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ABSTRACT

We propose a method for decomposing a closed 2-manifold triangular mesh (tri-mesh)
into a set of sub-meshes. This approach has two novel features. First, the decomposed
tri-meshes are “sealed”. This type of subset tri-mesh generally has boundaries, but our
method automatically fills these boundaries to close the subset mesh in a technique
known as “sealed decomposition”. Second, the mesh is decomposed along its concave
features; the outcome tends to be a convex mesh decomposition, which is useful for a
variety of applications. In addition, we smooth those parts of the set of decomposed
sub-meshes not belonging to the closed 2-manifold tri-mesh using the umbrella
algorithm.
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1 INTRODUCTION

A common technique for handling large, complex objects is to compute the division of the model into
parts so as to enable a large number of applications, including ray tracing, rendering, collision
detection and 3D mesh editing. In the past few decades, a vast amount of research work has been
conducted to segment 3D surface mesh shapes into visually salient components [3], [7], [15-17], [20].
With this technique, the total mesh is cut into a set of sub-meshes, which therefore have boundaries
even though the total mesh has none. Instead, decomposing a 3D geometric mesh into closed surface
meshes has a large number of advantages when the geometric shape is understood, analyzed and
edited. In addition, a variety of useful characteristics (such as the volume and the boundary surface
area size of segmented components) can be ascertained much more simply when the corresponding
geometric object consists of a set of sub closed surface meshes. We call this approach “sealed
decomposition”.

In addition, we aim to compute perceptually meaningful decomposition in which the sub-meshes
take almost-convex shapes with the total mesh divided along its concave features. In order to locate
concave features, our method requires segmentation of the total mesh as an input with segment
boundaries along the concave features. We apply the approaches proposed in [8] and [24], though
other methods can be used if their segmentation can recognize concave features.
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To accomplish such sealed decomposition, we use tetrahedral meshes (tet-meshes) for
computation. It is obvious that the boundary triangles of a tet-mesh form a closed triangular mesh
(tri-mesh). Accordingly, we first generate a tet-mesh from the target mesh so that the boundary of
the former is consistent with that of the later. Then, we decompose the tet-mesh along its concave
features to generate a number of segmented tet-meshes. Finally, we extract the boundary of each
decomposed sub-component, which forms a closed tri-mesh not only with surface triangles but also
with the interior triangles of the tet-mesh. This decomposition is performed using the graph cut
method and the given mesh segmentation is used to define the source and sink nodes.

The continuous improvement of tet-mesh generation techniques has made it possible to produce
tet-mesh models in recent years. The interior triangles produced are usually rugged, so we smooth
them using the umbrella algorithm.

The algorithms we propose here are completely automatic and easily implemented.

2 RELATED WORK

Graph cut Graph cut methods have been extensively applied to compute the segmentation of images
into non-overlapping segments [1], [4], [18]. In recent years, their application in dealing with 3D
geometric mesh shapes has also been introduced. Papers[10], [24] first compute the partition of 3D
mesh models and use graph cut methods to smooth the boundaries shared by two adjacent mesh
surfaces in post-processing. The boundary smoothing method based on graph cut in [24] is extended
by [10] to improve the quality of the resulting smoothed boundaries. In [14], a hierarchical clustering
method based on geodesic distance is used to segment a mesh shape into segments and generate a
fuzzy strip between two neighboring parts. A graph cut method is applied to remove these mesh
triangles in the fuzzy strip into the adjacent relevant parts and define an accurate boundary shared
by the two neighboring components.

Mesh segmentation Depending on applications, two principal types of mesh segmentations are
made, one is part-type segmentation targeting at partitioning a mesh into meaningful parts [6]; the
other is patch-type segmentation which segment a mesh into patches [8], [24]. Many papers [26] have
been presented on the partition of 3D mesh models into compact and non-overlapping portions for a
wide range of applications such as geometry processing and object recognition. Papers [12], [23]
present a method of convex decomposition. Such method generates a hierarchical volumetric
representation of 3D shapes and recognizes feature volumes from boundary information. Then it
generates a new object by subtracting an object from its convex hull recursively until all sub-objects
are convex. Spectral clustering applies an intrinsic metric to build an infinity or Laplacian matrix [19],
and the eigenvector of the matrix is used to realize the segmentation of input mesh models. [14] and
[26] apply geodesic distance to compute the partition of 3D mesh models and negative curvature to
obtain an accurate boundary between two adjacent parts. Defining an error metric L2 measuring the
distance between the vertices and the corresponding fitting primitives, a hierarchical clustering
algorithm is proposed to obtain useful segments from mesh shapes [2]. [17] computes a union of
tight bounding volumes based on an e-tightness measure to divide a 3D model into segments using a
variational approach. In recent years, the concept of convex hulls has been used to compute the
partition of mesh shapes [3] and [16]. A bottom-up algorithm hierarchically clusters a mesh shape
into meaningful components and generates a tree with the root representing the whole model and
the leaves becoming non-overlapping tight parts [3]. The paper [6] suggests the best benchmarks of
part-type segmentation which were manually made, thus our purpose is to achieve these
segmentation automatically.

