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ABSTRACT

This paper extends the previous work of generating monotonic-rhythm log-aesthetic
space curve segments so that compound-rhythm log-aesthetic space curve segments
are interactively generated. A compound-rhythm log-aesthetic space curve segment is
composed of two monotonic-rhythm log-aesthetic space curve segments whose
logarithmic curvature and torsion graphs are represented by two connected line
segments. By presenting a method for controlling the connection point of the two
curve segments and deriving the continuity condition of the logarithmic torsion graph,
we show that compound-rhythm log-aesthetic space curve segments can be generated
fully interactively.
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1 INTRODUCTION

To design highly aesthetic surfaces, such as car bodies, the use of high quality curves is very
important. In such curves, the curvature should be monotonically varying since the curvature
dominates the distortion of reflected shapes on curved surfaces. Log-aesthetic curves are curves
whose logarithmic curvature and torsion graphs are both linear[13]. In other words, log-aesthetic
space curves are curves whose curvature and torsion are represented by simple monotonous functions
of the arc length. See Fig. 1 of [14].

In this paper, we extend the previous works of generating compound-rhythm log-aesthetic planar
curve segments[12] and monotonic-rhythm log-aesthetic space curve segments[13] so that compound-
rhythm log-aesthetic space curves are interactively generated. Log-aesthetic space curves are curves
whose logarithmic curvature and torsion graphs are both represented by straight line segments.
Harada et al. originally proposed log-aesthetic planar curves[6,7] whose logarithmic curvature
graphs(LCGs) are represented by straight lines. Miura derived the general formula of log-aesthetic
planar curves[10]. Yoshida et al. clarified the overall shapes and the characteristics of log-aesthetic
planar curves and presented a method for interactively drawing a log-aesthetic planar curve segment
like a quadratic Bézier curve segment[11]. By appending logarithmic torsion graphs(LTGs) onto LCGs,
Yoshida et al. proposed (monotonic-rhythm) log-aesthetic space curves whose LCGs and LTGs are both
represented by straight line segments, clarified the overall shapes and the characteristics of the curves
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and presented a method for interactively generating a segment[13]. The linearity of the LCG and LTG
constrains that the curvature and torsion of the curve are monotonically varying.

As far as the authors know, there are not many papers for directly designing space curves,
especially when the monotonicity of the curvature (and torsion) is considered. Adams proposed a
method for drawing a space curve with linearly increasing and then linearly decreasing curvature and
torsion with specified endpoint conditions[1]. Higashi proposed to use the evolute, which is the locus
of the curvature center, to generate high quality curves[8]. The generated space curve is the
intersection of two surfaces that are swept by two curves with monotonically varying curvature
generated from the evolutes. There is no guarantee that the generated space curves have
monotonically varying curvature and the curve shape cannot be interactively controlled. Miura
proposed unit quaternion integral curves[9], which are space curves. However, we cannot interactively
control the curve shape as well as curvature variation. Based on class A Bézier curves[2] proposed by
Farin, Fukada et al. have proposed a method for drawing 3D class A Bézier curve segments[4] by
specifying two endpoints and their tangents. They showed that typical 3D class A Bézier curves
approaches the 3D extension of the logarithmic spiral, which is a special case of log-aesthetic space
curves. Although the curve is not related to the monotonicity of the curvature (and torsion), Farouki
et al. have recently proposed a method for generating quintic space curves[3] with rational rotation-

minimizing frames with 1G Hermite interpolation.

A monotonic-rhythm log-aesthetic space curve is a curve whose LCG and LTG are represented by
single segments. See Fig. 1(a),(b) for the LCG and LTG of a monotonic-rhythm curve. In the figure, s ,

 ,  ,  and  are the arc length, the radius of curvature, the radius of torsion, the value related to

the y-intercept of LCG, and the value related to the y-intercept of LTG, respectively. We call  the
torsion parameter. A compound-rhythm log-aesthetic space curve is a curve whose LCG and LTG are
represented by two connected segments. See Fig. 1(c),(d). In other words, a compound rhythm log-

aesthetic space curve is composed of two log-aesthetic space curves with 4G continuity. It is known

that the curve must be at least 4G for the two segments in LTG to be continuous[14].

This paper presents a method for interactively generating compound-rhythm log-aesthetic space
curves [5]. In compound-rhythm log-aesthetic planar curves, the connection point of two monotonic-
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rhythm log-aesthetic curves is determined by specifying the ratio of the change of the tangential angle
of the first curve against the change of the tangential angle of the whole curve[12]. However, in 3D,
there is no concept of tangential angle. Thus we need a different way to specify the connection point
of the two curve segments. For the efficient generation of compound-rhythm log-aesthetic space
curves, we show that all the parameters for the second curve segment can be derived from the
continuity condition of the LCG and LTG. We have implemented our algorithm and confirmed that the
curve can be generated fully interactively.

