

the Gaussian curvature K and the surface area S , respectively. This implies that the circular arc with a

constant curvature corresponds to a surface with a constant Gaussian curvature. By using these

correspondences, the fundamental equation of the aesthetic curve
0

1 / Cdsd   corresponds to

1
1 /)/1()1( CdSKdK   where

0C and
1C are arbitrary constants. Note that

K
dudvSS

dudvNN

S

S

vu

vu

S 









'
lim 0

(3.1)

where
uN and

vN are the derivative of the surface normal with respective to parameters u and v ,

respectively.

The mean curvature H is as important a surface curvature as the Gaussian curvature. For example,

the surface with 0H is called a minimal surface and it is an important example in variational

principle [3]. The thin membrane of soap surrounded by an arbitrary boundary is always a minimal

surface. However, as the Gaussian curvature 0K , the surface cannot possess blobby parts and it is

frequently inadequate for aesthetic design. In geometric modeling, for example, as mentioned in

Section 1, Schneider and Kobbelt [24] solved the nonlinear equation ܪ∆ = 0. It will be necessary to

research filters using the mean curvature in future.

3.2 Self-Affinity of the Plane Curve

We define self- affinity of the plane curve as follows [19]. Self-affinity of the plane curve: For a curve

generated by removing an arbitrary head portion of the original curve, by scaling it with different

factors in its tangent and normal directions on every point on the curve, if the original curve is

obtained, then the curve has self- affinity. If a given plane curve satisfies Cdsd  /1  , the curve has

self- similarity according to this definition [17, 18].

For a given curve )(sC parameterized by the arc length parameter s , we assume that the derivative

of its curvature, hence that of its radius of curvature as well are continuous. That is, we assume the

curve has 3C continuity. In addition, the radius of curvature  is assumed not to be equal to 0 .

By scaling the curve with different factors in the tangent and normal directions (affine

transformation of the plane curve [21]), we discuss how to make the scaled curve become congruent

with the original curve. Therefore, we re- parameterize the given curve )(sC using a new parameter

bast  where a and b are positive constants as shown in Fig. 1. Scaling the curve uniformly in the

tangent direction is equivalent to relating a point )( 00 bast C to another point )( 0sC as shown in Fig.1.

In this relationship the scaling factor in the tangent direction
tf is given by a/1 .

Fig. 1: Self- affinity of the plane curve.
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Although a and b are constants, they are related to the scaling factors in the tangent and normal

directions
tf and

nf , and depend on the shape of the curve. Hence, we cannot specify them

independently. The start point of the curve )(tC is given by )(bC , which is a point when 0s . Hence,

)(tC is a curve without the head portion of the original curve )(sC .

The condition can be described for a curve to have self- affinity as follows. Condition for a plane

curve to have self-affinity : For an arbitrary constant 0b , some 0a is determined. With these a and

b , for any 0s the following equation is satisfied.

nf
bas

s


 )(

)(



 (3.2)

where
nf is a constant dependent on and determined by b and it is a scaling factor in the normal

direction.
nf is given by substituting 0s into the above equation as follows:

)(

)0(

b
fn




 (3.3)

3.3 Self-Affinity of the Surface

Although the curve has arc length parameterization, the surface does not have suitable

parameterization for analysis. However, it is possible to have such local parameterization that the

tangent vectors with respect to the parameters are orthogonal to each other and their directions are

the same as the principal direction and the norm of each tangent vector is equal to 1 [3]. Such

parameterization is called isometric. In general, it is not possible to have a globally isometric

parameterization. Here, we developed a discrete filer for the surface and assumed such locally

isometric parameterization.

We use the reciprocal of the Gaussian curvature KR /1 and define the condition for self- affinity

of the surface as follows. Condition for a surface to have self-affinity : We assume that the surface is

given by )(s,tSS  . For an arbitrary constant 0b and 0d , some 0a and 0c are determined. With

these a , b , c and d , for any 0s and 0t , the following equation is satisfied.