Tetrahedral mesh generation The difficulty of generating a mesh represented by tetrahedrons
means that the issue has a long history in both computer science and in engineering. Part of the
difficulty relates to forcing a 3D tet-mesh model to conform to the sharp corners and edges of an
object while maintaining quality. However, with the development of approaches for generating tet-
meshes over the last decade, a 3D geometric mesh represented by a tet-mesh can be easily and
quickly generated without sacrificing the quality of the corresponding surface mesh. As a result, a
variety of software is now produced that uses advanced techniques to generate tet-meshes. One of
these is TetGen [21], which can generate tet-meshes of any 3D polyhedral domain. This application
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produces 3D Delaunay tet-meshes conforming to boundaries as well as exact constrained Delaunay
meshes represented by tetrahedrons. TetGen can also generate high-quality tet-meshes suitable for
numerical approaches, including the finite element and finite volume methods. It can easily be
applied to compute a mesh model represented by tetrahedrons from the corresponding surface mesh.
Accordingly, we use TetGen to generate a tet-mesh model from the corresponding surface mesh
while keeping the boundary triangles fixed.

Surface mesh fairing A signal processing technique is presented to smooth arbitrary topology
connectivity surface meshes by minimizing expensive energy functionals in [22]. Transforming the
problem of fairing arbitrary polyhedral surfaces into discrete functions is based on two-dimensional
discrete surface signals. As the Laplacian is discretely approximated, its eigenvectors are taken as the
frequency of the polyhedral surface mesh. This frequency is tailored by repeatedly applying the
linear operator, and a smoothed arbitrary surface mesh can be obtained. The method is linear in
terms of time and space, and makes it quite easy to process meshes composed of a large number of
triangles into visually smooth surfaces. Kobbelt [13] extends the technique to fair arbitrary surfaces
by combing similar discrete approximations of Laplacian and mesh subdivision methods. This is
applied for arbitrary connectivity models to edit multi-resolution areas [11]. These methods are quite
easy to implement and are suitable for handling large meshes, which has led to their extensive use in
the field. However, a number of issues remain for irregular arbitrary connectivity polyhedral meshes,
including slow convergence for large meshes and inadequate control over total behavior. Accordingly,
Desbrum et al. in [9] computed solutions for these problems to enhance the fairing of arbitrary
connectivity polyhedral surface meshes. The method in [11] can be simply implemented and our
fuzzy meshes are regular connectivity meshes, thus we apply the method in our research.

3 SEALED DECOMPOSITION OF A TRIANGULAR MESH

3.1 Algorithm Summary

The input for our method is a 2-manifold tri-mesh M without boundaries. We also need a

segmentation of M , { }
i

R R , where
i

R is the i -th region of the segmentation and satisfies the

following properties:

R

i
 M ,


R

i
 M and


R

i
R

j
  (i  j) . The region boundary

ij
b is a set of

triangle edges between the two adjacent regions
i

R and
j

R . As mentioned above, we use the

segmentation methods proposed in [24] and [8]. A tet-mesh is denoted by { }
i

T t , where
i

t is the i -

th tetrahedron of T . We can define a closed tri-mesh ( )Tri T , which is made of the boundary triangles

of the tet-mesh T . We assume T can be generated with consistency to M such that ( )Tri T M . In

our implementation, we use TetGen software [21].

First, we find a concave boundary and let it be
ij

b between the two regions
i

R and
j

R . We

decompose the tet-mesh T along this boundary using the graph cut algorithm. The graph’s nodes are
tetrahedrons of T , and arcs are formed between all adjacent tetrahedrons sharing a common surface
in the two regions. For the graph cut, we assign tetrahedrons whose boundary triangles are

associated with
i

R as source nodes, and those with
j

R as sink nodes. The costs of the arcs will be

introduced later.

