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ABSTRACT 
 

In this paper, the authors first summarize recent advances in digital metrology at the 
Virtual Engineering Laboratory, the University of Michigan – Dearborn.  Different 
algorithms of surface denoising of laser scanning and computed tomography are then 
briefly discussed. Last, some challenges of digital metrology are provided for 
supporting high-precision digital manufacturing and industrial inspection. 
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1 INTRODUCTION 

Metrology is the science of measurement. Digital metrology concerns the measurement via digital 
sensors. In this paper, we focus on the geometric information of physical objects and corresponding 
geometric sensors. With the proliferation of non-contact optical sensors such as laser scanners and X-
ray computed tomography systems in recent years, fast measurement or reconstruction of physical 
objects has been practiced in many disciplines such as medicine, military, and engineering.  
Measurement errors due to various types of noise [1], however, still hinder the applications of these 
sensors or sensing systems in tolerance-sensitive metrology and  reverse engineering [2-4].  

Generally speaking, there are two major ways for eliminating the noise in three-dimensional (3D) 
surface/volume reconstruction or inspection. In the first way, a surface/volume mesh is constructed 
first [5, 6], and noise is removed next [7-10]; in the second way, the surface/volume reconstruction and 
denoising are mingled in a single step [11-16].  One advantage of the first way is that the separation of 
mesh/volume topology and denoising provides flexibility in determining mesh topology via user 
interaction in the presence of ambiguous data. It also facilitates experiments with different denoising 
algorithms.  One benefit of the second way is an opportunity to optimize the reconstruction and 
denoising during one single coherent process.  
 The main objective of this paper is to summarize a series of recent studies on surface and volume 
denoising at the University of Michigan – Dearborn. We will compare our schemes with typical existing 
approaches for both outliers and local noise at sharp edges and corners.  Further, some research 
challenges are also discussed.  
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 The remaining of this paper is organized as follows. In Section 2, we first introduce a novel 
spectral moving removal method for non-isolated outlier clusters. Then, a hybrid approach for 
denoising of objects with/without sharp features is described in Section 3, and a new local 
differentiation method is given in Section 4 for removing surface artifacts of three-dimensional 
volume data obtained from computed tomography. Finally, some challenges in digital metrology are 
given in Section 5.  

2 MEASUREMENT OUTLIERS 

Outliers are data points of measurement error, and have a significant distance from the true surface of 
the measured objects. Existing schemes [17-19] focus on discrete outliers, which can be synthetically 
generated by using a random number generator. Real-world sensing data are, however, in a more 
complex form: outlier cluster. Further, some outlier clusters are attached to the true data surface, as 
shown in Figure 1. This type of outliers poses a difficult challenge to existing algorithms of outlier 
removal.  

 

 
 

 

 

 

(a) Over a continuous surface (b) Around a sharp 
concave edge  

(c) Around a sharp 
convex edge  

Fig. 1: Data clusters measured via a laser scanning system [20] (Non-isolated outlier cluster means a 
cluster that is attached to the true data surface). 

 
The researchers in the Virtual Engineering Laboratory at the University of Michigan – Dearborn 

proposed a novel spectral moving removal (SMR) of data outliers [20]. This approach is effective on 
various types of measurement outliers, including non-isolated outlier clusters.  The basic idea of SMR 
method is to utilize a minimum variance principle for designing an intrinsic metric for detecting 
outliers, to conduct a bi-means clustering for separating outliers from true data points, and to rely on 
a dual-sphere surface propagation for geometric coherence check.  

The minimum variance principle (MVP) means that the measurement outliers could be classified by 
the variance within a neighborhood of each data point.  The variance refers to the degree of point 
variation in a spatial neighborhood with respect to a specified central point. In a language of 
probability and statistics, it is a measure of statistical dispersion: 
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Where 2  is the variance, and   is the mean vector of vectors ( 1, , )ix i n … . ip  is a probability mass 

function, and is assumed to be 1/n.  The greater the variance is, the more probably the central point 
belongs to an outlier. The concept of MVP is different from traditional point-point distance in two 
main aspects: 

(1) The variance in Equation (1) represents a summation, which transcends the right-hand side of 
the equation to a statistical dispersion, while traditional methods rely upon only simple 
calculation of point-point distance. 

(2) The variance calculation in our SMR approach is based upon spectral decomposition (i.e., 
eigenvalue decomposition). This results in an intrinsic metric, minimum variance, which is 
orientation-invariant for local point neighborhoods.  

