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ABSTRACT

Although huge potentials abound for mobile robots in areas like military, traffic
control, logistics, and computer graphics, practicable motion planning techniques
have yet to be developed. This paper proposes a bio-inspired intelligent approach to
motion planning for decentralised mobile objects in dynamic environments. It is
inspired by the natural behaviours of creatures which tend to keep a safe distance
between one another, and move towards their respective destinations. The proposed
approach does not require any central controller, and there is no communication
between robots. It instead imitates the characteristics of creatures with local sensing
for detection of imminent neighbours and navigation. Each robot is assumed to be
driven by a virtual attractive force of its destination and repulsive forces of its
imminent neighbours. In particular, it features a module to detect imminent
neighbours, reducing computation overheads and eliminating redundant robot
movements. Moreover, in comparison with other methods that are mostly based on a
simple function for virtual force calculation, the proposed approach adopts a more
adaptive two-section function to calculate repulsive forces to improve collision
avoidance. A simulator, with a case study of motion planning for free-range
automated guided vehicles at a container terminal, is developed to implement and
validate the proposed approach.

Keywords: bio-inspired, mobile robots, motion planning, dynamic environments.
DOI: 10.3722/cadaps.2011.773-783

1 INTRODUCTION

Multi-robot motion planning addresses the problem of how a team of autonomous mobile robots can
share the same workspace, while avoiding interference with each other and achieving group motion
objectives [10]. Research on this field dates back to the late 1980s, initially beginning with the study of
mobile robotics. Motion planning for multiple autonomous robots to navigate safely and avoid moving
obstacles in dynamic environments is still among the most difficult and important problems in multi-
robot control, and it is necessary for a number of real world applications, such as military, traffic
control, logistics, and computer graphics [6], as shown in Fig. 1.
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Fig. 1: (a) Motion planning for distributed heterogeneous military systems [6], (b) Automated guide
vehicles at a container terminal [16], (c) Real-time simulation of realistic motion of multi-agents in
computer graphics [17].

The European Union has sponsored several swarm robot projects. The I-SWARM project, for
instance, aimed to develop a swarm of robots to perform cooperative tasks, such as foraging. An
inter-university SWARMS initiative in the United States tried to develop a new system framework for
controlling a swarm of mobile robots, synthesizing emergent behaviours for reactive response, and
developing algorithms for decentralised transport [10].

The environments of motion planning can be divided into two categories, namely static and
dynamic. Motion planning approaches for static environments plan routes of robots from origins to
destinations from completely known information of the environments and the routes are repeatedly
used if the same tasks are assigned. Obviously, static approaches are not able to adapt to changes in
the system and traffic conditions. Dynamic motion planning approaches generate routing decisions
based on constantly changing real-time information and the routes of robots are continually adjusted,
segment by segment. The advantage is that validity of routes can be achieved during operation, even
under dynamic traffic conditions and task requests. However, the optimality of the complete routes
cannot be guaranteed [18].

The architecture of motion planning for a team of robots can be centralised or decentralised [11].
A centralised architecture uses a single decision maker to plan the motions of all robots. In theory, it
is easy to implement, and it can produce optimal solutions by gathering all relevant information. In
practice, however, it suffers obvious limitations. A large amount of resources are required for the
central controller to handle all the computation tasks as well as frequent communications with all
robots, which often incur sluggish response of individual robots to constantly changing local
environments. Furthermore, the whole team will become paralytic if the central controller fails. Thus,
centralised control tends to suit applications involving small number of robots in static environments
with easily available global information. A decentralised architecture, on the other hand, lets each
robot make its own decisions based only on its local information, without any communication with
and intervention from a central controller. Therefore, immediate and flexible response to dynamic
local changes can be achieved. This type of architecture is more fault-tolerant, for it is affected by
possible failures of a central controller and even if some robots fail, the rest of the team can still
function normally. Moreover, a decentralised system is well scalable for a large number of robots,
because the decision-making of each robot concerns only with its own local environment which is
independent of the total number of robots in a team [7][19]. Nevertheless, optimal decentralised
solution of each robot may not necessarily aggregate to an optimal global solution of the team. Hence,
the challenge of decentralised motion planning is to predict the collective performance based on
individual decision making, and vice versa [9]. This paper adopts a decentralised architecture to plan
the motions of a robot team in dynamic environments.