2 MONOTONIC-RHYTHM LOG-AESTHETIC SPACE CURVES

2.1 Log-aesthetic Space Curves

Monotonic-rhythm log-aesthetic space curves are curves whose LCGs and LTGs are both linear[13]. See
Fig.1(a),(b). The linearity of the LCG and LTG is represented by
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where  logc    and  logd    are constants.  and  are the slopes of the segments in the LCG

and LTG, respectively. Monotonic-rhythm log-aesthetic space curves have two kinds of curves, which
are type 1 and type 2. Type 1 curves are curves whose radius of curvature and radius of torsion are
both monotonically increasing with respect to the arc length. In type 2 curves, the radius of curvature
and the radius of torsion are oppositely varying.

Modifying Eqn.(1) and (2) under the condition of the standard form[13], we can derive the
following equations.
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In case of type 1 curves, we use Eqn. (3) and Eqn. (4). For type 2 curves, we use Eqn. (3) and (5). In Eqn.
(4) and (5),  is the radius of torsion at the origin. The radius of curvature  is always assumed to be

1 at the origin in the standard form. We can draw log-aesthetic space curves by integrating the Frenet-
Serret equations using Eqn.(3) and (4) for type 1 curves or Eqn.(3) and (5) for type 2 curves.

Similarly as in log-aesthetic planar curves, we have to be careful about the range of the arc length
s . See Fig. 2 in [13] for the range of s .

2.2 Generating a Curve Segment with Endpoint Constraints

We briefly review the method for interactively generating a monotonic-rhythm log-aesthetic space
curve segment[13]. We are given two endpoints 0P , 3P , their unit tangent vectors 0v , 1v , the slopes of

the LCG and LTG,  ,  and the torsion parameter  . We specify v
0

and v
1

by points 1P , 2P . Thus

 0 1 0 1 0/  v P P P P and  1 3 2 3 2/  v P P P P . See Fig. 2(a). Note that in our system, the curve

segment is drawn using a prism with a quadratic cross-section, so that the user can sense the torsion
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of the curve. To draw a log-aesthetic space curve segment, we also need to know  ,  and the arc

length of the curve segment  0segs  . Note that the curve is always drawn from 0s  since we use the

standard form. We would like to find a monotonic-rhythm log-aesthetic space curve segment (thus we
need to find  ,  and segs ) that satisfies given endpoint and tangent constraints.

We transform the four points 0 1 2, ,P P P and 3P in the following manner and rename them as , ,a b cP P P

and dP , respectively. We first translate the four points 0 1 2, ,P P P and 3P such that 0P goes to the origin,

rotate them so that 1P is on the positive side of x-axis and 3P exists on the first quadrant of xy-plane.

See Fig. 2(b). If we draw a log-aesthetic curve in the standard form, the positional and tangential
conditions at aP is always satisfied without depending on  ,  and segs .

As shown in Fig.2(b), by rotating, through 2 about the x-axis, a half line that starts from the
origin( aP ) and goes through dP , we can construct a cone. The angle in Fig. 2(b) is the angle formed

by d aP P and b aP P . Suppose that a log-aesthetic space curve in the standard form intersects the

cone at the point oP . Note that there may be cases where the curve does not intersect the cone. In

such a case, the curve segment cannot be drawn with the specified endpoint constraints. Let the unit
tangent vector of the curve segment at oP be et , which we will use later. By rotating the curve

segment and et about the x-axis such that oP exists in the first quadrant of xy plane and then scaling

the curve segment by /d oP P , the end point of the curve coincides with dP Thus the arc length segs of

the curve segment is determined by increasing s from 0 until the curve segment intersects the cone.
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Fig. 2: Generating a monotonic-rhythm log-aesthetic space curve segments.
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Let   /f d c d c  t P P P P . To satisfy the tangential constraint at the end point, we need to find 

and  such that e ft t . By performing a minimization such that

1),(  ff tt e (6)

becomes 0, the tangential condition is satisfied at dP . See Fig.2(c). Thus we can generate a monotonic-

rhythm log-aesthetic space curve with the specified positional and tangential conditions. Note that
there may be cases where ( , )f  is not defined because the curve segment does not intersect the cone

or the arc length reaches its upper bound. To cope with such situation, we use the modified downhill
simplex methoh[13] for the minimization.

3 THE CONTINUITY CONDITIONS OF THE LCG AND LTG

In this section, we derive the continuity condition of the line segments in the LCG and LTG.