Note that the variance computation is dependent upon the size of point neighborhoods. To obtain 
its size invariance,  a normalized variance, 2̂ , was defined as [20] 
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where 2
minσ  and 2

maxσ  are the smallest and greatest variances among all local point neighborhoods.  
To implement the concept of minimum variance principle, a covariance matrix is used in each 

point neighborhood: 

[ ] [ ] ** )()(1)()()()( μxμxμxμxμxμxC −⋅−=−⋅−Ε=−⊗−Ε=
n

,                                              (3) 

where x and μ  represent data point and its mean vector, respectively. Ε  is an expected value operator, 
and ⊗  refers to an outer production operator.  *  is a conjugate transpose operator that is equivalent 
to a regular transpose operator, because μx −  contains only real entries.  

The eigenvalues of the matrix in Equation (3) are sample variances along principal directions (i.e., 
the directions corresponding to eigenvectors).  Our minimum variance principle is then transformed to 
a premise that the greater the smallest sample variance 3λ  is, the more probably the local point cloud 
belongs to outliers.  This assumption is valid for smooth surfaces except sharp edges or corners. We 
rely on a specially-designed surface propagation scheme to avoid applying minimum variance 
principle at sharp edges and corners. From the standpoint of spectral analysis, the smallest eigenvalue 
can be named as minimum spectral radius, which signifies the least statistic dispersion at each point 
neighborhood. Compared with the traditional clustering of global spectral graph [18],   the 
implementation of local covariance matrix in our approach is involved with only local operations, and 
therefore is much more computationally efficient.  

To separate the outliers from true data points, a special type of K-means clustering, Bi-means 
clustering, is utilized on the basis of Lloyd’s algorithm [21].  For geometric coherence check and for 
handling the sharp features, an automatic surface propagation is adopted.  The surface propagation is 
automatically started from a finite number, m (m is much smaller than n), of seeding points, which are 
selected by randomly sampling points and selecting those with low variance and high point density. We 
use a kd-tree data structure of measurement points and moving least-square fitting of local quadratic 
surface patches for supporting the surface propagation.   

Figure 2 demonstrates the effectiveness of our moving spectral removal of outlier clusters against 
existing methods. To the best knowledge of the authors in this paper, so far our method is the only 
one, which is effective on eliminating non-isolated outlier clusters.  
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(a) Original measured 
model 

(b) Outlier removal via 
our method 

(c) Outlier removal via the 
well-known Weyrich 
method [19] 

Fig. 2: Digital model of a mechanical part measured by a laser scanner [20]. 
 

3 LOCAL NOISE AT SHARP EDGES/CORNERS 

One very good algorithm in removing the measurement noise at sharp edges or corners is median filter 
or its variants [10, 22]. The median filter can, however, not effectively eliminate some local small-
magnitude noise at sharp edges or corners [23]. Bilateral filter or anisotropic diffusion is another 
group of well-studied algorithms that can be used to handle sharp edge or corner problems [8, 9, 24-
34]. Most of these approaches were developed for the applications in computer graphics in which 
visual effect is their major concern. Unfortunately, the bilateral schemes in [26, 33] do not guarantee 
the accurate removal of noise near sharp edges or corners in some special cases. This deficiency is not 
desirable for high-precision industrial inspection or modeling. Piecewise least-squares fitting is yet 
one more approach to deal with the sharp edges and corners. How to determine the intersection 
between different surface patches is still an open question. There is very few published literature for 
reporting a quantitative comparison among different algorithms in terms of denoising accuracy.  

For a better convergence and denoising accuracy, we proposed a hybrid denoising approach for 
handling arbitrary objects with/without sharp features [35]. The basic rational of our approach is that 
we should use two different algorithms respectively for the continuous and discontinuous parts of 
object surfaces, because the geometric property of these two parts is not the same at all. The outline of 
the approach is as follows: 

 
Step 1: Feature-Preserving Pre-Smoothing 

A pre-smoothing step is crucial for partitioning of an object into geometrically continuous and 
discontinuous parts. Since the scanned data contain a certain amount of noise, the noise would 
pose a serious challenge to any surface partitioning algorithm. If we use a regular smoothing 
algorithm to pre-process the digital data as in [8, 9, 33], the algorithm would smooth out some 
sharp features. This is not desirable and would affect the quality of an overall approach.  