A number of open issues in multi-robot motion planning remain. Dynamic re-planning of motion
is important in stochastic environments, and most of the current techniques still have difficulty in
handling environment uncertainties, such as stochastic task requests and unexpected traffic
conditions. Secondly, existing techniques typically cannot scale well to handle a large number of
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robots, and there are limitations for extensions to three-dimension applications like aerial robots.
Thirdly, developing motion planning techniques that incorporate practical motion, sensing, and
communication constraints of physical robots is also desirable [10].

There are some popular techniques of multi-robot motion planning, such as virtual forces
approaches [4], potential field methods [19], mixed integer linear programming [14], protocol-based
[8], genetic algorithms [13], spatiotemporal planning [2], and graph-based [11], etc. Each of them has
its merits and deficiencies, and is applicable only in a limited range of applications.

Of these techniques, the virtual forces approaches are among the effective methods to handle
dynamic situations. The principle of these approaches assumes that each agent is influenced by
virtual forces from other individuals or its destination, according to the applications concerned and
design criteria. Helbing et al. [4] proposed an empirically derived social forces model to simulate the
dynamics and motion of pedestrian crowds. This model described the psychological tendency of
pedestrians to stay away from each other by a repulsive interaction force. In case of contacts between
pedestrians, a body force counteracting body compression and a sliding friction force impeding
relative tangential motion were also proposed, which were inspired by granular interactions. This
model was estimated from real data. Scenarios of human crowds, particularly evacuation of panic
crowds, were presented. The disadvantage of this social forces model was that agents appeared to
shake in response to numerous forces in high-density crowds, and the agents were only modelled as
particles. Silveira et al. [15] used a virtual forces model to control behaviours of mobile agents. The
agents can negotiate the respective motion, avoid collisions, and attain respective goals, while
producing very individual paths. The individuality of each agent could be set by changing its inner
force parameters, leading to a broad range of possible behaviours without jeopardizing its
performance. Examples of steering behaviours in corridors with collision avoidance, and searching for
objects in unknown environments were presented. The agents with this approach could only move in
a grid-based map without consideration of motion dynamics, while the obstacles remained static.
These virtual forces approaches are easy to understand, with clear mathematic formulation, and most
importantly, reactive to uncertainties of environment. And yet, they suffer some limitations. The
planning parameters, such as sensing range and rate, force calculation, and system dynamics, are
usually empirical, determined by trial and error. Also, there is a lack of theoretical analysis of system
stability and convergence [1].

Similar approaches are potential field methods, which are physics-inspired. The potential field
methods direct robots as if they were particles moving in a potential vector field. Gradients can be
regarded as forces exerted on positively charged robots which are attracted to the negatively charged
goals. Obstacles, on the other hand, are positively charged to repel the robots away. Zavlanos et al.
[19] developed a distributed multi-destination potential field which was able to drive a swarm of
agents to available destinations by the respective attractive forces. A neighbour coordination protocol,
facilitated with communications and sensing of agents, was also developed to ensure that local
interferences of agents could be possibly avoided. However, it seemed that avoidance of collisions
between agents was not sufficiently guaranteed. These potential field methods require full knowledge
of the environments prior to motion planning, which is often not known in dynamic situations. Local
minimum is another common drawback of these methods. Traditional potential field methods only
consider the relative positions of robots. A complementary approach, called the generalised potential
field method, also considers the velocities of robots. However, the complementary forces only affect
in the directions of velocities and cannot steer the yaw angles [1].

