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ABSTRACT

Medial Axis Transformation (MAT) is proposed as an intermediate representation for
tolerance verification. It is assumed that the manufactured part has been scanned and
that points on the boundary are available as a dense cloud of points with respect to a
single reference frame (Inspection Reference Frame, IRF) that is typical of most
scanners in use today. Tolerance verification involves first locating the IRF with
respect to the CAD reference frame (CRF) followed by verification as laid out according
to appropriate standards. The former involves segmenting the point cloud and fitting
surfaces to the segmented set of points. The use of MAT eliminates the need for both
segmentation and surface fitting while enabling the verification of tolerances specified
with respect to the datum. MAT also avoids the problem of rejection of parts within
tolerances that arises in current practice due to the over estimation of the tolerance
zone when using the least squares method or other optimization techniques in
conventional verification with point data. As only characteristic points in the MAT of
the point cloud are processed, the computational effort and the combinatorial
complexity are also significantly reduced. A simple case study is presented to
illustrate the power of MAT as an intermediate representation in tolerance verification.
Current limitations and remaining work to develop the idea further are identified.
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1 INTRODUCTION

With the advent and increasing penetration of scanning devices (both contact and optical), it is now
possible to obtain a large number of points on the surface of a part very rapidly. Inspection of a
manufactured part is therefore increasingly be a set of points that has to be processed further for
verifying if the part is within the prescribed tolerances.

For tolerance verification, measured point data or the geometric object reconstructed from the
point data is compared with the nominal CAD model. The verification process varies a little depending
on whether the tolerances in the part have been prescribed with respect to one or more datum or not.
Typically, the measured point set is obtained with respect to the Inspection Reference Frame (IRF) that
is different from the reference frame with respect to which the nominal CAD model is defined (CRF).
An important step in the verification process, therefore, is registration (also referred to as localization)
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of the IRF with respect to the CRF or vice versa. The goal of localization is to find a transformation
that optimally positions the measured point set in the CRF. The main step involved in this is
establishing a correspondence between the CAD model and the measured point set.

When there are no datum planes involved in the tolerances specified, a correspondence between
the CAD model and the point cloud data is established during the localization process itself. In the
case of datum being available in the specification, generally, the correspondence is established between
the CAD model and the point cloud data before the localization step. For establishing the
correspondence between the datums for localization, computation is needed for surface fitting to
unstructured measured point data and feature detection. Feature detection in point data is done by the
segmentation process [3]. After the segmentation process the surface is fitted to the cloud points using
various optimization techniques. Both segmenting and surface fitting are error-prone processes. Thus,
there is a need to establish a correspondence between the CAD model and the measured point data
without fitting and segmenting point cloud data.

The Iterative closest point (ICP) algorithm is best known and widely used for localization in both
the cases. In the case of a specified datum plane, a correspondence is established by fixing the datum
plane in the measured data and the ICP algorithm is applied to complete the localization. For models
without datum planes, localization is done in two steps- initial pose estimation (approximate solution)
and solution refinement. In “approximate solution”, the distance is minimized between the CAD model
and the point data by using the least mean square distance considering the entire CAD model and
point cloud. In “solution refinement”, the distance is further reduced by applying the ICP algorithm for
points fixed by establishing a correspondence based on geometry.

The ICP shows good convergence only if the design reference frame (DRF) and inspection reference
frames (IRF) are kept close to each other to find the general correspondence or otherwise which
requires a proper estimation of initial rigid transformation. Also, the ICP algorithm has a basic
complexity of O (N, N ) where N_and N _ represent the number of points in the CAD model and point
cloud data and requires heavy computations. Several algorithms are proposed to speed up the
algorithm; some of them are reduction of the number of iteration, reduction of the number of data
points and acceleration of the closest points search [13].

After localization, the verification of tolerances is done by determining the closest points between
the measured point data and the surface of the CAD model by using the shortest distance criterion.
The verification process does not consider corresponding points between the CAD model and
measured point data. This could result in the rejection of good parts or the acceptance of parts out of
tolerance. A Singularity problem could also arise at the vertices of polyhedral shapes or other sharp
corners of the shape as discussed by Pasupathy et al. [17]. These points are called singular points or
points with multiple tolerance values. It is difficult to both specify tolerances and verify the deviation
of the manufactured part in the singular regions.

