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ABSTRACT 
 

This paper investigates the two characteristics of log-aesthetic curves.  We first show 
that the evolutes of log-aesthetic curves are also log-aesthetic curves.  We provide a 
proof that the evolute of a log-aesthetic curve with the shape parameter α  is a log-
aesthetic curve with the shape parameter ( )1 / 2α− − .  Then, we present a method for 

drawing the theoretical drawable boundaries of log-aesthetic curve segments with 
0α <  or 1α > .  We compare the theoretical drawable boundaries with the 

experimental drawable regions and show that they agree well except when α  is close 
to 0. 
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1 INTRODUCTION 

Various kinds of spirals appear in artificial and the natural objects.  For example, for designing 
highways, the Clothoid curves whose curvature varies linearly according to the arc length are widely 
used.  Logarithmic spirals, whose radius of curvature varies linearly according to the arc length 
appears in nature, for example, in certain growing forms such as nautilus shells and sunflower heads.  
Log-aesthetic planar curves [1,2,4,5] are curves which can be considered as a generalization of the 
Clothoid and the logarithmic spirals.  Based on Harada’s analysis [1,2],  it is known that the log-
aesthetic curves appears in artificial and the natural objects, such as the characteristic lines of 
automobiles, butterfly’s wings, and the Japanese swords. 

This paper investigates the two characteristics about log-aesthetic planar curves.  We first 
investigate the evolutes of log-aesthetic planar curves.  The evolutes [3] are curves which are the locus 
of the curvature center of the generatrix.   Then we present a method for drawing the drawable 
boundaries of log-aesthetic curve segments with 0α <  or 1α > .   We compare the theoretical 
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drawable boundaries with the experimental drawable regions [5] and show that they almost agree 
except when α  is close to 0. 

2 REVIEW OF LOG-AESTHETIC PLANER CURVES 

Log-aesthetic planar curves are curves whose logarithmic curvature graphs[1,2,4,5,6] are represented 
by straight lines.  Harada et al. have analyzed many aesthetic curves in artificial and the natural objects 
and found that the logarithmic curvature graphs(LCGs) can be approximated by straight lines.  The 
linearity of the LCG constrains that the curvature is monotonically varying.  Miura derived the general 
formula of log-aesthetic curves[4].  Then Yoshida and Saito have clarified the overall shapes of log-
aesthetic curves and presented a method for interactively drawing curve segments. 
 Let s , ρ  be the arc length and the radius of curvature, respectively.  Since we assume that the 
curvature is monotonically varying, we assume that ρ  increases as s  increases.  With this assumption, 
d / d 0s ρ > .  The logarithmic curvature graph is shown in Fig. 1.   Let α  be the slope of a straight line in 
the LCG.  We call α  shape parameter.  When 1,0,1α = −  and 2 , the log-aesthetic curves becomes the 
Clothiod, Nielsen’s spiral, the logarithmic spiral and the circle involute, respectively.  Let the intercept 
of that straight line be c .  The linearity of LCG can be represented by  

dlog log
d

s cρ α ρ
ρ

 
= + 

 
.
        

(1) 

 
 
 
 
 
 
 
 
 

Fig. 1: Logarithmic curvature graph. 
 
 

To derive the equations of log-aesthetic planar curves, we introduce the standard form[5].   In 
the standard form, we call any point on a log-aesthetic curve whose radius of curvature is not 0 or ∞  
the reference point rP .  rP  is determined by a parameter Λ , which is introduced shortly.  In the 
standard form, we give the following constraints on rP .  See Fig. 2. 
(1) Translation:  The reference point rP  is placed at the origin. 
(2) Rotation: At the reference point rP , the tangent vector is directed toward the positive side of x -

axis. 
(3)  Scaling:  The radius of curvature at the reference point rP  is 1. 
At the reference point, arc length s  and tangential angle θ  are both set to 0.  See Fig. 2.   
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Fig. 2: A log-aesthetic curve ( 1α = ) in the standard form. 
 