After the graph cut, T is decomposed into two sub-tet-meshes. Our algorithm works recursively
in a top-down manner. That is, we continue applying the above graph cut decomposition for the two
sub-tet-meshes decomposed as long as concave boundaries remain.

After finishing this tetrahedral decomposition, we have a set of decomposed tet-meshes
i

T .

These tend to take convex shapes as they are decomposed along concave boundaries. We then

extract the boundary tri-meshes
i

M of
i

T , that is, ( )
i i

M Tri T . Some region of triangles of
i

M is not

on M but on a surface of section of tet-mesh T . Thus it is jagged and need to be smoothed.
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In our algorithm, decomposition is performed along concave boundaries between regions of
segmentation, meaning that it is not dependent on convex or smooth boundaries. Accordingly,
decomposition does not involve extensive changes as all the concave features are captured in the
segmentation.

A summary of the algorithm is given below:

Main

Begin

Input: M and R

Generate T s.t. ( )Tri T M { }
i

T = Decompose ( , )T R

For each
i

T

( )
i i

M Tri T

Smoothing ( )
i

M

end

end

Procedure Decompose ( , )T R

begin

If concave boundaries exist then

Select the concave boundary
ij

b with the minimum
ij

 value

Set ( )
i

Tet R to be the seeds of
0

N and also set ( )
j

Tet R to be the seeds of
1

N

Apply graph cut for T to separate it into 0T and 1T

0R : set of regions in ( 0)Tri T 1R : set of regions in ( 1)Tri T

Return union of Decompose ( 0, 0)T R and Decompose ( 1, 1)T R

else

Return ( )Tri T

end

3.2 Concave boundary

The input surface mesh M is segmented by the methods outlined in [8] and [24] for our algorithm.

Boundaries
ij

b shared by the two adjacent regions
i

R and
j

R in the surface mesh M are then

smoothed using our approach proposed in [25]. Along each boundary, a convexity measure



ij
is

defined (Fig. 1):




ij



m

mmb

ij



mmb

ij


(1)

where



m
is the dihedral angle between two triangles incident to edge m of

ij
b , and



m

is its length.
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Fig. 1: Dihedral angle



m
definition along a concave boundary.




ij
is the average dihedral angle along the boundary

ij
b (see Fig. 1). An angle is a concave angle if it

is less than  . Thus, considering noise, when



ij
 0.98 ,

ij
b is defined as a concave boundary.

3.3 Tetrahedral mesh segmentation based on graph cut

3.3.1 Graph Cut

We apply the graph cut to separate a tet-mesh { }
i

T t into two tet-meshes. The graph ( , )G V E

consists of all the tetrahedrons
i

t of T as its nodes. We also add two more special nodes,
0

n and
1

n ,

which are referred to as source and sink nodes, respectively. The undirected arcs E of G consist of

the set of arcs
1

E between two adjacent tetrahedrons
i

t and
j

t , the set of arcs
2

E between every
i

t

and both
0

n and
1

n , and the set of virtual arcs
3

E between two boundary tetrahedrons
i

t and
j

t ,

whose adjacent boundary triangles are in the same region of the surface segmentation R (see Fig. 2).

This arc of
3

E is needed to avoid these connected two boundary tetrahedrons from being segmented

into different parts.

Fig. 2:
1

E ,
2

E and
3

E are shown in 2D where a tet mesh is represented as a triangular mesh. The colored edges

represent the boundary triangles of the tet mesh, and one color edge shows one region. Only a part of the edges of

2
E are shown for brevity.

The arcs are associated with costs. The graph cut separates the set of nodes

V  {t

i
} {n

0
,n

1
}

into two sets
0

V and
1

V , s.t.

n

0
V

0
and


n

1
V

1
by cutting G along a cut (a set of arcs) so that its

cost (i.e., the total cost of the arcs on the cut) is minimized.

iR

j
R

Edge

Tetrahedrons

m

m

1n 2n2E

1E 3E
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We also define two sets of seed tetrahedrons
0

N and
1

N corresponding to ( )
i

Tet R and ( )
j

Tet R .