In this context, Medial axis transform (MAT), a conceptually elegant abstraction of shape models
can be used for the verification of tolerances. There is a one-to-one correspondence between the
geometric model and its medial axis transform. The MAT of the nominal CAD model and the MAT of
the cloud points are compared to verify tolerances that have been specified independently or with
respect to datum planes. MAT exhibits dimensional reduction and hence reduces verification time as
compared with the time required for processing huge amounts of point cloud data. Also, this method
has an edge over other methods as it verifies the tolerance of corresponding points as compared to the
closest point using the shortest distance method or criterion. It eliminates the segmentation of
unstructured point data along with surface fitting for detected features and also eliminates the
singularity problem encountered at the corners of the polyhedral shapes. In this paper, it is assumed
that the measured data available in a single frame albeit different from that of the CAD frame.

This paper illustrates the power of MAT as an intermediate representation in tolerance
verification. The remainder of the paper is organized as follows. Section 2 deals with a brief review of
related work. Section 3 describes the procedure for verification of dimensional tolerance of a part
using medial axis transform. Section 4 presents some preliminary results followed by a discussion of
some issues regarding the tolerance verification process. The paper ends with some concluding
remarks.
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2  LITERATURE REVIEW

Tolerance specification is a definition of classes of objects that are interchangeable in assembly
operations and are functionally equivalent. These classes are variational classes and are sets of solids
which, in turn, are sets of points in E’.Tolerance specifications are representations of variational
classes. [19]

These variations in the classes of objects are specified and controlled by the symbolic language of
geometric dimensioning and tolerancing (GD&T). This language is used to specify features on a part
and is regulated by ASME standard Dimensioning and Tolerancing ASME Y14.5M-2009 principles [1].

These specified tolerances are required to be verified on the manufactured part. The verification
process carried out with mechanical gauges, jigs and fixtures is termed hard-metrology, whereas
verification using measured point data is termed soft-metrology. Unfortunately, however, no standard
for the verification of tolerance specifications exists. The verification method can be defined as a
method which uses point data sampled from an actual part to determine if the part complies with the
given dimensional and tolerance specifications [7].

Tolerances are specified with a datum or without depending on the type of tolerance. Localization
is done between the CAD model and point cloud data by using specified datum planes or points with
geometrical characteristics. As the accuracy of the verification process mainly depends on accurate
localization, different methods are discussed in the literature for the localization of polyhedral objects
and free form surfaces with and without specified datum planes.

A popular method for aligning 3-D shapes including freeform surfaces based on an ICP algorithm
was proposed by Besl and McKay [4]. The algorithm assigns a correspondence to each data point from
another data point (model) with the least distance as the criterion. The transformation is applied on
the correspondence points in order to minimize the mean square error between them. This process is
iterated until some convergence criteria are reached. Rusinkiewicz and Levoy [20] classified variants of
the ICP algorithm into six categories. Various researchers used these variants to increase accuracy and
accelerate the localization process based on the ICP algorithm. Some drawbacks of the method have
already been mentioned in the previous section. The main drawback of the ICP method is that of
monotonic convergence to local minima instead of global optimal alignment. Some drawbacks can be
overcome by prior knowledge of point correspondence or when an initial estimate of the relative pose
is known.

Qualified datums [16] are datum surfaces or planes that can vary inside tolerance zones.
Localization based on these datum planes does not provide optimal alignment and this result in an
inaccurate comparison of surfaces. To overcome this, the concept of a datum direction frame was
proposed by Li and Gu [16] to solve the localization of point cloud data to the design system with
datum planes and without. For the proposed method, the datum for the measured data is defined
using the least square principle. Also, it does not use point to point correspondence between the
design and manufactured data for localization and this result in inaccurate results for subsequent
tolerance verification.

Various point cloud analysis algorithms have been developed to segment point cloud data into
different zones corresponding to basic CAD modeling surfaces [3]. Based on this, Campana and
Germani [6] described a method to identify datum geometries on a point cloud corresponding to an
axis and planes using the outer-point fitting approach (OPF).They demonstrated that the least square
method (LSM) approach overestimates distances as compared with the OPF approach.