 Modifying Eq.(1), we get 

 1d
d

cs eαρ
ρ

−= .         (2) 

At the reference point rP , d / d cs eρ =  since 1ρ = .  Let d / ds ρ  at the reference point rP  be 1/ Λ .  Thus 
ce−Λ =  and 0 < Λ < ∞ .  Using Λ , Eq. (2) becomes 

 
1d

d
s αρ
ρ

−

=
Λ

.         (3) 

Integrating Eq.(3) with respect to ρ  such that s  becomes 0 when 1ρ = , we get 

 
( )

1 log if =0
d d =

1d 1 otherwise

ss
α

ρ α
ρ

ρ ρ
α


 Λ= 
 −
Λ

∫        (4) 

Solving Eq.(4) with respect to ρ , we get 

 
( )

1

if 1

1 otherwise

se

s α

α
ρ

α

Λ == 
Λ +

 .      (5) 

Using Eq.(3) and d ds ρ θ= , 

 
2d 1 d

d d
s αθ ρ

ρ ρ ρ

−

= =
Λ

.        (6) 

Integrating Eq.(6) with respect to ρ  such that θ  becomes 0 at 1ρ = , we get 

 

( )
1

1 log if =1
d d

1d otherwise
1

α

ρ α
θθ ρ

ρρ
α

−


 Λ= =  −
Λ −

∫  .      (7) 

Since ρ  changes from 0 to ∞ , s  and θ  may have an upper or a lower bound depending on α .  See 
Table 1.  The lower (or upper) bound of s  is derived by putting 0ρ = (or ρ = ∞ ) into Eq. (4).  Similarly, 
the lower (or upper) bound of θ  is derived by putting 0ρ = (or ρ = ∞ ) into Eq. (7).   
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Tab. 1: The bounds of s  and θ  
 
Solving Eq.(7) with respect to ρ , 

( )( )
1

1

if 1

1 1 otherwise

e θ

α

α
ρ

α θ

Λ

−

 == 
− Λ +

      (8) 

The equations of log-aesthetic curves ( ) ( ) ( )x yθ θ θ =  P P P  in terms of tangential angle θ  is  

( ) ( )

( )( )

0

0

1
1

0

cos d

cos d if 1
         

1 1 cos d otherwise

x

e

θ

θ ϕ

θ
α

θ ρ ϕ ϕ ϕ

ϕ ϕ α

α ϕ ϕ ϕ

Λ

−

=

 == 
 − Λ +

∫

∫

∫

P

    

(9) 

 

( ) ( )

( )( )

0

0

1
1

0

sin d

sin d if 1
         

1 1 sin d otherwise

y

e

θ

θ ϕ

θ
α

θ ρ ϕ ϕ ϕ

ϕ ϕ α

α ϕ ϕ ϕ

Λ

−

=

 == 
 − Λ +

∫

∫

∫

P

    

(10) 

The equations of log-aesthetic curves in terms of arc length can be derived by representing θ  in terms 
of s .  Putting Eq.(5) into d / ds=1/θ ρ  and integrating with respect to s  such that θ  becomes 0 when 

0s = , we get 

 ( )

( )
( )

11

1 if =0
log 1d d if =1

d

1 1
otherwise

1

se
s

s
s

s α

α
θθ α

α
α

−Λ

 − 
 



 −


Λ += =  Λ


Λ + −
 Λ −

∫ .     (11) 

Now the equations of log-aesthetic curves ( ) ( ) ( )x ys s s =  Q Q Q  in terms of arc length s  is  

 s  
 lower bound 

( 0ρ = ) 
upper bound 

( ρ = ∞ ) 

0α <  
−∞  ( )1/ α− Λ  

0α =  −∞  ∞  

0α >  ( )1/ α− Λ  ∞  

 θ  
 lower bound 

( 0ρ = ) 
upper bound 

( ρ = ∞ ) 

1α <  
−∞  ( )( )1/ 1 αΛ −  

1α =  −∞  ∞  

1α >  ( )( )1/ 1 αΛ −  ∞  
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 ( ) ( )( )

( )
( )

( )( )

( )

0

0 0

1 1/

0

cos 1 d if 0

log 1
cos du cos d if 1

1 1
cos d otherwise

1

s u

s s

x

s

e u

u
s u u

u
u

α

α

θ α

α
α

−Λ

−



 − =

  Λ + = = =  

Λ 
  Λ + −    Λ −  

∫

∫ ∫

∫
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0 0

1 1/
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log 1
sin du sin d if 1

1 1
sin d otherwise

1

s u
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s

e u

u
s u u

u
u

α

α

θ α

α
α

−Λ

−



 − =

  Λ + = = =  

Λ 
  Λ + −    Λ −  

∫

∫ ∫

∫

Q .  (13) 

As written in [5], the Eq.(9) and (10) in terms of tangential angle is preferable when we compute the 
points of log-aesthetic curves near the inflection point.  Eq. (12) and (13) are preferable when the value 
of Λ  is close to 0, which means the curve is close to a circular arc.  Detail characteristics of log-
aesthetic curves are described in [5]. 