Tetrahedrons of
0

N are constrained to being members of
0

V by giving high costs to the arcs between

0
n and tetrahedrons of

0
N as hard constraints. In the same way, tetrahedrons of

1
N are constrained

to being members of
1

V by giving high costs to the arcs between
1

n and tetrahedrons of
1

N as hard

constraints. Tetrahedrons other than those in
0

N and
1

N (i.e., those in
f

N ) are called fuzzy.

In this research, we used the following cost functions for the arcs of
2

E :



c(n
0
,u) 

 u  N
0

0 u  N
1

1
d(u,N

0
)

d(u,N
0
)d(u,N

1
)

u  N
f











(2)



c(n
0
,u) 

0 u  N
0

 u  N
1

1
d(u,N

0
)

d(u,N
0
)d(u,N

1
)

u  N
f











(3)

For those of
1

E and
3

E we used the following costs:



c(u,v) 


a(u,v)

a(u,v)
(u,v)  E

1

 (u,v)  E
3











(4)

where
0

( , )d u N is the smallest distance of the shortest path between tetrahedron u and a tetrahedron

of
0

N . In the same way,
1

( , )d u N is the smallest distance of those of paths between u and a

tetrahedron of
1

N . The distance between the two nodes is defined as that between the centers of the

two tetrahedrons. The shortest path is computed using Dijkstra’s algorithm. ( , )a u v represents the

area of the common triangle surface between two adjacent tetrahedrons.  denotes the average value
of the total common triangle area sum in the tet-mesh. We set high costs to the virtual edges so that

surface tetrahedrons with boundary triangles in the same region
i

R will not be separated into

different subcomponents.

The coefficient   0 describes the relative importance of these two costs. We set  to 100 for

the examples shown in this paper. The minimum cut is obtained using the max-flow/min-cut
algorithm proposed in [5].

3.3.2 Examples

An example of a graph cut is shown in Fig. 3 (see caption for details).
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Fig. 3: (a) Segmentation result R for the surface mesh M . (b) Tet-mesh model T . (c) Two sets of seeds -
0

N :

blue tetrahedrons;
1

N : green tetrahedrons. The thick red line shows the concave boundary between the green and

blue tetrahedrons. (d) Eight green contours are sampled showing the shortest distance from seed set
1

N . (e) Eight

blue contours are sampled showing the shortest distance from seed set
0

N . (f) Tet-mesh M segmented into two

parts shown in blue and green.

In all,
2

E is represented by the smallest distance between two set of seeds and tetrahedron u ,

which means the tetrahedron u should be segmented into the part including the set of seeds, where

there is smaller distance between tetrahedron u and them.
1

E is defined by the area between two

adjacent tetrahedrons, the total area should be small when the minimum cut is achieved. Thus we
can apply graph cut method to achieve right decomposition results.

3.4 Mesh Smooothing

As tet-mesh
i

T is generated by cutting a tet-mesh, part of its boundary tri-mesh corresponding to the

cut surface lacks smoothness.

To address this, we apply the discrete Laplacian as an umbrella operator [11] to this part of the
tri-mesh (see Fig. 4).



U(v
i
) 

v
i
, v

i
O

1

2
v

j
v

i
,

j0

1

 v
i
 I,v

j
O  I

1

n
v

j
v

i
,

j0

n1

 v
i
 R,v

j
O  I R











(5)

where
j

v represents the neighboring vertices of
i

v , the vertices in O  I R consist of those in the

common triangle mesh between two adjacent components, O is the set of vertices on the tet-mesh
surface, I is the set of vertices of the boundary tri-mesh corresponding to the cut surface
intersecting with another boundary mesh corresponding to another cut surface except for the vertices
in O , and R is the set of vertices besides those in I and R . We keep the boundary vertices frozen

for discrete boundary optimization.

(a)

(f)(d) (e)

(c)(b)
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Fig. 4: In the top picture, the vertexes of the common surface shared by two adjacent components incorporate
those shown in black, green and purple. The black vertexes belong to those on the surface of the tet-mesh. The
green vertexes are those of the common surface intersecting with another common surface other than those of the
black vertexes. Other vertexes are shown in purple.

For this linear system, we use iterative optimization approaches such as the Gauss-Seidel
algorithm. The above smoothing method was run on a number of models, and corresponding
efficient results were achieved (see Fig. 5 and Fig. 6).

Fig. 5: Bone: The picture on the left presents the surface mesh segmentation results achieved using
the methods proposed in [8] and [24]. The middle picture shows the components of the tet-mesh
segmented. The common surfaces shared by two adjacent parts are smoothed in the picture on the
right, and sealed sub-triangle meshes are achieved.