In all of the methods used for localization, the sole purpose is to minimize the distances between
the various features and not between the corresponding points. For the localization of the datum
plane, at least some corresponding points representing the datum plane of the manufactured part
should coincide with the design datum plane to get accurate results for tolerance verification. The
closest point with the least distance criterion is suitable for the matching of surfaces but not for the
tolerance verification process when datum planes are prescribed.

3  PRESENT WORK

In this section, it will be shown how the medial axis can be used to verify dimensional tolerance from
the manufactured model.
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The medial axis transform was first introduced by Blum [5] to describe biological shapes
efficiently. Several researchers have pointed out the use of Medial axis transform (MAT) in various
fields of applications including geometric modelling. Recently Bahlen et al. [2] introduced a method to
extract and visualize dimension from a geometric model, especially thickness and angles and certain
properties like symmetry using MAT.

The definition of the medial axis transform reported in [18] is as follows. The Medial Axis (MA), or
skeleton of the set D, denoted M (D), is defined as the locus of points which lie at the centers of all closed
balls (or disks in 2-D) which are maximal with respect to D, together with the limit points of this locus. A
closed ball (or disk) is said to be maximal in a subset D of the 3D (or 2D) space if it is contained in D but
is not a proper subset of any other ball (or disk) contained in D. The radius function of the MA of a
connected set D is a continuous, real-valued function defined on M (D) whose value at each point on the
MA is equal to the radius of the associated maximal ball or disk. The Medial Axis Transform (MAT) of D
is the MA together with its associated radius function.

An important characteristic of MAT is that it can be used to simplify the original object and still
retain the original information about the objects. MAT has several useful properties such as

e Uniqueness: There is a unique MAT for a given object.

e Dimensional reduction: The dimensionality of the MAT is lower than its object.

e  Homotopical equivalence: The MAT is topologically equivalent to its object.

e Invertibility: With the axis and the radius function one can reconstruct the MAT.

e  Bijective mapping: For every point on the object boundary there is a unique point on the MAT.

These properties enable the use of MAT for the verification of tolerance for polyhedral objects as
well as freeform surfaces with and without datum planes. The scope of this paper is limited to
verification of the dimensional tolerance of 3D objects with specified datum. It is also assumed that
MATs are available for the CAD model. MAT of the nominal CAD model (henceforth referred to as
nominal-MAT) and the MAT of the measured model (henceforth referred to as measured-MAT).
Techniques such as those in [18] and [9] are used for obtaining the MAT. Procedure Verify-Tol takes
the MAT of the CAD model (nominal-MAT) and the MAT of the measured points (measured-MAT) as
input and verifies if the manufactured part is within the specified tolerances.

Procedure Verify-Tol (nominal-MAT, measured-MAT) {
define-reference-template (nominal-MAT, nominal-template)
determine-corresponding-template(nominal-template, measured-MAT, meas-template)
primary-localization (nominal-template, meas-template)
determine-soft-datum (datum-plane, soft-datum-plane, nominal-MAT, measured-MAT)
secondary - localization (datum plane, soft-datum-plane)
verify-tolerance-along reference system (nominal mat, measured-MAT, soft-datum-plane)

}

3.1 Localization of MAT with Datum

Similar to the conventional digital tolerance verification process, localization is an essential and
important step in the tolerance verification process using MAT. It requires establishing a
correspondence between the nominal-MAT and the measured-MAT. This can be achieved by localizing
the vertices of the datum plane in the nominal MAT with respect to the corresponding vertices of a
measured-MAT. The datum plane in a nominal-MAT represents the theoretical datum plane whereas the
corresponding plane in a measured-MAT represents the soft datum plane. In hard-metrology, the
datum plane is considered a reference to verify the remaining metrology. Practically speaking, it is not
possible to manufacture an ideal geometry and a non-ideal datum can lead to inaccurate results at the
end of the verification process [16]. In soft metrology, the CAD model is used as reference; geometrical
tolerances can be applied to the soft datum plane and can be easily verified, too. Thus if the soft
datum plane satisfies the geometrical tolerances, then the remaining corresponding vertices of an
object are verified as per the specifications of dimensions and tolerances.