Our novel idea is to adopt a feature-preserving pre-smoothing (median filter) that does not 
require any threshold and implicitly retains the sharp features.  The salient feature of this pre-
smoothing algorithm is that the median fileter does not require any partitioning information of 
geometrically continuous and discontinuous regions. 

Step 2: Surface Partitioning 
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We use 1G  geometric discontinuity and curvature threshold as an indicator for surface 
partitioning of feature and non-feature regions. Feature regions are defined as the areas in which 
either sharp edges or high curvatures exist, and the remaining parts are called the non-feature 
regions. A simple threshold or an adaptive threshold can be applied in the partitioning. There is a 
vast amount of literature related to different approaches for estimating discrete curvatures [30, 
36-40].  But, very few reports are available for the comparison among these schemes with respect 
to accuracy, convergence and computational efficiency. In reference [35], we proposed an accurate 
estimation of discrete nodal curvature with a mathematically-proven convergence. 

Step 3: Smoothing Feature Region 
In the feature regions, we apply a median filter for the second time. Compared with 

anisotropic diffusion algorithms, its main advantage is no need for the information on the 
directions of principal curvatures. Such directions are invalid at singular points (e.g., an apex of a 
cone).  The median filter also avoids some pitfalls of bilateral filters at sharp edges, as explained in 
[35].   

Step 4: Smoothing Non-Feature Region 
We design a second-order predictor as an accurate indicator for guiding a surface smoothing 

process in non-feature regions. It is essentially a modified version of moving least-squares fitting. 
The main benefit of the proposed second-order predictor is a better accuracy and convergence 
with curved surfaces than the first-order predictors, mean-curvature flow and Gaussian predictors 
in existing algorithms. The key components of our second-order predictor include a) a robust 
least-squares fitting procedure to fit each surface neighborhood with a local quadric patch, and b) 
a fast procedure to determine our second-order predictor.  

Step 5: Hybrid Smoothing 
By applying our second-order predictor in non-feature regions and utilizing the median filter 

in feature regions, we come up with a hybrid approach that performs consistently better than 
existing algorithms with different types of noisy data models in terms of convergence and 
denoising accuracy.  

 

Figure 3 shows a quantitative comparison between our hybrid scheme and several existing 
methods in terms of a geometric error metric. The smaller this metric is, the higher the denoising 
accuracy becomes. The figure indicates that our approach is the best among seven different 
algorithms.  

 

 

 

 

 

(a) Noisy data (b) Denoised data (c) Denoising accuracy 
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Fig. 3: Comparison between our hybrid scheme and existing smoothing methods [35] (MN-mean filter; 
MD-median filter; GS-Gaussian filter; BL-bilateral filter; VL-volumetric Laplacian; MC-mean curvature 
flow; MQ-our hybrid scheme). 

4 VOLUME DENOISING OF TOMOGRAPHY DATA 

X-ray computed tomography (CT) is a digital measurement technique to generate a three-dimensional 
image and geometric object from a series of two-dimensional X-ray images. Because of its rapid 
development in recent years, it has been applied in many engineering fields for inspection and 
modeling. Nano CT and micro-focus CT extend this technique into microscale and nanoscale world, in 
which many scientific and engineering questions still need to be answered. In this section, we focus on 
the digital inspection and modeling of internal defects of engineering material specimens. One issue of 
material specimens is their surface roughness, which complicates the defect detection of computed 
tomography data. In our recent study [41],  we proposed a novel local differentiation algorithm to 
remove the surface artifacts caused by surface roughness in the defect detection of material 
specimens.  

The surface of material specimens may not be well polished, leading to a high surface roughness. 
This will influence the surface/volume recognition of material defects.  The peaks and valleys on 
material surface are often recognized as defects by using traditional scan line algorithm.  For metal 
alloy specimens with a low defect volume fraction (i.e., 0.05%), the prediction error of defect volume 
fraction could reach 100% if we use the traditional scan line approach. Therefore, it is important for us 
to come up with a new scheme to alleviate the impact of surface roughness on the accurate detection 
of defect distribution.  

The basic idea of our approach is to utilize the information of voxel state change in a local 
neighborhood.  The state herein refers to different types of voxels (background, material and defect), 
and the state change means a transition from one voxel type to another. The goal of our method is to 
provide different labels to the boundaries of material defects and surface artifacts due to surface 
roughness, as illustrated in Figure 4. It demonstrates that an internal defect is surrounded by material 
elements (‘m’), and a surface opening has boundary elements (‘b’) as neighbors.  
 