To meet these challenges of multi-robot motion planning, this paper aims to develop a bio-
inspired intelligent approach to motion planning for a team of decentralised mobile robots working in
a dynamic environment. Intelligent decentralised motion planning in a dynamic environment can be
observed from natural creatures, such as a flock of animals, and human pedestrians in a crowd. These
creatures maintain local sensing to spot imminent neighbours without explicit communications; they
tend to keep an adequate distance from one another, effectively solving local interferences and
moving towards their respective destinations.
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This paper assumes that every mobile robot in a team keeps sensing it local environment to detect
imminent neighbours which are likely to pose immediate collision dangers. It is virtually separated
from its imminent neighbours by repulsive forces, while approaching towards its destination by an
attractive force. To describe the dynamics of these virtual forces on the motion of each robot, the
subsequent navigation function is derived in the form of Newton’s law of motion. Unlike most of the
similar navigation functions that simply take all the sensed neighbours into account, the proposed one
features a module to detect imminent neighbours. With this detection module, only those robots likely
to collide will be processed accordingly at the following navigation stage, thus reducing computation
overheads and eliminating redundant robot movements. Moreover, while most other methods are
based on a simple function for virtual force calculation, we adopt a more adaptive two-section function
to calculate repulsive forces to improve collision avoidance. The proposed approach is implemented in
a simulator developed for a case study of motion planning for free-range automated guided vehicles at
a container terminal.

2  THE BIO-INSPIRED INTELLIGENT MOTION PLANNING APPROACH

As mentioned above, the proposed motion planning approach to multiple mobile robots is inspired by
the motion behaviour of natural creatures. A motion planning cycle of a robot equipped with modern
advanced processor and sensors includes three stages, namely local sensing, detecting imminent
neighbours, and real-time navigation. Fig. 2 shows the flow of such a cycle, which can be sufficiently
short in order to avoid obsolete information. The motion planning approach works in an incremental
pattern such that the route is planned segment by segment until the robot reaches its destination. The
advantage is that the validity of routing can be achieved during operation even in dynamic traffic
conditions.

’ A robot motion planning cycle ‘

Local sensing ==ap  Detection of imminent neighbours sy Navigation |

% I

Fig. 2: Three stages in a robot motion planning cycle.
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Fig. 3: Local sensing and detection of imminent neighbours by
a robot with a 180 field of view.
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2.1 Local Sensing

The field of view of a range sensor, such as a sonar or a laser sensor, can be 180°, 360", or other values.
In this paper, a 180" field of view is used, as shown by the red robot in Fig. 3. This is similar to a lot of
creatures. They need not observe the situations behind, since the neighbours behind are also sensing
and avoiding collision with their front neighbours. Moreover, a scanning view of 180" is usually twice
as efficient as 360° scanning. Another issue of local sensing is the scanning range R, which is subject
to the requirements of the application concerned, and the technical specification of a sensor.

2.2  Detection of Imminent Neighbours

Most motion planning methods discussed in Section 1 simply take all the sensed neighbours into
account. Such an approach is not only computationally expensive but also results in undesirable robot
movements. The proposed motion planning approach, on the other hand, features a detection module
to spot imminent neighbours which pose immediate dangers to the robot concerned. Incorporating
this module, the resulting navigation of a robot should outperform the existing ones.

Fig. 3 shows a robot motion planning cycle in which the red robot senses four neighbours.
Detection of imminent neighbours is achieved by computing possible intersections of robot motions in
range. Since the cycle time is short, it is reasonable to assume that a sensed neighbour robot

— —

continues to move in a straight line, as shown in Fig. 4, where (srl?tH) and (sft]) represent two

—

consecutive states of a sensed neighbour robot, while s stands for position and ¢ for time. Variables
with symbol — are vectors.