3.1.1Characteristic Segments in a Nominal- MAT
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The various elements that generally compromise the 3D MAT have been defined and generated by
Ramanathan and Gurumoorthy [18]. Only the elements and terminologies used in the paper are
defined. If both end points of a MAT segment are shared with other MAT segments, then the MAT
segment is termed a loop segment (segment AB,C,D in fig.1) and the remaining are termed free
segments (1,2,...8 in fig.1). The MAT segment may have its starting point from the corner of an object
or from the junction point. Thus, the free segments have only a start point or end point in common
with the loop segments. The free end of the MAT segments represents the sharp convex corner or fillet
of an object. End points in a loop segment are termed junction points (J1, J2, J3 and J4 in fig.1).

I‘_.F_FI 5|Il|
R
R
|l
LA 2l

Fig. 1: Characteristic points of MAT.

3.1.2 Establishing Reference Template for Nominal-MAT:

The total number of MAT segments with their end point coordinates representing the nominal CAD
model is calculated. The nominal MAT is searched for identifying the number of loops. The centroid of
junction points is determined and considered the first reference point. The distance from the centroid
to the junction points of the loops is determined, and the junction point with the maximum distance is
termed the second reference point. The third reference point is searched for from the remaining
junction points of the loop in such a way that the included angle formed by the reference points does
not exceed 120 degrees. The triangle formed from the reference point acts as a template to find a
correspondence with the measured-MAT. Fig.2 (a) shows the nominal-MAT and measured-MAT for
rectangular cuboids in different reference systems. Fig.2. (b) shows the MATSs along with the respective
triangle formed by the three reference points, R1, R2 and R3 respectively.

- R3 R3
Nominal MAT _ .""" .Rl_
. pi® R2
o
Nominal MAT |
\ Actual MAT

Actual MAT

Fig. 2: (a) Nominal and measured MAT (b) Nominal and measured MAT with reference points.

The procedure find-datum- template constructs the template from the input mat. The template
constructed can then be used to establish correspondence.

Procedure define-reference-template (nominal-MAT, nominal-template) {
ref-pointl <« centroid of junction points in mat
ref-point2 <« junction point farthest from the centroid
vecl« ref-pointl - ref-point2
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for remaining junction points {

vec2 « ref-point2 - junction-pt,

vec3 « ref-pointl - junction-pt

anglelj « included-angle(vecl ,vec3)

angleZj « included-angle(vecl ,vec?2)

angle3 <« included-angle(vec2 ,vec3)

if (angfelj, angle?2 and angle3j are all < 120°)

ref—pointé < junction-pt,
¥
}

3.1.3 Determining Template for Measured-MAT:

A similar procedure is adapted as for a nominal-MAT for calculating the number of MAT segments,
loop segments, free segments, junction points, number of loops and the centroid for the measured-
MAT. The centroid acts as a first reference point for the measured-MAT. The second and third reference
points are searched for based on the template from the junction points with the distance as a criterion.
If the distance criteria are satisfied, then angle criteria are applied for angle verification. After the
verification of distance and angle criteria, junction points are fixed as reference points and are used to
establish a correspondence between the two mats. The procedure establish-correspondence-datum-
reference illustrates the procedure for the establishment of correspondence between the nominal and
measured MAT using the template formed in the procedure define-reference-template.

Procedure determine-corresponding-template (nominal-template, measured-MAT, meas-template) {
meas-template. ref-pointl « centroid of junction points in measured-MAT
for junction points jptj in measured-MAT{
if (dist(centroid, jpti) - dist(nominal-template.ref-point1,nominal-template.ref-point2) < TOL) {
ref-point2 « jpt,
for junction points jpt, in measured-MAT{
if (]'ptk 1= ref-point2){
if (dist (centroid, jpt) - dist (nominal-template.ref-pointl,
nominal- template.ref-point3) < TOL){
ref-point3 « jpt,
break;
}
} /* if not equal */
}+ /* for */
nom-vecl <« nominal-template.ref-pointl - nominal-template.ref-point2
nom-vec2 < nominal-template.ref-pointl - nominal-template.ref-point3
meas-vecl « meas-template.ref-pointl - ref-point2
meas-vec2 < meas-template.ref-pointl - ref-point3
if (included-angle(meas-vecl , meas-vec2) - included-angle(nom-vecl, nom-
vec?2) < TOL{
meas-template.ref-point2 «- ref-point2
meas-template.ref-point3 «- ref-point3