Fig. 6: Mechanical part: The picture on the left presents the surface mesh segmentation results
achieved using the methods proposed in [24]. The middle picture shows the components of the tet-
mesh segmented. The common surfaces shared by two adjacent parts are smoothed in the picture on
the right, and sealed sub-triangle meshes are achieved.

Iv
Ov

0
v

1
v

v

IOv 

Rv

0
v

1
v

3
v 2

v
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v

v

1n
v



RIOv 
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4 RESULTS

In this section, a number of tested models are described to demonstrate the effectiveness of our
method, and are compared with benchmark models segmented using the manual in [6]. These models
are shown in Figures 7, 8, 9 and 10, where the top row shows the best benchmark results obtained
using the manual in [6]. The middle row illustrates the results of patch type segmentation using the
VSA based methods proposed in [8] and [24], and these are considered as the input files for our
algorithms. The bottom row presents the results of part-type segmentation obtained using our
method. It can be seen that the outcomes are similar to those of the best benchmark achieved using
the manual in [6]. The segments are generated by the VSA-based method so as to have a sufficient
number of segments. And our proposed method successfully reconfigure these segments by merging
unnecessary ones and adjusting their boundaries. In addition, our segmented parts are all sealed. The
difference between the input segmentations and our results should be noted. The input
segmentations are not required to correctly capture the convex portions; rather, they need only
include all the concave boundaries to generate good decompositions.

We ran all these models on a PC with a Core (TM) 3.00GHz CPU. Table 1 presents the running
time and other statistics for model parts.

5 CONCLUSIONS AND FUTURE WORK

This paper outlines a method to decompose a closed 2-manifold tri-mesh into a set of sub-sealed tri-
meshes. The algorithms used are fully automatic and efficient. There are some limitations in our
method. Our results depend on the surface segmentation results shown as the middle row in Fig. 7,
Fig. 8, Fig. 9 and Fig. 10, which means there should be segmented boundaries between regions on the
concave parts of the 3D shape. But our results are not sensitive to them and they can be over-
segmented (see the middle row in Fig. 8, Fig. 9 and Fig. 10,). And if there are no segmented
boundaries in 3D shapes, there is no decomposition. Our computation time (see Tab. 1) increases
because we use tetrahedrons in our methods. But our results are achieved fully automatically and
similar to the best benchmarks by manual (see Fig. 8, Fig. 9 and Fig. 10).

Fig. 7: The top row shows the benchmarks obtained using the manual in [6]. The middle row presents the surface
mesh segmentation results achieved using the methods proposed in [8] and [24]. The bottom row describes the
results of the technique proposed in our paper.

Airplane 67 Ant 100 Chair107 Octopus 134 Table 148
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Fig. 8: The top row shows the benchmarks obtained using the manual in [6]. The middle row presents the surface
mesh segmentation results achieved using the methods proposed in [8] and [24]. The bottom row describes the
results of the technique proposed in our paper.

Fig. 9: The top row shows the benchmarks obtained using the manual in [6]. The middle row presents the surface
mesh segmentation results achieved using the methods proposed in [8] and [24]. The bottom row describes the
results of the technique proposed in our paper.

Teddy 161 Hand 188 Machine 334 Bearing 341 Vase 362

Ant 91 Chair 120 Octopus 131 Table 153
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Fig. 10: The top row shows the benchmarks obtained using the manual in [6]. The middle row presents the
surface mesh segmentation results achieved using the methods proposed in [8] and [24]. The bottom row
describes the results of the technique proposed in our paper.

Our future work includes decomposition of a mesh with hollow regions where we need to
decompose along convex boundaries between concave boundaries. This can be done by evaluating

the convexity of each segment
i

R of an input mesh.

Mesh No. of tets No. of proxies Tet-mesh seg. (sec.) Surface faring (sec.) Total time (sec.)

Ant 91 43,490 17 123.875 0.25 124.125

Chair 120 39,883 18 77.719 0.312 78.031

Octopus 131 37,520 12 84.469 0.266 84.729

Table 153 44,645 26 72.61 0.14 72.75

Hand 189 55,994 10 98.28 0.891 99.171

Machine 338 83,093 15 84.75 2.844 87.594

Bearing 360 8,409 7 2.25 0.001 2.251

Vase 367 16,267 7 12.438 0.031 12.469

Tab. 1: Timing statistics.
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