Fig. 4: Straight motion assumed in a robot motion planning cycle

The robot velocity is derived by:

v, = TS (2.1)
t—t
J J—

Referring to Fig. 3, if the extended velocity vector of a robot i intersects with that of the red robot,
then robot i, within the sensing range, is an imminent neighbour to the red robot. It can be expressed
as:

oi) = 1, ¢ is imminent (2.2)

0, otherwise

where ¢(i) is the detection function to be incorporated in the following navigation function. Hence, the

blue and the green robots are considered as imminent neighbours that are likely to collide with the red
robot. With this detection module, only such imminent neighbours posing immediate threats will be
processed accordingly at the navigation stage. This reduces computation overheads and eliminates
redundant robot movements. It should be noted that the number and locations of the spotted
imminent neighbours are different in most motion planning cycles, because robots are all moving
about.
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2.3  The Navigation Function

Based on sensing the local environment and detection of imminent neighbours, a navigation function is
developed to guide a robot to its destination and to solve local interference between imminent
neighbours. It is assumed that each robot is driven by a virtual attractive force of its destination and
by some virtual repulsive forces of its imminent neighbours to keep an adequate distance from one
another. To describe the dynamics of these virtual forces on the motion of each robot, the navigation
function is derived in the form of Newton’s law of motion:

- d - -
fn,e:t = (ZLL‘U) = fgoalizfi (23)

—

where f is the net force, f , is the attractive force by the destination, while Z f,; is the composed
repulsive force by its imminent neighbours.

To calculate the attractive force by destination, it is necessary to alleviate overshoot and
subsequently fluctuations when a robot approaches very close to its destination. Its magnitude is
therefore assumed to be proportional to the distance from the goal, as follows:

—

[ gour =k dgoal (2.4)
where dga is the distance vector pointing from the robot to its goal, and k is a scaling factor.

To enhance the responsiveness of a robot to different threats of collision posed by its imminent
neighbours, a two-section function is formulated to calculate the repulsive forces. When an imminent
neighbour is detected at the outer half of the sensing range, an inversely proportional function is used
to mildly steer the robot:

[ES

=4 if§<¢gR 2.5)

QL

i

where d; is the distance vector pointing from an imminent neighbour to the robot, and A is a scaling
factor. When an imminent neighbour is detected at the inner half of the sensing range, an exponential
function is introduced to exert tight repulsion on the robot:

- -
ﬂ:&07ﬁo<¢g§

(2.6)
where Bis a constant giving the largest repulsive force, and C indicates the changing rate. Like most of
the similar approaches mentioned in Section 1, the scaling factors and parameters in force calculation
are usually determined by trial and error. Incorporating the detection function (2.2), the complete
function of a repulsive force is:

ﬂ»i,ﬂ§<4g3
f= di 2.7)
—d
g(i)Be ¢, if 0<d, Sg

Take the situation in Fig. 3 for example. The red robot is attracted by its destination while being
repelled by its imminent neighbours. The net force calculation is shown in Fig. 5. In this motion

planning cycle, the red robot steers to the right by the net force f .
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blue

s

Fig. 5: Net force calculation of the case in Fig. 3

3  IMPLEMENTATION AND CASE STUDY

The proposed motion planning approach is incorporated and validated in a simulator for simulation of
a team of autonomous robots transporting containers at a container terminal. The simulator is
developed on the Player/Stage [12] open-source platform, which is widely used for multi-robot control
and simulation. It consists of two sub-packages, namely Player, and Stage. Player provides a network
interface to a variety of physical robots and sensors. Player’s client/server model allows robot control
programs to be written in a number of programming languages and to run on any computer with a
network connection to physical robots. Control program communicates with Player over TCP sockets,
reads data from sensors, and writes commands to actuators. Stage is a Player plug-in simulation
package which simulates a population of mobile robots moving and sensing in a 2D bitmapped
environment. Various sensor models are provided, including sonars, laser rangefinders, pan-tilt-zoom
cameras and odometers. Virtual devices of Stage present a standard Player interface, and hence few or
no changes are required to move between simulation and hardware. Controllers designed in Stage
have been demonstrated to work on various physical robots. In this paper, the Player/Stage runs in a
Linux-based operating system called Fedora 13, and the programming language is C++.

