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ABSTRACT

In this report, we propose a method which generates a high-quality subdivision surface
from mesh data satisfying boundary conditions. We estimate second cross-derivatives at
boundaries and construct a control mesh so that the interpolated shape is supposed to be
trimmed from an extended shape at the boundary. At sharp features, we introduce a
subdivision rule in a similar manner to Hoppe et al., which makes a crease or boundary
correspond with a specified curve.
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1 INTRODUCTION

Tensor product surfaces such as non-uniform B-spline surfaces and Bézier patches have been widely
used [6] to represent free-form surfaces which compose industrial products such as automotive bodies
and electric appliances. They can represent high-quality surfaces, but to connect them to each other
with continuity is rather difficult. On the other hand, subdivision surfaces for arbitrary meshes have
been used in the field of computer graphics [5] due to their ability to handle irregular meshes and
automatic satisfaction of continuity [4,10,14]. A triangular subdivision surface was first introduced by
Loop [12] and subdivision rules were presented. Next, Hoppe et al. [9] proposed a method to
automatically determine the topological type of the surface including the presence and location of
sharp features such as creases, corners and darts. Then, Levin [11] introduced a method which
interpolates nets of curves according to a combined subdivision scheme, and sharp feature control
was introduced by Bierman et al. [1].

Tab. 1 shows subdivision rules for a triangle mesh. The first row shows rules for inner vertices
proposed by Loop and the second row shows those for vertices on sharp features proposed by Hoppe
et al. The main characteristics of Hoppe’s approach are as follows.

1. The vertices of the control mesh at sharp features are determined from crease curves and
those at corners are set to correspond with the input vertices. As a result, surfaces on the
both sides of a crease can share common vertices.

2. The subdivision rule at a crease is different from that at an inner vertex of a surface. Hence,
there is no contradiction on the boundary curve; however the boundary condition at the
crease is fixed, there is no freedom to determine the cross derivatives, which are used for
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tensor surfaces. As a result, this generates a flat shape along the crease and unfavorable
effects on the inner surface.

In our approach, to represent a high-quality surface, we set the boundary conditions for a
subdivision surface and introduce a method to determine a control mesh to satisfy these conditions,
along with a new rule for the crease or boundary curve. The concepts of our approach are:

1. We determine a control mesh at a feature (crease or boundary), such that the mesh can be
trimmed at this feature from the mesh representing its extended shape.

2. The mesh corresponding to the extended shape is estimated from the second cross derivative
along the feature and represented by extended vertices along the feature.

3. We introduce a subdivision rule at the feature which makes the limit curve at the crease
correspond with a specified input curve, due to the curve obtained by the subdivision using
the extended mesh not necessarily corresponding with the input curve.

2 CROSS DERIVATIVES AT FEATURE OF SUBDIVISION SURFACE

2.1 Parametric Line and its Cross Derivatives

We first examine a parametric line in the cross boundary direction of a subdivision surface. When the
mesh at the boundary is regular (the valence is four along the boundary), an equation for the
parametric line can be constructed using the weighting functions of a box spline [2,3]. Fig. 1 shows a
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Tab. 1: Subdivision rules.
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Fig. 1: Parametric line across boundary.
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parametric line going across a boundary as a blue line. Here the red line is a boundary and green

dashed lines show an extended mesh along the boundary [7,13]. Parametric line )(tr is represented

using control vertices iP and weighting functions i , and the parameter t is set to t=u=v for surface

parameters u, v and w:
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Differentiating Eqn. (2.1), we obtain the first derivative of the parametric line, and at the boundary
(when t=0.5) represented by a blue dot, the cross derivative is
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Additionally at this point, the second derivative is
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Replacing the control vertices with new points, a, b and c, we get
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where Fig. 2 shows the relationship between these points and the second derivative. The derivative is
obtained as the second difference of the edges multiplied by 4.

This differs to Hoppe’s rule where the extended mesh is generated such that the triangle which
includes the extended vertex makes a parallelogram with the opposite inner triangle, for example, P11

for the quad P11P8P4P7 in Fig. 1 [7]. Thus:

(2.5)
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In Eqn. (2.8), the second derivative is determined from the control vertices on the boundary only; it is
not possible to control the surface shape at the boundary.