3.1 The Continuity Condition of the LCG

A compound-rhythm log-aesthetic planar curve segment is a curve whose LCG is represented by two
connected line segments[12]. See Fig.1(c). The slopes of the first and the second segments in the LCG

are 0 and 1 , respectively. For the LCG to be continuous, both log and  log d / ds  of the two

segments at the connection point must be equal. For log to be continuous, the curvatures need to be

the same at the connection point. The linearity of the two segments in the LCG is represented by
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where 0c and 1c are constants. For  log d / ds  to be the same at the connection point,

1100 loglog cc   (9)

must be satisfied. Modifying Eqn.(9), we get
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Thus, for the LCGs of two curve segments (either planar or space) to be continuous, the radius of
curvature  at the connect must be the same and Eqn. (11) must be satisfied.

3.2 The continuity Condition of the LTG

Let the slopes of the two segments in the LTG be 0 and 1 , respectively. See Fig.1 (d). For the LTG to

be continuous, both log and  log d / ds  of the two segments must be the same at the connection

point of the two curve segments. The linearity of two segments in the LTG is represented by
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where 0d and 1d are constants. For  log d / ds  to be the same at the connection point,

1100 loglog dd   (14)

must be satisfied. Modifying Eqn. (14), we get
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de and 1
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de . Then Eqn.(15) becomes
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For the LTGs of the two segments to be continuous, the radius of torsion  of the two curve segments

at the connection point must be the same and Eqn. (16) must hold.

4 INTERACTIVE GENERATION OF A COMPOUND-RHYTHM LOG-AESTHETIC SPACE CURVE
SEGMENT

4.1 The Parameters for Drawing a Segment

We are given two points 0P , 1P that specify the two endpoints, 0 1,v v that specify the tangential

direction at 0P , 1P , respectively, 0 , 1 , 0 and 1 (See Fig. 1(c) and (d)), and the torsion parameter 0 .

We are going to find a compound-rhythm log-aesthetic space curve segment that satisfies the endpoint
constraints. In other words, we are going to find all the parameters necessary for generating the two
curve segments of which the desired compound-rhythm log-aesthetic space curve segments is
composed. We also provide a way to control the connection point by a user-specified
parameter r (0 1)r  , which we will introduce shortly.

Fig. 3(a) shows a compound-rhythm log-aesthetic space curve segment as well as all the
parameters necessary for generating the segment. For the first curve segment, we draw the segment
using the parameters 0 0 0 0 0, , , ,    from the arc length as to bs . For the second curve segment, we

draw the segment using the parameters 1 1 1 1 1, , , ,    from the arc length cs to ds Fig. 3(b) shows how

these parameters are specified or computed.
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Fig. 3: Parameters for generating the curve segment.
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Similarly as in monotonic-rhythm curves, we first transform the two points 0 1,P P and 0 1,v v as

described in Sec. 2.2. After the transformation, 0P is the origin, 0v is directed toward the positive

side of x-axis, and 1P is on the first quadrant of the xy plane. We rename the transformed points 0 1,P P

and the transformed vectors 0 1,v v as ,a bP P and ,a bv v , respectively. Let /a a av v v


and /b b bv v v


.

At the start point aP , the positional and tangential constraints are always satisfied since the points

and the vectors are transformed so that the position and the tangent vector at the start point always
agree with those of the log-aesthetic space curve in the standard form.

To specify the connection point of the two segments in a compound-rhythm log-aesthetic space
curves, we propose to use the ratio of the cone angle r (0 1)r  . We construct a cone 0c with its

angle  , similarly as in Sec. 2.2. We construct another cone 1c with the same vertex and axis but the

angle 0 r  . We generate the first curve segment until it intersect the cone 1c and the second curve

segment until it intersect the cone 0c . When 0r  , the compound-rhythm curve degenerate to the

monotonic-rhythm curve with the parameters of the second curve. When 1r  , the compound-

rhythm curve degenerate to the monotonic-rhythm curve with the parameters of the first curve. See
Fig. 7, how the connection point is changed depending on r . Although r is not proportional to the

arc length, using r is an intuitive way of controlling the connection point.

4.2 Generating a Segment using 0 and 0

We show that we can generate a compound-rhythm log-aesthetic space curve segment if 0 and

0 are given. As will be described in the next section, 0 and 0 are computed using the optimization

so that the tangential condition at the endpoint is satisfied.