Rf
dcsbasR

tsR


 ),(

),( (3.4)

where
Rf is a constant dependent on and determined by only b and d , and it does not depend on s or

t . It is a scaling factor of R and is given by substituting 0s and 0t into the above equation as

follows:

),(

)0,0(

dbR

R
fR  (3.5)

The scaling factors
sf and

tf in the directions of
uS and

vS are given by afs /1 and cft /1 .

If 1Rf , from Eqn. (3.4),

),(),( dctbasRtsR  (3.6)

In this case ),( tsR is constant, i.e. the Gaussian curvature K is also constant. The surface includes a

planar, spherical, or cylindrical surface. Furthermore, if one of the principal curvatures is equal to 0 , it

can represent a developable surface, including conical and tangent surfaces. The spherical surface is

the most typical type of surface of revolution with a positive constant Gaussian curvature. The surface

of revolution with 0K includes rugby- ball and barrel types. If 0K , it includes the pseudosphere [4].

If 1Rf , then Eqn. (3.4) can be rewritten as follows:

0),(),(),(),(  tsWdctbasRdbftsR R
(3.7)
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Hence the function ),( tsW is always equal to 0 . The necessary and sufficient condition for its

directional derivative to be always equal to 0 is 0),(  tsW . Therefore

0



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 dctvt

R

dctv

R
v

vdasR

f
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s

tsR
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vvasR
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t

tsR

t

tsW (3.10)

Eqns. (3.9) and (3.10) are similar to the equation obtained in the curve case [19], and we obtain the

following equation:



1

32

1

10 )()(),( ctccsctsR  (3.11)

where
sR ff log/log and

tR ff log/log .

A similar argument for K instead of R works out and the following equation on K can be

obtained



1

32

1

10 )()(),( ctccsctsK  (3.12)

where
sK ff log/log and

tK ff log/log if

Kf
dcsbasK

tsK


 ),(

),( (3.13)

4 VARIATIONAL FORMULATION

In this section, we first discuss the variational principle with a simple example and explain how to

formulate the log- aesthetic curve, especially with regard to the functional which the log- aesthetic

curve minimizes. Then, we extend the functional to formulate the log- aesthetic surface.

4.1 Variational Principle

The variational analysis deals with a problem where an objective functional in an integral form should

be minimized or maximized. For example,

dsxyyfJ
x

x

x
2

1

),,(
(4.1)

where y is a function of x and
xy is a derivative of y with respect to x . y is unknown. The condition

that J has a stationary value is given by the following partial differential equation:

0









xy

f

dx

d

y

f (4.2)

This is called the Euler equation. If ),( xyyff  , i.e., f is given explicitly without x , the above equation

means that

c
y

f
yf

x

x 



 (4.3)

where c is a constant.

The simplest example of the variational problem is to minimize the distance between two given

points in the x- y plane. An infinitesimal element of the distance is given by

dxdydxds 22 )()(  (4.4)

and the distance J is given by

 
2

1

22

11

1
,

,

x

x x

yx

yx
dxydsJ (4.5)
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Hence 2

1
2
)1(),,( xx yxyyf  and is given explicitly without x. By Eqn. (4.3), we obtain

c
yx


 21

1 (4.6)

Therefore there exists a constant a such that ayx  . It yields

baxy  (4.7)

where b is a constant as well as a . These constants are determined by making the line pass through

the given two points ),( 11 yx and ),( 22 yx .

