
Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

739

A Feature-Based Approach to Re-engineering CAD Models
from Cross Sections

Antonis I. Protopsaltis1 and Ioannis Fudos2

1University of Ioannina, antonis@cs.uoi.gr
2University of Ioannina, fudos@cs.uoi.gr

ABSTRACT

We introduce a novel approach to reconstructing 3D objects from cross sections of
point clouds acquired by 3D scanning. In this context cross sections are almost planar
clusters of 3D points. We first thin each cluster to obtain an ordered one dimensional
set of planar points. We then partition the point set to subsets that can be
approximated adequately by piecewise quadratic rational Bezier curves using an
optimal fitting method. For each curve we select a number of representative points
that lie on the fitting curves which are then used for reconstructing the object surface.
Inter-cross section and intra-cross section constraints are imposed to support
parameterization and editing of the derived model. Shape and topological differences
between adjacent object contours pose several issues for the 3D reconstruction
process. By using the contour skeleton information we produce intermediate cross
sections representing places where ramifications occur to achieve robust covering
(meshing) of adjacent slices. Finally, we present a proof of concept implementation of
our method and several examples that demonstrate its effectiveness and efficiency.

Keywords: feature-based, constraint-based reverse engineering.
DOI: 10.3722/cadaps.2010.739-757

1 INTRODUCTION

The creation of an appropriate computer representation of existing objects from vast sets of scanned
data points has been an important necessity in many areas of engineering, medical sciences and arts.
The process of capturing the geometry of existing physical objects and then using the data obtained as
a basis for creating a new design is called Reverse Engineering of solids. Due to recent advances in
laser scanning, the process of deriving accurate and topologically consistent models that are ready to
use in CAD/CAM systems has become a realistic expectation in the geometric modeling community.

While conventional engineering transforms engineering concepts and models into real parts, in
reverse engineering actual parts are transformed into computer models suitable for reproducing or
redesigning these parts. In conventional computer-aided design the computer representation of
objects is performed by means of operations typically defined interactively using advanced geometric
and graphics primitives. The resulting representation is then used for further design, and finally for
numerically controlled manufacturing, layered manufacturing or other manufacturing techniques. In

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

740

reverse engineering, engineering concepts are derived from actual parts when no drawings or
documentation are available.

The process of reverse engineering is usually decomposed into the following steps: data
acquisition, point cloud segmentation, surface fitting, and model creation (Fig. 1).

Fig. 1: Phases of reverse engineering.

Data acquisition is accomplished by means of 3D laser scanners or other less accurate techniques
such as 3D reconstruction from 2D snapshots using correspondence and epipolar geometry. The data
acquired is in the form of an unorganized 3D point cloud where each point corresponds to a point on
the surface of the object. The measured data is pre-processed before further operations are
performed. In many cases where the object is large or very complicated one point cloud is not enough
to describe the entire object. In such cases we obtain multiple point clouds each one covering a
different part of the object. These point clouds are either merged in one master point cloud or are
considered as segments from the beginning.

The object may be anything from a combination of smaller objects to an open surface.
Segmentation partitions the point cloud into disjoint subsets each represented by a boundary
representation that consists of surfaces. Each derived subset may be classified for its surface types
(planar, spherical, conical, etc) [2] or approximated in the fitting step with free-form surfaces.

The fitting surface step fits an appropriate surface to the point set. This is an open research field
in CAGD (see e.g. [3]).

Finally, stitching together these surfaces (with appropriate continuity) creates a Boundary
Representation that could be used in subsequent phases of CAD/CAM.

Fig. 2: Our reverse engineering framework.

Traditionally, the result of this process is a Brep model of the real object that is adequate to
describe positional information and therefore it is suitable for reproduction but cannot capture any of
the higher-level structure of the object or the designer’s intent. Therefore, it is not suitable for
redesign. Modification of a part is often a tedious task that requires experienced users and state of
the art software and hardware. For instance, a Brep representation might be able to approximate the
shape of a cylindrical hole, but the fact that the hole is actually cylindrical is not captured. As a result,
it is difficult for a designer to perform a simple modification such as altering the diameter of the hole.
Also, the initial model suffers from inaccuracies caused by sensing errors inherited from the data
acquisition phase, approximation and numerical errors arising from successive transformations or
other geometric manipulations, or possible wear of the actual part. All these errors introduce
distortion and may act accumulatively. Redesign may be accomplished through geometric regularities
and constraints that have been derived from the original cloud point.