Suppose that 0 and 0 are known. We draw the first curve segment until it intersects the cone

1c . In Fig. 4(a), the first curve segment intersects the cone 1c at qP . We will compute the parameters

1 , 1 , cs and 1 for the second curve segment from the continuity condition. Since we know the

radius of the curvature  and the radius of torsion  of the first curve segment at the connection

point, we can compute 1 and 1 using Eqn.(11) and (16), respectively. cs and 1 are computed from

the condition that  and  of the first curve at the end point must be the same as those of the

second curve at the start point. Solving Eqn.(3) with respect to the arc length, we get
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Here c is the radius of curvature at the connection point. Solving Eqn.(4) and (5) with respect to  ,

we get
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Here c is the radius of curvature at the connection point. For type 1 curves, we use Eqn.(17). For

type 2 curves, we use Eqn.(18). Now we have computed all the parameters of the second curve, except
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for ds . ds is determined by drawing the second curve until it intersects the cone 0c . In Fig. 4(a), the

second curve segment intersects the cone at oP . Note that the second curve needs to be translated

and rotated so that the positions and Frenet-Serret frames of the first and second curves agree with
each other at the connection point. By an appropriate rotation and scaling, the generated compound-
rhythm log-aesthetic space curve segment always satisfies the endpoint constraints except for the
tangential constraints at the end point bP without depending on the values of 0 and 0 .

4.3 Finding a Curve Segment Satisfying Endpoint Constraints

We rotate the curve segment generated in Sec. 4.2 such that oP exists in the first quadrant of

xy plane and scale the curve segment by /b oP P . Now oP is in the same position as bP . The rotated

curve segments with the overall shapes are shown in Fig. 4(b). Let the tangent vector of the second
curve segment at oP be et . The user specified tangent at bP is bv


. We need to find 0 and 0 such

that e bt v


. By performing a minimization such that

0 0( , ) 1bf    et v


(19)

becomes 0, the tangential condition is satisfied. We use the modified downhill simplex method for the

minimization since  0 0,f  may not be defined similarly as in monotonic-rhythm curves.

5 RESULTS

Fig. 5 and 6 show various compound-rhythm log-aesthetic space curve segments with their
curvature and torsion plots. To help understand the shape of space curves in the 2D figures 5 and 6,
the shadows of the curves are also shown. Fig. 5 shows type 1 curves where the radius of curvature
and the radius of torsion are both monotonically increasing. Fig. 6 show type 2 curves where the
radius of curvature and the radius of torsion are oppositely varying. Fig. 7 shows the effect of
changing r .

Similarly as in monotonic-rhythm curves, the curve segment may not be constructible depending
on the use-specified parameters. From our experience of drawing the curve segment, we found that
the space of user-specified parameters in which a curve segment can be drawn is larger for compound-
rhythm curves than monotonic-rhythm curves.
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(a) The curve segments intersect the cones (b) The rotated and scaled curve segment

Fig. 4: Compound-rhythm log-aesthetic space curve segments and the cones.
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Fig. 5: Compound-rhythm log-aesthetic space curves (type 1).

Fig. 6: Compound-rhythm log-aesthetic space curves (type 2).

Fig. 7: Changing r modifies the connection point of the two segments.

The computation time for generating a compound-rhythm log-aesthetic space curve segment is
around 10ms on a Core 2 Duo 3.0GHz processor. Thus, compound-rhythm curves can be fully
interactively generated.

6 CONCLUSIONS

This paper proposed a method for drawing a compound-rhythm log-aesthetic space curve segment. A
compound-rhythm log-aesthetic space curve segment is composed of two monotonic-rhythm log-
aesthetic space curve segments whose LCGs and LTGs are continuous. We can interactively draw a
compound-rhythm log-aesthetic space curve segments by specifying two endpoints, their tangents, the
slopes 0 1,  of the LCG, the slopes 0 1,  of the LTG, the torsion parameter 0 , and r which

determines the connection point, and the type of the curve. We showed that all the parameters for the
second curve segment can be computed from the continuity condition of the two segments. Thus, the
computation time of a compound-rhythm log-aesthetic space curve segment is as efficient as log-
aesthetic curve segment. One of the advantages of using compound-rhythm log-aesthetic space curve

(a)
0 1 0 1 01, 1, 1, 1, 0.1           (b)

0 1 0 1 00, 1, 2, 1, 0.1          (c)
0 1 0 1 01, 1, 2, 1, 0.6          

(a)
0 1 0 1 01, 0, 0, 1, 0.3         (b)

0 1 0 1 01, 1, 1, 2, 0.3           (c)
0 1 0 1 01, 1, 1, 2, 0.15          
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segments is that the drawable space of user-specified parameters is larger than monotonic-rhythm
curves. It is trivial to connect more than two segments using the method proposed in this paper.

Future work includes an approximation by free-form curves such that the monotonicity of
curvature and torsion as well as the linearity of LCGs and LTGs is guaranteed.
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