4.2 Variational Formulation of Log-aesthetic Curve

In Eqn. (2.4) if we substitute  with  , then the equation is given by

dcs  (4.8)

The above equation means that the log- aesthetic curve is given by a straight line in the s plane

where the horizontal and vertical axes are the arc length s and   , respectively to connect two

given points ),( 11 s and ),( 22 s . In this case, the following objective functional
LACJ is minimized.

dsdsJ
s

s ss

s

s sLAC 


2

1

2

1

22222 11   (4.9)

4.3 Variational Formulation of Log-aesthetic Surface

Here, we apply the variational principle to the surface formulation. As discussed in Section 3.1, we let

the curvature of the curve  and the arc length s correspond to the Gaussian curvature K and the

surface area S , respectively. In Eqn. (4.9), when 1 , 2 /ss  and we obtain the following

equation.

dsJ
s

s sLAC  
2

1

21  (4.10)

By reparameterizing the above equation with )(tss  , it becomes

dtdtyxJ
t

t tC

t

t tttLAC  
2

1

2

1

22222  (4.11)

where )( 11 tss  , )( 22 tss  , and 22
ttC yx  . Note that

Cdtds / .

By extending Eqn. (4.11) into the surface, we define the objective functional for the surface
LACJ as

follows:

dudvKKJ
u

u

v

v vuLAS   
2

1

2

1

22)(Idet (4.12)

where I is a matrix expressed with the first fundamental quantities by











GF

FE
I (4.13)

where
uuE SS  ,

vuF SS  , and
vvG SS  . Note that the area of the surface S is given by

dudvS
t

t
2

1

)(Idet (4.14)

As in Section 3.3, we assume local parameterization )( ts , around a point on the surface )( 11 ts ,S such

that the tangent vectors with respect to the parameters are orthogonal to each other, their directions

are the same as the principal direction, and the norm of each tangent vector is equal to 1. With this

parameterization, I becomes the 22 unit matrix. By performing integration around the point )( 11 ts ,S ,

Eqn. (4.11) is rewritten as
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dsdtKKJ
ss

s

tt

t tsLAS  
 


1

1

1

1

221 (4.15)

According to variational principle, to minimize the following functional,

dsdttsKKKgJ
s

s

t

t ts 
2

1

2

1

)( ,,,, (4.16)

the following equation should be satisfied.

0






















ts K

g

tK

g

sK

g (4.17)

Note that 221 ts KKg  does not explicitly depend on K . Eqn. (4.17) yields

0)1(2)1( 22  ttssttssst KKKKKKK (4.18)

The above equation is called the minimal surface or Lagrange’s equation and the surface

))(()( s,ts,t,Kts ,S is given by a minimal surface. Therefore, in a case where the Gaussian curvature on

the boundary is specified, the Gaussian curvature should be given by a minimal surface interpolating

the boundary values. The above discussion assumes locally isometric parameterization and globally

isometric parameterization does not exist in general. It is not possible to deal with the case where the

functional is defined globally as in Eqn. (4.12). In such a case, some optimization technique should be

adopted to minimize the functional to generate a target surface.

According to Bernstein’s theorem [14], if the boundary of the surface is located infinitely far away,

the minimal surface is given by a plane. Therefore, the Gaussian curvature is given by

210)( ctcsctsK , (4.19)

where
0c ,

1c , and
2c are constants. When 1  in Eqn. (3.12), the above equation is equivalent to Eqn.

(3.12).

For further extension, we may use the mean curvature H instead of the Gaussian curvature K and

a similar discussion is also satisfied. In this section we have not discussed the effects of the powers 

and  . To take into account the effects of these powers, we may use   minmax
where

max and
min are

the maximum and minimum normal curvatures, respectively. For example, an objective functional may

be defined by

dudv

dudvJ

u

u

v

v
vuvu

u

u

v

v
vuLAS

 

 





2

1

2

1

2

1

2

1

)}()(){(2)(

)()()(

max
1212

22

min,min,max,max,minminmax

maxmaxmaxmax

Idet

Idet









(4.20)

These extensions are topics for future research and are not dealt in this paper.

5 DISCRETE LOG-AESTHETIC SURFACE FILTER

The discrete log- aesthetic curve filter is constructed based on Eqn. (2.4) [21]. Similarly we construct a

discrete surface filter based on Eqn. (3.12) for a triangular- meshed surface. Here we intend to

construct an isotropic filter the effect of which does not depend on the direction on the tangent plane

and we assume   in Eqn. (3.12).