}

3.1.4 Primary Localization:

The nominal-MAT is constructed in a design coordinate system (DCS) whereas the measured-MAT is
constructed in a measurement coordinate system (MCS). For the verification of tolerances, it is
essential to bring them into a common coordinate system. This process is called localization. The
localization of nominal and actual MATs is done in two stages, primary localization and secondary
localization. In the first stage, localization is done with the correspondence developed with the
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reference triangle, whereas in the second stage, it is done with correspondence with specified datum
planes.

The centroid of the junction points of the nominal model is set to be the origin. The first step in
primary localization is to localize the centroid by translating the centroid of the measured-MAT to the
centroid of the nominal-MAT. After 3D translation, the triangles formed by the reference points in the
two MATSs are aligned by a rotational transformation [12]. Details are given in the procedure Primary-
localization.

Procedure Primary-localization (nominal-template, meas-template, measured-MAT) {
origin-nominal-template < nominal-template. ref-point1
origin-meas-template «<— meas-template. ref-point1
trans <«-origin-nominal-template - origin-meas-template
Translate (measured-MAT, trans)
nom-vecl < nominal-template.ref-pointl - nominal-template.ref-point2
meas-vecl « meas-template.ref-pointl - meas-template.ref-point2
axis « vect-prod (nom-vecl, meas - vecl)
angle « angle (nom-vecl, meas-vecl)

Rotate (measured-MAT, axis, angle)

nom-vec2 < nominal-template.ref-pointl - nominal-template.ref-point3
meas-vec2 « meas-template.ref-pointl - meas-template.ref-point3

axis « nom-vecl

angle « angle (nom-vec2, meas-vec?2)

Rotate (measured-MAT, axis, angle)

The function Translate takes the set of points in the first argument and translates them by the
vector that is defined by the second argument. The function Rotate takes the set of points in the first
argument and rotates them about the axis represented by the second argument through the angle that
forms the third argument. By transforming the measured-MAT such that the reference templates
defined for the respective MATSs are aligned, Primary localization ensures a correspondence between all
the MAT segments of nominal and measured data. Fig.3 shows the nominal and measured MAT for
rectangular cuboids after the primary localization, where reference points R1, R2 and R3 defined for
both MATSs coincide with each other.

Fig. 3: Nominal and measured MATSs after primary localization.

3.1.5. Secondary localization:

In actual hard-metrology, the face defined as the datum is placed on a surface plate for further
dimensional and geometrical tolerance verification. If there are other datum planes, the corresponding
faces are located on calibrated surfaces as well. This is captured in soft-metrology by aligning faces in
the measured part with the respective datum surfaces in the nominal part. Secondary localization is
used to achieve this. Here we do not have the faces in the measured part. Therefore the MAT points
corresponding to the datum surfaces in the measured point set are aligned with those of the nominal
model. The alignment is done starting with the primary datum followed by secondary and tertiary
datum where applicable.
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The first step in secondary localization is the determination of soft-datum-plane(s) corresponding
to the prescribed datum plane(s). Since the faces in the actual part are not available, the Mat points
corresponding to the corner points of the prescribed datum plane are used to define the soft-datum
plane. Procedure determine-soft-datum takes the prescribed datum-plane and the two Mats and
obtains the soft-datum-plane.