2.2 Relationship between Parametric Lines and a Control Mesh

Next, we discuss the relationship between parametric lines and a control mesh. A parametric line for a
box spline, for example w=0 in Fig. 1, is a quartic Bezier curve which can be represented as a quasi-
quartic B-spline as shown in Fig. 3, because adjacent Bezier curves are C2 at the junction and the

intersection of extended edges which are next to the junction edge generates a new control point iq .

We obtain a quasi-quartic B-spline using iq and
Mqi which is the mid control point of the Bezier curve.

These control points of the quasi-quartic B-spline are calculated from the vertices of the control mesh:
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and it can be seen that both control points of the quasi-quartic B-spline are generated by summation of
control mesh vertices weighted at a ratio of 1:4:1. This ratio is the same as that for cubic B-spline
control points, thus, subdivision surfaces can be approximated as cubic splines in the cross boundary
direction. However, it is important to note that there is a pair of adjacent B-spline curves with opposite
triangle orientation as shown in Fig. 5a, these are not independent of each other. No such relationship
exists when using a tensor surface.

As the parametric line moves across the surface in the cross boundary direction, the second
derivative becomes
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Fig. 5b shows this relationship where the second derivative of the above B-spline curve corresponds to
the second difference of the sequence of the control vertex and the mid point of adjacent control

vertices. Using Hoppe’s rule at the boundary, the extended vertex is 4P (Fig. 5b), and so the second

derivative becomes a vector from 4P to 11P for the extended vertex in Fig. 2.
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3 BOUNDARY CONDITIONS AND FITTING OF SUBDIVISION SURFACE

3.1 Determination of the Control Mesh for a Subdivision Surface

Using the relationships described in Section 2, we next determine the control mesh for a Loop
subdivision surface according to the boundary conditions at sharp features. The steps for this
determination are summarized as:

1. Estimate the second derivative iα at the mid-point for each edge of a sharp feature (Fig. 6a).

Then determine the offset vector iv which moves an input vertex iP , and which also

corresponds to the effect of the extended vertex:
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2. Obtain control vertices iQ for the features, using the relationship between a limit point and

the control vertices, i.e. the control vertices are cubic B-spline control points which are fitted

for points ii vP  (Fig. 6b).

3. Calculate inner control vertices by solving a linear equation which relates the limit point and
control vertices (Fig. 6c).

In step 1, we estimate a second derivative i at the mid point of each edge. Then according to the

relationship in Fig. 5b, the extended vertex iE is allocated at the position translated a distance i

from Hoppe’s extended vertex (Fig. 7a). To determine Hoppe’s control vertices iQ on the boundary,

we add the affect of i to an input point. The weighting function added to the boundary curve by the

extended vertex is expressed in Eqn. (3.2) and shown in Fig. 7b, while the weighting function of iQ is

shown in Fig. 7c.
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When a limit point on the boundary is calculated, the effect of the extended vertex is added via the

second derivative. Thus, the input point is translated by vector iv according to Eqn. (3.2) as in step 2.

In step 3, inner control vertices are calculated such that they satisfy the locations of iQ on the

boundaries and are efficiently solved by the iterative method [8].
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Fig. 6: Steps of determining control vertices.
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3.2 Subdivision Rule at Features

We represented a subdivision surface using extended vertices in Section 3.1, but for an input curve, we
cannot obtain the boundary curve exactly. Both side surfaces at a feature cannot share a common
crease curve. Hence, we have to introduce a new subdivision rule at a feature such as a crease or
boundary.

Step 2 in Section 3.1 ensures that the limit points on the boundary correspond with input points.
However, as the subdivision is executed, some errors between limit points and points on the input
curve appear. Hence, we introduce a subdivision rule which assures the limit curve corresponds with
the specified input curve. At every subdivision of the feature, we calculate control vertices so that the

limit points lie on the input curve. Let
j

iv be an offset vector for the j-th subdivision of a feature, then

it is determined using weighting functions and second derivatives at the extended vertices:
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where, 1110,  and 12 are weighting functions for the crease curve obtained from the weighting

function for the extended vertex in Fig. 7b and expressed in Eqn. (3.2).
j

iQ are found for each subdivision as cubic B-spline control points which are fitted for points
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Here,
j

iP is a point corresponding to parameter t for the subdivision.