o Quay- o
<@ Vessel SR Vessel
h | =il | / I‘ il
Containers to be transported to
vard-side
| ]
®
AGV
AGV
o ®
4 ") Yardggide %
] = = = | = | =
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Fig. 6: Simulated working environment of free-range AGVs at a container terminal
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An automated guided vehicle (AGV), with autonomous control and sensing devices, can be
regarded as an autonomous robot. A team of AGVs at a container terminal transporting containers
from the quay-side to the yard-side is used to verify the practicability of the proposed motion
planning approach, as shown in Fig. 6. There are two vessels berthed at the quay-side. Each vessel is
served by five quay cranes which unload the containers from the vessels. Containers appearing beside
the vessel are ready to be picked up, while those being handled by the quay cranes are not shown in
the figure. The team of AGVs are transporting containers from the quay-side to the yard-side.

Traditionally, either in manufacturing areas or container terminals, AGVs use fixed guide-paths,
such as loops, and networks. The fixed routing approaches allow for reliable automation of vehicles.
However, AGVs are less manoeuvrable. Routes are unnecessarily long, incurring considerable
transportation time and low system throughput. Route segments are shared for multiple vehicles,
leading to potential congestion and deadlocks. With the advent of more powerful onboard processors
and advanced sensors, it is now possible for AGVs to drive without physical guide-paths. Some
experimental systems have indeed been developed [18]. Preliminary simulation results showed that
free-range routing was on average 19% shorter than traditional mesh-based routing, and 53% shorter
than loop-based routing. Huge potentials are therefore seen for free-range routing to improve
transport capacities of AGV systems at container terminals.

Nevertheless, there are two major operational uncertainties for AGVs at container terminals,
namely, dynamic task requirements, and uncertain traffic conditions. Dynamic task requirements are
mainly due to the variation of vessel arrival time, and handling time of quay cranes. Uncertain traffic
conditions are mainly due to stochastic interferences between AGVs [18]. Hence, a team of
decentralised free-range AGVs working at a container terminal is a good test-bed to validate the
proposed multi-robot motion planning approach.

The AGVs work in an area of 600m x 150m. Each AGV measures 12m x 4.5m x1.5m and weighs

25 tonnes. The maximum velocity and the maximum acceleration of an AGV are V. = 7m st and

a_ _=1ms 2, respectively.

max

Inertial measurement units (IMU) and sonars are used in this paper. An IMU is a device that
utilises measurement systems such as gyroscopes and accelerometers to estimate the relative
position, velocity, and acceleration of a vehicle in motion [3]. Sonars are common range sensors in
mobile robotics. The general principle is that the system emits sound pulses and awaits the return of
echoes that have bounced off from objects in the environment. Knowing the transmission speed of
sound in the medium and the time of flight, it is possible to compute the distance. This method is
widely used due to the low cost of sensors with adequate performance [5]. Rotational scan at the rate
of 20Hz is used, with 180" field of view. The range of sonar scanning R is derived as follows. Consider
an extreme case where two AGVs, heading directly towards each other without yaw steering, are

braking from the maximum velocity V. with the maximum acceleration o . According to
. . . R 1 9 V. ) .
kinematic equation: — =V t — —a t*, and t=-2%_ Ris derived as:
2 max 2 max a )
1% 2
R — _max (31)
a
max

that is, R=49m, approximately four times the length of an AGV. With a proper yawing angle, this
sensing range can sufficiently safeguard the motion safety. Empirical selection of the parameters of
the navigation function is as follows: K=100Nm’', A=3.6x10°N-m, B=2.5x10*N, and C= 60 m.

Fig. 7 shows a scenario where three AGVs plan their respective motions to their goals while
avoiding collisions. In Fig. 7(a), the red AGV detects two imminent neighbours: the blue AGV and the
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green AGV. The blue AGV exerts stronger repulsion and the composed repulsive force steers the red
AGYV to the right. In Fig. 7(b), while the potential collision between the red AGV and the blue AGV has
been eliminated, the red AGV detects the green AGV as an imminent neighbour. Hence, the red AGV,
which is repelled by the force from the green AGV, steers to the left to evade the green AGV. Note that
this time, the non-imminent neighbour blue AGV has no influence on the motion of the red AGV,
avoiding redundant movements of the red AGV and with less computation overhead. In Fig. 7(c), the
potential collision between the red AGV and the green AGV has been avoided, and the red AGV
continues to approach its destination.