We present a novel computer aided reengineering paradigm based on careful slicing of the 3D
point cloud and advanced post processing of the resulting cross sections.

Data Acquisition
Pre-Process

Point Cloud
Segmentation

Surface
Fitting

Model
Creation

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

741

Post processing aims to eliminate noise and partition the point set to point sequences that
correspond to low degree curve segments. The curve segments are then approximated using quadratic
rational Bezier curves. We then subdivide the curve segments in equal length chord segments and use
the corresponding points to perform 3D mesh reconstruction.

Fig. 2 illustrates the overall process.

2 RELATED WORK

Varady et al [19] compute a “feature skeleton” on the mesh that determines the primary regions of the
object. The final surface structure comprises the optimally located boundaries of the connecting
features and setback type vertex blends, which are faithfully aligned with the actual geometry of the
object. This CAD-like surface structure is sufficient for high-quality surface approximations. Stamati
[14] is using an advanced surface analysis technique to extract the morphology of the reconstructed
point cloud. This technique is very powerful and accurate but is not suited for rapid reverse
engineering since it requires an extensive analysis process.757

Researchers such as [17], [18] have focused on creating high accuracy models of manufactured
mechanical parts. The REFAB project uses a feature-based and constraint-based method to reverse
engineer mechanical parts. REFAB is a human interactive system where after the 3D point cloud is
presented to the user, the user selects a feature from a predefined list of features, and specifies the
approximate location of the feature in the point cloud. The system then fits the specified feature to
the actual point cloud data using a least square means method iteratively. The authors give emphasis
on the fitting of pockets, where the user draws a profile of the pocket on the point cloud and the
system then fits the profile to the data and the profile is then extruded to create the pocket. This
feature-fitting process is made more accurate by using constraints that are detected by the system,
verified by the user and then exploited to achieve a better fitting of the features according to the data.
The system supports constraints such as parallelism, concentricity, perpendicularity and symmetry.
The constraints defined and used in REFAB seek to reduce the degrees of freedom associated with the
object as much as possible, so as to achieve high precision models in less time.

A feature-based reverse engineering method was also used by Au et al [1] for reverse engineering a
mannequin for garment design. Generic models of mannequin torsos are fit to 3D point clouds of
human torsos for garment modelling applications. The basic concept in this method is to create a
generic mannequin model of a human torso, which is appropriately aligned with the 3D point cloud of
the desired human torso model, and the generic model is fit to the point cloud by matching up
characteristic points of the models e.g. peaks. This method creates parameterized models by
exploiting the features of the object and by using them to constrain the fitting process. It is an
automated approach to reverse engineering human torsos that creates parameterized models with
good accuracy.

3 EXTRACTING AND RECONSTRUCTING CROSS SECTIONS

3.1 Slicing Direction

Our reconstruction process starts by slicing the point cloud data into a number of cross sections along
a user-specified slicing direction. A single slicing direction may not be sufficient for complex objects.
For such cases the object is decomposed into parts using advanced segmentation techniques. The
cloud points in each slice are projected onto a plane perpendicular to the slicing direction. The slice
thickness is controlled by a user defined thickness threshold value that specifies the maximum
allowable width of a projected point set. The thickness threshold value is adapted iteratively until it
falls under the user specified levels. Slice selection may be controlled by a user defined parameter
called slicing distance. Slicing distance specifies the fixed distance between two adjacent slices. There
may be cases where the slicing distance is too large for a certain object. As a consequence, the exact
geometry of the object is not recorded accurately. The slicing distance parameter should be set
according to the object particular features.

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

742

In many cases we obtain adjacent slices that are very similar. This might happen when the sliced
object feature is symmetric such as a cylinder or parallelepiped part. Many of these slices may be
eliminated from the entire process of reconstruction. If three adjacent slices are of similar shape, then
the in between slice is eliminated. Similarity of slices may be detected using principal component
analysis and skeleton extraction so as to achieve rotational and translational invariance.

3.2 Pre-prosessing and Thinning

Depending on the data acquisition and the slicing process a cross-section may contain points that form
a shape with thick border. Thinning is the process that identifies the specific points from the data set
that are essential to form the actual 2D shape of the cross-section. We call the outcome of this
thinning process a thin data set.