3 THE EVOLUTES OF LOG-AESTHETIC CURVES 

The evolute[3] of a curve is the locus of the curvature center of the curve.  Let ( )tP  represent a curve 

with parameter t .  Let ( ) ( ),t tκ N  be the curvature and the unit normal vector at parameter t .  The 

evolute of the curve ( )tP  is 

 ( ) ( ) ( ) ( )1t t t
tκ

= +E P N .       (14) 

 Let ˆˆ ˆˆ, , ,s ρ θ α  be the arc length, the radius of curvature, the tangential angle and the slope of the 
LCG of the evolute of a log-aesthetic curve.  From Eq. (6), if the evolute can be represented by 

 ˆ 2
ˆd ˆˆ
ˆd

c αθ ρ
ρ

−=         (15) 

with some constant ĉ , we can say that the evolute is also a log-aesthetic curve.  We first consider the 
case when 1α ≠ , then we consider the case when 1α = . 

3.1 The case when 1α ≠  

We first prove that the evolute of a log-aesthetic curve with 1α ≠  is also a log-aesthetic curves.  
Taking the power of ( )2α −  of the both sides of Eq. (8), we get 

 ( )( )
2

2 11 1
α

α αρ α θ
−

− −= − Λ + .       (16) 

From the relationship between an evolute and its generatrix, we have ˆd =dsρ  and ˆd =dθ θ .  Using these 
relationships and Eq.(6) and (16), we obtain 
 ( )( )

2
1

ˆd dˆ 1 1ˆ dd
s α

α
ρρ α θ
θθ

−
−

−= = = Λ − Λ +  .     (17) 
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Solving Eq. (17) with respect to θ , 

 ( )
( )
( )

( )

1

2ˆ / 1
1

α

αρ
θ

α

−
−

−Λ −
=

Λ −
.       (18) 

Since θ  and θ
)

 differ by / 2π , 

 ( )
( )
( )

( )

1
2ˆ / 1ˆ

1 2

α
αρ πθ

α

−
−

−Λ −
= +

Λ −
       (19) 

Differentiating Eq. (19) with respect to ρ̂ ,  we get 

 ( )
1 1
2

2

ˆ /d 1
ˆd 2

α
αρθ

ρ α

−
− −

−Λ−
=

− Λ
 

    
1 11 1
2 21=

2

α α
α αρ

α

− −
− − −

− −−
Λ

−
.       (20) 

Comparing Eq. (15) and Eq. (20), we get 
1 1
21

2
c

α
α

α

−
−

−−
= Λ

−
 ,       (21) 

1ˆ 2 1
2

αα
α

−
− = − −

−
.       (22) 

Now we have proved that the evolutes of log-aesthetic curves with 1α ≠  are also log-aesthetic curves.  
Solving Eq. (22) with respect to α̂ , we get 

 1ˆ
2

α
α

= −
−

.        (22) 

This means that the slope of the LCG of the evolute of a log-aesthetic curves with the slope of the LCG 
α  is ( )1 / 2α− − . 

3.2 The case when 1α =  

Now we consider log-aesthetic curves with 1α = .  Taking the power of 2α −  of the both sides of Eq. 
(8), we get 
 ( )22 e θ ααρ Λ −− = .        (23) 
Using the relationships of ˆˆd d ,d dsρ θ θ= =  and Eq. (6), (16), we get 

 ( )2ˆd dˆ ˆ dd
s e θ αρρ

θθ
−Λ −= = = Λ .       (24) 

Solving Eq.(24) with respect to θ , we get 

 
( )

ˆlog
2

ρθ
α

= −
Λ −

        (25) 

Since θ  and θ̂  differ with / 2π , 

 
( )

ˆlogˆ
2 2

ρ πθ
α

= − +
Λ −

.