G
» @
8 - a - &
e . .

@ (b) (0
Fig. 7: Snapshots of a scenario of three AGVs.

To verify the merit of the motion planning approach with the module for detection of imminent
neighbours, a simulation of ten AGVs to transport one hundred containers is carried out. Fig. 8 shows
the comparison of operational times of traditional approaches without the detection module and the
proposed approach with detection module. It can be observed that an improved efficiency by 16.2% is
attained. It verifies that redundant computation overheads and robot movements can be avoided with
the detection module, effectively streamlining the motion planning and collective performance of the
team of AGVs.

40

w
o

w
(=]

rJ
w

= Without Immiment
neighbour detection

= With imminent neighbour
detection

Operational Time (mins)
— r
w (=)

-
(=]

w

O 4
Fig. 8: Comparison of approaches with and without detection of imminent neighbours.

Two implementation issues are worthy of discussion. The first issue is the cycle processing time
of the AGV team. The team of physical AGVs at a real-life container terminal are designed to be
decentralised with independent and simultaneous motion planning. However, in computer simulations
as demonstrated above, AGVs are inevitably processed sequentially by the computer program. Hence,
the more AGVs involved in the team, the longer it takes to process and update all the AGVs. This
would lead to a potentially dangerous situation where some AGVs that have not yet been updated with
current information may collide with obstacles. Indeed, to simulate a large number of AGVs, the
computer program design for the behaviours of each AGV and the program control logic should be
optimised to render its execution as efficient as possible.
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Another issue is the sensing noises of a sensor. Both the inertial measurement units (IMU) and
sonars used in this simulation have measurement noises. Indeed, they resemble the physical sensors
in real-life applications. Hence, adequate tolerances should be incorporated accordingly during
implementation to make the measurements of relevant sensors effective.

4  CONCLUSIONS AND FUTURE WORK

This paper presents a bio-inspired intelligent approach to motion planning for mobile robots in
dynamic environments. It is inspired by the motion behaviours of creatures in a crowd which includes
local sensing, detection of imminent neighbours, and navigation. The motion of each robot is governed
by a navigation function in the form of Newton’s law of motion, describing the dynamics of virtual
forces on the motion of each robot. The proposed motion planning approach features a module to
spot imminent neighbours, reducing computation overheads and eliminating redundant robot
movements. Moreover, the calculation of repulsive forces is a two-section function, making the
repulsive forces more adaptive to the degree of collision danger. The system design and the motion
planning approach are validated with a simulated case study.

It should be noted that, like most of the similar motion planning approaches, the navigation
parameters of the proposed approach are empirical, determined by trial and error, and there is still a
lack of effective analytic guideline to design the parameters. It would be more fruitful if a preliminary
analytical model could be derived. Secondly, the proposed motion planning approach works in a
decentralised architecture in which each robot autonomously plans its own motion, without any
intervention from a central decision-maker. Like other decentralised motion planning strategies,
optimal decentralised solution for a single robot may not necessarily aggregate to an optimal global
solution at the collective team level. One of the challenges of decentralised control is to predict the
collective team performance based on individual decision making, and vice versa. Nevertheless, no
effective and analytic model has been developed yet [9]. It would be another contribution if such a
model can be established to analyse the performance of the proposed decentralised motion planning
approach, and other similar ones. Thirdly, the proposed motion planning approach mainly focuses on
solving the stochastic inter-vehicle collisions. It would be more versatile if the issue of task allocation
could also be taken into account. Moreover, dynamic task request is ubiquitous in real-life multi-
robots applications, which definitely influences the motion planning strategy. Future work will be
devoted to addressing this interesting yet challenging issue.
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