The Medial Axis, is a well defined process for extracting a skeleton, but does not always produce a
skeleton for the purposes of thinning due to the complexity of the result. Most thinning algorithms
work iteratively. The edge pixels are examined against a set of criteria to decide whether they are
essential skeleton pixels or not. A common disadvantage of many thinning algorithms is the
deformation that is induced on the shape of the skeleton at regions where corners or boundary
crossings are formed. Single pixel irregularities may yield unintuitive changes in an otherwise simple
skeleton. Furthermore, the extraction of the skeleton does not often preserve the connectivity of the
shape. Necking, tailing and spurious projection (line fuzz) are some common flows of many thinning
methods [9].

The Force Based thinning algorithm [10] is based on the idea that the boundary should be used to
locate the skeletal pixels by exerting a force towards the inner pixels. In that way, the skeleton of the
shape lies at pixels where the forces imposed have opposite directions (Fig. 3(a)).

Fig. 3: (a) Force Based Thinning Strategy, (b) A virtual grid.

All thinning algorithms need as input a 2D array of pixels. In order to convert our unordered set
of points to a 2D array of pixels we define a virtual grid (see Fig. 3(b)) of size Gx by Gy where Gx and Gy

are the x and y resolution of the grid. Each grid cell G(i,j) corresponds to a certain area in the cross
section specified by the two points of formula (3.1)

max min max min max min max min
min min min min(,) ((1) , (1))

x y x y

x x y y x x y y
x i y j x i y j

G G G G

 (3.1)

max min max min

(,)
y yx x

p Gp G
G

x x y y

(3.2)

where xmin, xmax, ymin, and ymax are the minimum and maximum coordinates in the original point
set. Subsequently, for each point P(px, py) we increase the intensity of the corresponding grid cell
given by (3.2). Each grid cell will play the role of a pixel that is either on or off. We define a grid cell
to be on if its total intensity is greater than the mean intensity of all cells in the grid. Fig. 3(b) shows
an example grid and the pixels that are on and off.

Depending on grid resolution, the above process may produce a grid with a number of non
connected pixels. For this kind of cases an anti-aliasing of the grid is performed to fill the gaps
between disconnected pixels. Each neighbor cell will affect the anti-aliased intensity of the cell by its
intensity multiplied by a coefficient. Eqn (3.3) computes the anti-aliased intensity of a cell:

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

743

11

,
1 1

16

, Φ = 8

4

ji
m, r

m, ri j
m, rm i r j

m i r j
W

AW m i r j
F

m i r j

 (3.3)

Each “on” grid cell containing points from the original data set is mapped to the centroid of these
points. In the case that the cell does not contain any points (characterized on by anti-aliasing) it may
be mapped to the centroid of the points of the 8 neighbor cells. The result is then provided as input to
the thinning process. We then use a graph traversing algorithm on the virtual grid [12] to order the
point set.

3.3 Using Low-degree Bezier Patches for Approximation

The Bezier representation is one that is utilized most frequently in computer graphics and geometric
modelling. Quadratic Bezier curves are often used by CAGD developers since they do not require
complex computations as other higher degree curves do. However, in practice it is often desirable to
approximate conic sections which cannot be represented in Bezier form. Conic sections such as
parabolas hyperbolas and ellipses may be adequately represented by Rational Bezier curves.

3.3.1 Point Set Partitioning

First, the ordered point set should be partitioned in subsets of consecutive points that can be fitted by
a single rational quadratic Bezier curve. To achieve this, for each poinr Pi we connect all neighbouring
points with line segments and compute the average normal vector.

1

1

i i i

i
i i i

R U + U
U R = =

R U + U

 (3.4)

For a specific point Pi, the average normal vector URi is given Eqn (3.4) by averaging the normal
vectors of the two adjacent line segments Pi-1Pi and PiPi+1 (Fig. 4(a)). In many cases where the data set
contains a lot of noise, the average normal vector may be computed by averaging a larger number of
neighbor line segments. We call this number smoothing neighbors.

Fig. 4: (a) Determination of normal vector for a point, (b) Inflection point detection.