 
Differentiating θ̂  with respect to ρ̂ , we get 

 
( )

1
ˆd 1 ˆ
ˆ 2d

θ ρ
ρ α

−=
Λ −

       (26) 

Comparing the right side of Eq. (15) with that of Eq. (26), we get 
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(a) ˆ5, 1 / 7aα = − =       (b) ˆ2, 1 / 4aα = − =       (c) ˆ1, 1 / 3aα = − =  

      
(d) ˆ0, 1 / 2aα = =                          (e) ˆ1, 1aα = =  

 
(f) ˆ2,aα = = ±∞                                (g) ˆ5, 1 / 3aα = = −  

Fig. 3:  Log-aesthetic curves and their evolutes. 
 

 
( )

1
2

c
α

=
Λ −

,        (27) 

 ˆ 2 1α − = − .        (28) 
Thus the evolutes of log-aesthetic curves with 1α =  are also log-aesthetic curves with ˆ 1α = .  
Therefore, Eq. (22) also holds when 1α = . 

3.3 Examples of evolutes of log-aesthetic curves 

As proved above, the evolutes of log-aesthetic curves are also log-aesthetic curves and the shape 
parameters of the generatrix and its evolute are related by Eq. (22).  Fig. 3 shows log-aesthetic curves 
with 5, 2, 1,0,1,2,5α = − − −  and their evolutes.  The evolute of the logarithmic spiral ( 1α = ) is also the 
logarithmic spiral.  The evolute of a circle involute ( 2α = ) is a circle (α = ±∞ ).  As the absolute value of 
α  gets larger, the evolute gets closer to a Nielsen’s spiral ( 0α = ). 

evolute 

evolute evolute 

evolute 

evolute 
evolute evolute 
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4 THE DRAWABLE BOUNDARIES OF LOG-AESTHETIEC CURVE SEGMENTS 

In this section, we introduce theoretical drawable boundaries for log-aesthetic curve segments with 
1α <  or 1α > and compare the theoretical drawable regions with the experimental drawable regions.  

Log-aesthetic curves with 0α < or 1α >  are curves with points at ρ = ∞  or points at 0ρ = , 
respectively.  See [5] for the characteristics of overall shapes of log-aesthetic curves and the algorithm 
for drawing the curve segment.   

                       

                                          
(a) 0.08Λ =                           (b) 0.30Λ =                           (c) 1 / πΛ =  

Fig. 4: Log-aesthetic curve segments ( 1α = − ) 

                          

                                        
                              (a) 0.08Λ =                          (b) 0.30Λ =                              (c) 2 / πΛ =  

Fig. 5: Log-aesthetic curve segments ( 2α = ). 

 
We introduce the theoretical drawable regions based on the following observations.  Fig. 4 and 

5 shows log-aesthetic curve segments and the corresponding overall shapes with 1α = −  and 2α = , 
respectively.  Fig. 4 ( 1α = − ) is chosen as a representative case of log-aesthetic curves with inflection 
points.  Similarly, Fig. 5 ( 2α = ) is chosen as a representative case with points at 0ρ = . 

In all of the curve segments in Fig. 4 and 5, the change of tangential angle are fixed to / 2π .  
When 0α < , Λ  takes a value between 0 and ( )( )1/ 1dθ α− , where dθ  is the change of the tangential 

angle of the curve segment.  As shown in Fig. 4, when Λ  is close to 0, the curve segment is close to a 
circular curve segment.  When Λ  is 0, it is known that the curve segment is a circular arc[5].  As Λ  
gets larger to its bound ( )( )1/ 1dθ α− , the curve segment gets closer to the inflection point in the 

overall shape.  At ( )( )1 / 1dθ αΛ = − , the curve segment includes the inflection point.   From this 
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observation, we can find a point on the drawable boundary using ( )( )1 / 1dθ αΛ = −  when dθ  is fixed.  

Modifying dθ , we can find a theoretical drawable boundary.  We will introduce an algorithm for 
drawing theoretical drawable boundaries shortly. 

When 1α > , Λ  takes a value between 0 and ( )( )1/ 1dθ α − .  As shown in Fig. 5, when Λ  is close 

to 0, the curve segment is close to a circular arc.   At ( )( )1 / 1dθ αΛ = − , the curve segment includes the 

point at 0ρ = . 

Now we introduce an algorithm for drawing a drawable boundary. 
(1) Let the three “control points” for drawing a curve segment be 0 1 2, ,P P P . 