Procedure determine-soft-datum (datum-plane, soft-datum-plane, nominal-MAT, measured-MAT) {
for each corner/vertex in the datum-plane {
nominal-free-end <« nominal-MAT.free-end that is closest to the corner
soft-datum-plane.corner « measured-MAT.free-end corresponding to nominal-free-end

}

The soft-datum-plane obtained is then registered with respect to the prescribed datum and then
used for dimensional verification. The free end point closest to the datum plane in the nominal model
is taken as the origin. The corresponding free end point in the measured-MAT is assigned as the origin
and the measured-MAT is translated to align the two corresponding free end points. Rotational
transformation to align two other free end points associated with the datum junction points, with the
corresponding free end points in the nominal-MAT, are identified [12]. The transformed measured-
MAT then will be localized with the nominal-MAT with respect to the datum planes. The procedure
secondary localization will take the two MATs and the datum planes defined for the two MATS for
secondary localization. The procedure Secondary-localization implements the registration process
described above.

Procedure Secondary-localization (datum-plane, soft-datum-plane) {
Determine the pair of closest corner points in the datum-plane and soft-datum-plane
Translate the datum-plane and soft-datum-plane such that the respective corner point
identified above is at the global origin
for the remaining corner points in the two datum-planes
Find the next closest pair of points between the corners in datum-plane and soft-
datum-plane
nom-vec < origin - datum-plane.corner-point
meas-vec <« origin - soft-datum-plane.corner-point
axis« vect-prod (nom-vec, meas-vec)
angle« angle (nom-vec, meas- vec)
Rotate (soft-datum-plane, axis, angle)
for the remaining corner points in the two datum-planes
Find the next closest pair of points between the corners in datum-plane and soft-
datum-plane
axis<« nom-vec
nom-vec < origin - datum-plane.corner-point
meas-vec <« origin - soft-datum-plane.corner-point
angle« angle (nom-vec, meas-vec)
Rotate(soft-datum-plane, axis, angle)

3.1.6 Verifying Flatness of Datum Plane:

The distance between corresponding free ends representing the corner points of a theoretical and soft
datum plane are calculated. Generally, for a datum plane, flatness tolerance is assigned. The difference
between the maximum and minimum distance from the theoretical datum plane gives the variation in
the flatness of the soft datum plane. Here the Chebychev min-max principle is used, as the least square
methods used for the localization gives a tight tolerance zone and may result in the rejection of
acceptable objects [22, 23].
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3.2 Verification of the Dimensional Tolerance

A dimension is specified between faces in the nominal model along with the tolerance on the
dimension. For each of the two faces related by the dimension, the free end points in both the nominal-
MAT and measured-MAT are determined. The distance between the corresponding points in the two
MATs is computed for each face. The component of the computed distance along the normal to the
faces is used for verification. Procedure verify-tolerance-along reference system performs this
computation given the two mats. The worst case combination of the components for the two faces is
then checked against the prescribed tolerance. It is proposed that the dimensional tolerances be
verified using the free end points in the MAT (corresponding to corners in the object) and the
geometrical tolerances be verified using the interior points in the MAT.

4  RESULTS AND DISCUSSION

This section illustrates the use of MAT as an intermediate representation in tolerance verification with
two examples. Some related issues are discussed at the end of the section.

Figs 4 (a) and (b) shows the nominal trapezium model with MAT and the actual trapezium model
respectively. The actual model is obtained by randomly perturbing some of the vertices of the
nominal model. The nominal-MAT and the measured-MAT that are used for verification are also
shown in the respective frames.

e Measured MAT free end
® Nominal MAT free end

Fig. 4: () Nominal trapezium model with MAT (b) Measured Trapezium model with nominal and
measured MAT.

Tablel shows the coordinates of the vertices of the nominal and measured model with theoretical
and measured distances calculated with the algorithms prescribed.

Distance(Algorithm)
Igorrlljer CON%rr?lljﬁiieS C&gzgﬁiaes Distance Dlsta.nce Congiﬁll’gll’;ti oarllong
HIDEr ) odel(X,Y,2) model (X,Y,2) (Actual) 1 (Algorithm)
X Y Z
M -8-1012 -8-1112 1 1 0 1 0
N 8-10 14 8-914 1 1 0 1 0

Tab.1: Results from comparing corresponding points of nominal and measured MAT for trapezium.