Based on the fact that a single quadratic rational curve may approximate correctly a subset of
points for which the induced curve exhibits a restricted concavity, we use the angle between the
normal vectors of the end points to drive the partitioning of the point set. To determine the relative
rotation of URi+1 with respect to URi we use the cross product of the two vectors. An inflection point
would be the point of the data set where there is a change in the sign of the z-coordinate of the cross
product (Fig. 4(b)). In [12] the partitioning algorithm is presented in detail.

3.3.2 Middle Control Point

The partitioning process gives us a number of subsets of ordered points that may be approximated by
a single rational quadratic Bezier curve. Therefore, the start and end points of each approximating
curve are already known. Also, note that the end point of each partition coincides with the start point
of the next partition. We will now present two methods for determining the middle control point of
the fitting curve.

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

744

Fig. 5: Methods approximating the middle control point.

The first method makes use of the fact that the middle control point is the intersection of the
tangent lines to the Bezier curve on the two end points. These tangent lines may be approximated by
the lines that are defined by the normal vectors Uri on the end points. Fig. 5(a) illustrates this.

The second method involves the fact that at t=0.5 every quadratic Bezier curve has maximum
distance from the line passing through its end points. Also, at t=0.5 the tangent to the curve is parallel
to the line passing through its end points. Approximating the point on the curve at t=0.5 (R(0.5)) with
the point from the data set that has maximum distance from the line segment P0 P2 may give us the
location of the middle control point P1 (Eqn (3.5)).

0 2
1

()
2 (0.5)

2

P P
P R

 (3.5)

3.3.3 Optimal Rational Bezier Curve

The Bezier representation is one that is utilized most frequently in computer graphics and geometric
modelling. Quadratic Bezier curves are often used by CAGD scientists since they do not require
complex computations as other higher degree curves do. However, in practice it is often desirable to
approximate conic sections which cannot be represented in Bezier form. Conic sections such as
parabolas hyperbolas and ellipses may be adequately represented by Rational Bezier curves. Non
rational Bezier curves are a special case of rational Bezier curves. For these reasons, we will focus on
constructing Rational Quadratic Bezier curves. In curve theory, a rational quadratic Bezier curve is
defined by Eqn (3.6).

2
2

0
2

2

0

()

() , 0 1

()

k k k
k

k k
k

w p B t

P t t

w B t

(3.6)

A 2nd degree Bezier curve requires 3 control points pk: a start point p0, an end point p2, and a 3rd

control point p1 which is obtained by the methods we described in the previous section.

The Bk terms in the above formula represent the 2nd degree Bernstein polynomials, while the terms
w

k
are the associated with each control point weights. Setting all weights equal to one to the above

formula represents an ordinary non rational Bezier curve. Increasing the weight of a control point
causes the curve to move towards the associated control point.

The curve fitting process fits equations of approximating curves to the raw field data.
Nevertheless, for a given set of data, the fitting curves of a given type are generally not unique. Thus, a
curve with a minimal deviation from all data points is desired (Fig. 6(a)). For cases where a rational
Bezier curve is approximated the best-fitting curve can be obtained by varying the control point
weights.

A rational Bezier curve P(t) that best approximates the given set of 2D points Q on a specific cross
section is the one that minimizes the sum of the distances of the points from the curve:

2

1

() min
n

i i
i

Q P t

 (3.7)

, 0 ... , '() (()) 0i i i iQ i n P t Q P t (3.8)

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

745

Also note that each vector ()i iQ P t

is normal to the tangent of the curve at ti (Fig. 6(b)). This means

that their inner product is zero. To minimize the sum of square distances, Eqn (3.7) will serve as the
objective function while Eqn (3.8) will provide n constraints. Without loss of generality we can set
w0=w2=1. For the minimization of the objective function subject to the n constraints we have used
Lagrange multipliers and Interior point [16] optimization methods.

Fig. 6: (a) Point distances from curve P (b) Vector Qi P(ti) perpendicular to tangent P'(ti).

Optimizing the objective function subject to these constraints may give the middle weight value of
the rational Bezier curve that best fits the given set of points. Depending on the size of the data set
that needs to be fitted, the optimization task could be a long and cumbersome effort. For this reason,
we will perform an extra step of evaluating a starting value for the middle weight by making use the
barycentric coordinates of each point with respect to the control triangle.