Fig. 8 shows the process of subdivision at a feature. As the subdivision advances, the number of

control vertices increases, and an offset point
j

i
j

i vP  is calculated from input point
j

iP

corresponding to j-th subdivision. From these points, we calculate control vertices j
iQ as shown in

blue on Fig. 8.
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(a) Extended vertices and second (b) Weighting function for (c) Weighting function for
derivative an extended vertex Hoppe’s vertex

Fig. 7: Weighting functions for boundary and extended vertices.

(a) Control vertices (b) Second-subdivision vertices
Fig. 8: Subdivision rule at a feature.
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3.3 Control Vertices at Corners

Finally, we discuss the control mesh for a corner where multiple features enter. In Fig. 9, for input
mesh jiP , , two sharp features A and B, 0,iP i=0,m and jP ,0 j=0,n, are incident to a corner, 0,0P . Along

these features, we estimate the second derivatives 0,i and ,j0 , as described in Sec. 3.1. For the

corner point where the valence is 3, as shown in Fig. 9a, we estimate the second derivative 0 from

the sequence 0,0P , 1,1P and 2,2P . For a corner point where the valence is 2, as shown Fig. 9b, four

second derivatives, corresponding to the blue extended vertices, are calculated along parametric lines

in the same way as 1,1 P . Using these derivatives and Eqn. (3.1), we can calculate offset vectors at each

input vertex; however at the corner we get two vectors for the two boundaries:
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Calculating control vertices 0,iQ and jQ ,0 on the features as in Sec. 3.1, we obtain two vertex values for

0,0Q from the two features. As a result, the corner control vertex is taken as the average:
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Using these control vertices as boundary conditions, we thus obtain the inner control vertices.

4 EXAMPLES

We now show two examples to which we apply our method. One is a 15-face polyhedron and the other
is a free form surface with four boundaries. A 15-face polyhedron is made cutting off 5 faces from an
icosahedron whose vertices are on the sphere of radius 1. Using the 11 input vertices shown in Fig. 10a,
we determine control vertices for a subdivision surface. We evaluate the quality of the obtained surface

(a) Corner: valence=3 (b) Corner: valence=2
Fig. 9: Control mesh at corner.
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by finding the difference between it and the unit sphere. The sphere represented by the icosahedron
vertices includes some errors, as shown in the central figure of Fig. 10a. Using Hoppe’s rule, the
surface becomes smaller near the boundary than the unit sphere as shown in Fig. 10b where the circle
on the left of the figure shows this difference clearly. On the other hand, as shown in Fig. 10c, the
surface generated by our method has a much smaller error near the boundary and errors similar to the
icosahedron around the bottom region. This is because we use the second derivatives as boundary
conditions and the boundary curve is specified as a circle, meaning that our method interpolates the
surface globally. The average and maximum errors, along with standard deviation, for each result are
shown in Tab. 2.

Lastly, we applied our method to a free-form surface that is like a Bezier patch. Fig. 11 shows the
obtained subdivision surfaces using Hoppe’s rule and from our method. The surface quality is
displayed using curvature profiles, which examine the curvature distribution by showing 1/10
curvature radii along the curve. The curvature profile for the parametric lines of the subdivision
surface generated by Hoppe’s rule has a large radius near the boundary, while that of our method has
a gradual and smooth curvature distribution. This demonstrates that Hoppe’s subdivision rule
generates a flat surface near the boundary, and that our method generates a more natural surface by
specifying second derivatives.

Maximum error Average error Standard deviation

Icosahedron 0.0113 0.0076 0.00311

Hoppe’s rule 0.0312 0.0154 0.00849

Our method 0.0187 0.0057 0.00677

Tab. 2: Maximum and average errors of subdivision surface.

(a) Icosahedron and input vertices for 15-face polyhedron

(b) Hoppe’s rule (c) Our method
Fig. 10: Example of 15-face polyhedron.
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5 SUMMARY

We have proposed a method which obtains the control vertices for a high-quality subdivision surface
using boundary conditions and introduced a new subdivision rule at the boundary by examining the
cross boundary derivatives of triangular subdivision surfaces. The method estimates the second cross
boundary derivatives, determines control vertices along the boundaries and then obtains inner control
vertices. We have shown that the subdivision surface interpolated globally by our method satisfies
boundary conditions and has smooth curvature distribution.

Our future research is to apply our method to approximation of subdivision surfaces.
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(b) Hoppe’s rule (c) Our method
Fig. 11: Example for free form surface.