Degeneracy /Singularity case:

Fig 5 (a) shows a ‘T’ shape part along with the MAT. It consists of a curved edge and surface,
concave corners and a concave edge. The concave corners are denoted by CC1 and CC2 while the
concave edge is shown by CE1. Face A-B-C-D represents the primary datum, face A-B-b-a represents the
secondary datum and face A-a-c-C represents the tertiary datum. The corner ‘P’ of the object is
perturbed in the direction of the X and Y axes as shown in fig 5 (b). Thus, the perturbed corner is at a
unit distance from corner ‘P’ in the ‘X’ and ‘Y’ directions respectively, as shown in fig.6. The free ends
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of the remaining MAT segments coincide with each other. This is evident from the result as zero
variation is obtained in location for all vertices of the part except corner ‘P’.

® Measured MAT free end
= Nominal MAT free end

Fig. 5: () Nominal ‘T’ shape model with MAT  (b) Measured perturbed ‘T’ shape model with nominal
and measured MAT.

Assume a unit dimensional tolerance is applied to face P-Q-R-S with respect to the primary datum
(parallel to the X- axis) and the secondary datum (parallel to the Y-axis). The current state of the art
uses the shortest distance criterion from the point to the surface for tolerance verification. Thus the
corner point ‘P’ 'will be shown at a distance of 1.43 unit from the corner ‘P’, and the part will be
rejected in this case. But in the actual case, the perturbed point is in the variational limit and should
be accepted.

Table 2 shows the coordinates of the vertices of the nominal and measured model with the theoretical
and actual distances calculated for point P with the algorithms prescribed.

Co-ordinates | Co-ordinates Distance (Algorithm)
Corner Nominal Measured Distance Distance component along dimension
Number model model (Actual) | (Algorithm)
X,Y,2) X,Y,Z) X Y yA
P -5 20 20 -6 2120 1.43 1.43 1 1 0

Tab. 2: Results from comparing corresponding points of nominal and measured MAT for ‘T’ shape
model.

¥ - 4R

Fig. 6: Deviation of perturbed corner P.

In the prescribed procedure, however, the component of the deviations along the normal to the
faces related by the dimension is used for verification. The projection gives the actual distance of the
actual corner from the corner ‘P’ and ensures correct verification. MAT handles all such degenerate
cases including the case where different tolerances are applied for the dimension associated with the
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faces associated with a given point [17]. The problem stated above actually represents the singularity
condition [17] occurring at the corner points of polyhedral objects and can be resolved by using the
MAT for verification purposes.

It has been shown that, it is possible to use MAT as an intermediate representation to achieve
tolerance verification without having to do surface fitting or segmenting. While these two steps are
computationally expensive, it must be mentioned that the effort in the computation of MAT has to be
accounted for. It may be noted that several efforts are underway for developing robust and reliable
constructions of MAT from both smooth models and discrete point data [8, 11, 15]. However, a
comparison of the efforts made remains to be done. However, MAT, as a representation of the object,
has other applications as well and therefore the computational effort could well be amortized over
more than one application. The use of MAT for representing tolerances has been suggested [17]. This
might be interesting to pursue as the verification step could then become simple as both the
specification and verification would be in terms of the same representation.

In this paper, the verification of tolerance is limited to dimensional tolerance with a specified
datum. In future work, algorithms for the verification of tolerances will be modified to accommodate
all types of geometrical tolerances applied to all types of surfaces. The accuracy of the algorithms will
be further increased with the inclusion of the interior points of the MAT in the alignment of soft
datum planes with nominal datum planes.

5 CONCLUSIONS

This paper proposed the algorithms to verify dimensional tolerance for polyhedral objects with
specified datums. The algorithms use input in the form of a MAT for nominal model and measured
point data respectively. Localization and correspondence between the two models are established
without the need for either surface fitting procedures or segmentation procedures. The prescribed
algorithms use the distance between the corresponding points and not the closest distance between
the point and the surface as adopted in general verification methods. As only characteristic points in
the MAT of the point cloud are processed, the computational effort and the combinatorial complexity
are also significantly reduced. Though it is too early to claim that the entire verification of tolerances
can be undertaken by the procedures prescribed in this paper, this is a first step towards an effective
and efficient tolerance verification system using MAT as an intermediate representation.
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