(2) Assume that dθ  is known.  In the overall shape, we compute a curve segment using 

( )( )1 / 1dθ αΛ = −  when 0α <  or ( )( )1 / 1dθ αΛ = −  when 1α > .  As written in [5], when 0α < , the 

curve segment whose tangential angle is between 0 and dθ  is used.  When 1α >   the curve 
segment whose tangential angle is between 0 and dθ  is used. 

(3) Perform a similarity transformation such that the origin goes to 2P  and the other endpoint of the 
curve segment goes to 0P .   Using the information of the curve segment, we draw tangent lines at 

0P  and 2P  and then compute the intersection of the two tangent lines.  The intersection point is 
the point of a drawable boundary corresponding to dθ .  In the example of Fig. 6, AP  and CP  are 
transformed to 0P  and 2P , respectively, to compute the point 1P  on a drawable boundary. 

(4) By modifying dθ  from 0 to π , we can draw a drawable boundary as shown in Fig. 6(a).  Using the 
symmetry, we copy the boundary to generate a complete boundary. 

 
 
 
 
 
 

(a) A curve segment and a drawable boundary   (b) Overallshape 
Fig. 6: Drawing a drawable boundary.  

 
 Fig. 7 shows theoretical drawable boundaries drawn using the above algorithm.  If the second 
“control point”, which corresponds to 1P  in Fig. 6(a) is within the drawable boundaries, the curve 
segment is “theoretically” drawable.  By theoretically, we mean that there are cases where curve 
segments are not drawable even when the second “control point” is within the drawable boundary.  Fig. 
8 shows such a case.  In our implementation, we found that when α  is close to 0 the drawable 
boundary does not agree with the experimental drawable boundary due to inexact numerical 
computation caused by the use of floating-point numbers. 
 
 
 

 
θd

 

 

θd

0P  
2P  

1P  

CP  

AP  
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(a) 2α = −                                     (b) 1α = −                              (c) 0.1α = −  

 
 
 
 
 
 

 (d) 1.1α =                                     (e) 2α =                               (f) 3α =  

Fig. 7: Theoretical drawable boundary. 

 
Fig. 8:  The case where the drawable boundary does not agree with the experimental drawable region 
( 0.1α = − ). 

 

 
(a) 3α = −          (b) 2α = −         (c) 1α = −         (d) 0.5α = −        (e) 0.1α = −           (f) 0α =  

 
           (g) 0.1α =        (h) 0.2 to 0.8α =    (i) 1.1α =           (j) 1.5α =        (j) 2α =               (k) 3α =  

Fig. 9: Experimental drawable regions. 
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Fig. 9 shows the experimental drawable regions of log-aesthetic curves segments with various 

α .  In each rectangle, the coordinates of the bottom left corner is (-1,-1) and the coordinates of the 
top right corner is (1,1).  In the figure, the first “control point” is placed at (-1,0) and the third “control 
point” is placed at (1,0).  The second control point is moved within the rectangles.   If a curve segment 
is drawable, the point (pixel) of the second control point is drawn with white.  If not drawble, the point 
is drawn with black.  In comparison with the theoretical boundaries, we confirmed that the drawable 
boundaries agree well except when α  is close to 0.  The experimental drawable region in Fig. 9(e) is 
larger than the theoretical drawable boundary in Fig. 7(c), especially when 0.1α = − .  When α  is 
between 0 and 1, we see black regions (not drawable region) in the experimental drawble regions.  This 
is due to numerical inaccuracies caused by floating point computations, but we don’t have a proof that 
the curve segment is always drawable when α  is between 0 and 1. 

5 CONCLUSIONS 

We have investigated the two characteristics of log-aesthetic curves.  We first provided a proof that 
the evolute of a log-aesthetic curve with shape parameter α  is also a log-aesthetic curve with shape 
parameter ( )1 / 2α− − .  Then we presented a method for drawing the theoretical drawable boundaries 

of log-aesthetic curve segments when 0α <  or 1α > .  We compared the drawable boundaries with 
the experimental drawable regions and confirmed that they agree well except when α is close to 0 or 1.  
When α  is between 0 and 1, we cannot draw a theoretical drawable boundary.  This may indicate that 
the curve segment is (at least theoretically) drawable.  The question that the curve segment is always 
theoretically drawable when  α  is between 0 and 1 remains open.   
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