As the simplest case, we assume 1  . Note that if 1  , Eqns. (3.12) and (4.19) are

equivalent. Hence, the filter has a property to approximate the distribution of the Gaussian curvature

by a plane.

We move the location of a vertex
iP in the mesh to satisfy Eqn. (4.19). We restrict the new location

'Pi
of

iP to satisfy

iici NP'P  (5.1)
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where
icP is the average location of the vertices connected to

iP and
iN is a normal vector there. The

coefficients
0c ,

1c , and
2c in Eqn. (4.19) are determined by projecting the positions of the vertices close

to
iP to the tangent plane there by use of the values of the Gaussian curvature of these vertices by the

least squares method. The value of  is determined to have the value of the plane at
iP .

5.1 Calculation of Mesh Curvature

The Gaussian curvature K at the vertex
iP of the triangular mesh is approximately given by

S

a
K  (5.2)

where 



n

j
ja

0

2  and 3
0

/



n

j
jSS as shown in Fig. 2. The summation is performed for the triangles

around the vertex
iP and

j is an angle of the j- th triangle there and
jS is its area.

Fig. 2: Definition of a at the vertex V .

As shown in Fig. 3, we define
iX , i= 0,…,n, which are the positions of the vertices around the vertex

iP

whose new position is 'Pi
as follows:

)0()( nkXXX zkykxki ,,,X  (5.3)

)(- iiciiki NPX'PXx  (5.4)

The angle between
kx and

1kx is
k and the area of

1 kki XX'P is
ks . They are expressed by

)(
1

11










kk

kk
k

xx

xx
cos (5.5)

  2

1
2

1

2

1

2

2

1
  kkkkks xxxx (5.6)

where
1 kk xx denotes the scalar product of the vectors

kx and
1kx . If we use

kic
k

ic XPP  ,
1 kk xx is

given by a quadratic function of  as follows:

1122

1 )( 
  k

ic
k

ic
k

ic
k

iciikk PPPPNNxx  (5.2)

5.2 Implementation of the Surface Filter

For implementation of the surface filter, we use the bisection method to determine in Eqn. (5.1). When

the distance between the connected vertices in a given meshed surface is sufficiently small, we can

assume that the vertex under processing and its neighborhood vertices are on the same plane. If  in

Eqn. (5.1) increases, then the Gaussian curvature also increases. Although the Gaussian curvature

becomes negative according to the shape of the surface, it is usually possible to determine  by

extending the search range. In the case where a suitable  is not found, the vertex
iP is moved to

icP .
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5.3 Application Examples

We measured a plastic car model (1/24 size) and applied our surface filter to a surface of its hood part

as shown in Fig. 3. We used 1  for the surface filter. The number of vertices in this surface is

8,205 and that of the triangles is 2,735.

Fig. 3: Measurement data.

Figures 4 to 7 show the rendering images, the distribution of the Gaussian curvature and zebra

mapping before and after filtering. It can be seen that the noise was removed and a high- quality

surface was obtained. We used a PC with Core i7 2.80 GHz CPU and the processing time was 1.59 s for

10 times filtering.

6 CONCLUSIONS AND FUTURE WORK

We have proposed a formulation of the log- aesthetic surface by use of the variational principle. We

have also implemented a discrete surface filter in the simplest form constructed based on the log-

aesthetic surface formulation and found that the filter is effective to remove noise and yields high-

quality surfaces by applying it to practical measurement data.

As future work, we will implement optimization codes using Eqn. (4.12) and Eqn. (4.20) to

establish the formulation of the log- aesthetic surface.

(a) Before filtering (b) After filtering

Fig. 4: Measurement data.
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(a) Before filtering (b) After filtering

Fig. 5: Distribution of the Gaussian curvature.

(a) Before filtering (b) After filtering

Fig. 6: Zebra mapping.
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