 

Fig. 4: Labeling of an internal defect and a surface opening in local differentiation method. 
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In the implementation of our local differentiation method, it is first necessary to segment the 
material from everything else.  If there is uniform illumination, a simple histogram threshold is used. 
Otherwise, an adaptive threshold should be used. For every voxel, if the voxel is within the given 
threshold, that voxel is labeled as material (‘m’); otherwise it is temporarily labeled as a defect (‘d’).  A 
three-layer iteration is used. The first loop is to traverse along one of the three coordinate axes, and 
the second loop is to move along one of the remaining two axes. In the third loop, a scan-line 
movement is conducted twice in two opposite directions of the coordinate axis that is not used in the 
first two loops. Overall, there are twelve loops in this three-layer iteration. In each loop, our algorithm 
changes the label of voxels to BACKGROUND until a voxel that has been labeled MATERIAL is reached; 
once that happens, the label is changed from MATERIAL to BOUNDARY; if there is a neighboring 
MATERIAL voxel on a previous scan line, change it to BOUNDARY. At the end of our algorithm, material 
voxels are labeled as either MATERIAL or BOUNDARY; internal defect is labeled as DEFECT, and 
background space is marked as BACKGROUND.  

Figure 5 illustrates the two loops in our local differentiation method. Symbol ‘o’ represents an 
outsider element, while ‘m’ refers to a material element. During each scan, some elements become ‘b’, 
which denotes a boundary element. SEM (Scanning Electron Microscopy) material tests indicate that our 
local differentiation method is about 64% better than the traditional scan line method in terms of 
accuracy for predicting material defect fraction.  

 

 
    

(a) Pass 1 – Left to right and bottom-up scan 

     

(b) Pass 2 – Left to right and up-bottom scan 
Fig. 5: Two typical passes of the local differentiation [41]. 

5 RESEARCH CHALLENGES 

Although a considerable amount of effort has been devoted in the past, there are still some open 
issues in the area of digital metrology.  To date, there is no geometric sensor that can automatically 
measure the geometric discontinuity at high precision and robustness. Piecewise fitting of digital data 
– a brute force approach – faces a detrimental chicken-and-egg problem, in which the correct surface 
partition (chicken) relies on the information of true surface normal (egg), but the surface normal needs 
to be accurately estimated from the information of surface partition. This problem becomes evident at 
�� discontinuity where the surface normal is ambiguous and a feature line is shared by two surface 
patches. �� discontinuity means no continuity in the direction of surface normal in a loose sense, and 
is the most prevailing geometric discontinuity among manufactured parts in various industries. 
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Further on the laser scanning techniques, the multiple reflections on shinny metallic surfaces of 
mechanical parts and the scattering of light inside a translucid material (Figure 6) pose a more serious 
threat to geometric sensing (especially sensors based on triangulation principle). In such a case, the 
surface needs to be sprayed with a thin-layer optically-diffusive coating or a digital filter algorithm is 
applied to preprocess laser stripe images.  

 

  

(a) Interaction between a 
laser beam and a 
translucid surface 

(b) Visual effect on a 
translucid surface 

(c) Digital measurement 
points on a translucid 
surface 

 

Fig. 6: Laser scanning problem with translucid surfaces [42]. 

In the area of computed tomography, inspection and modeling of polymer foams face two grand 
challenges:   

(a) The cellular walls of some foams are very thin (about 10 -20 micrometers); 
(b) Polymer is a light-weight material that has very low attenuation to X-ray penetration.  
 

As a result, the intensity contrast of X-ray images is not high enough, as shown in Figure 7(b), in which 
background space is in black color and the foam wall in grey-white color. Note that this figure is not 
an exact cross section. Instead, it is an overlap of the current cross section and the cellular structures 
behind the cross section. Even if a sophisticated adaptive thresholding algorithm is used, the 
segmentation result (Figure 7(c)) is still unsatisfactory.  In Figure 7(c), the cellular walls are in black 
color and the air is in white color. This poor result has an immediate impact on the accurate surface 
reconstruction of the cellular structures and subsequent finite element analysis.  
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(a) Polymer foam specimen (b) X-ray image of part 

of the specimen in a 
finer scale (one 
pixel=10 microns) 

(c) Two-dimensional 
segmentation of part 
of the specimen in a 
finer scale (one pixel 
= 10 microns) 

Fig. 7: Reconstruction challenge with polymer foam specimens. 
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