1
1

0 22
w

 (3.9)

Using Eqn (3.9) we may compute the value of the middle weight of the curve that passes through a
certain point of the data set. τ0, τ1, τ2

2
are the barycentric coordinates of Qi with respect to the triangle

formed by the three control points P0, P1, P2 of each rational Bezier. Barycentric coordinates may be
computed by Eqn (3.10).

1 2 0 2 0 1
0 1 2

0 1 2 0 1 2 0 1 2

(, ,) (, ,) (, ,)
, ,

(, ,) (, ,) (, ,)

1
(, ,)

2
1 1 1

i i i

x x x

y y y

area L P P area P L P area P P L

area P P P area P P P area P P P

a b c

and area a b c a b c

(3.10)

Consequently, for each point Qi in the data set, we may compute a value w1
i
for the middle weight of

the curve. The value of the middle weight that will be selected is the one that minimizes the sum of
square distances of the points in the data set from the curve. This value may be used as a starting
value in the optimization process that was described above

4 CONSTRAINTS FOR EDITABILITY

A new generation of CAD systems has become available in which geometric constraints can be defined
to determine properties of mechanical parts. The new design concept, often called constraint-based
design or design by features offers users the capability of easily defining and modifying a design, but
introduces the problem of solving complicated, not always well defined, constraint problems. In this
chapter, we present the development of a user-friendly interactive system for imposing and solving
geometric configurations inside cross-section (intra cross-section constraints) and among two or more
cross-section (inter-cross-section) constraints. The system uses a powerful graph-constructive
constraint solving method presented in [6], capable of efficiently analyzing certain classes of well-
determined, over-determined and under-determined configurations. Minimal systems of geometric
constraints that are not solvable by the core constructive method are detected and may either be
handled by a numerical method and treated afterwards as rigid bodies, or edited by the user. A main

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

746

issue pertinent to geometric constraint solving is the solution selection problem. To this end, we have
provided an interactive tool for navigating the constraint solver, to the intended solution. Consistent
over-determined sub-configurations can be detected, interactively relaxed and solved appropriately.
Under-determined subsystems are detected, isolated and subsequently presented to the user
annotated with all possible constraint addition choices for interactive editing.

The objective of the entire method is to obtain an editable CAD model that would assist us in
redesigning the original object. Editability in CAD is commonly achieved by using geometric
constraints. When using the term constraint in CAD we usually refer to geometric dimensions and
relations (lengths, angles, tangency, parallelism, perpendicularity, etc.) used to define accurately a
particular solid geometry. Even though it is not necessary, object symmetry may provide additional
auxiliary information in constraining an object. In this section we will categorize the geometric
constraints and how they are adopted by our method to capture design intent and provide for
redesign.

4.1 Intra-Cross Section Constraints

The first category of constraints is associated with the geometric and topological relationships among
entities in a single cross sections which we will call intra – cross section constraints:
Point – line segment coincidence: special points (curve end points, curve control points, center of
circle, etc) or line segments may coincide or be part of the same infinite line.
Tangency: an arc is tangent to a specific curve
Distance from a curve or point: an arc is located at some distance from a specific curve or point
Angle with a curve: an arc (its tangent) forms an angle with another curve or with a line segment at a
specific point on the curve.
Parallel – Perpendicular line segments or tangents: a line segment is parallel or perpendicular with
another line segment or tangent line.

4.2 Inter-Cross Section Constraints

The second category of constraints is associated with the geometric and topological relationships
among the contours of different cross sections which we will call inter – cross section constraints:
Point co-linearity: a point from cross section C

A
is on the same infinite line with a point from cross

section C
B

Co planar line segments: a line segment from cross section C
A

is on the same infinite plane with a
point from cross section C

B

Equality or relation of distances: a specific distance in cross section C
A

is equal or related with
another distance from cross section C

B

Equality or relation of angles: an angle in cross section C
A

is equal or related with an angle in cross
section C

B

Curve translation: A curve in cross section C
A

is translated by a specific distance and direction in cross
section C

B
. This constraint may fit cases of slanted or tori objects.

Curve scaling: A curve in cross section C
A

is scaled by a certain scaling factor in cross section C
B
. This

constraint may fit cases of tapered objects.

4.3 Geometric Constraint Solving

We build a system of geometric constraints that captures user intent and at the same time guarantees
solid model robustness and accuracy. Symmetry derived geometric constraints are considered to be
strict with no tolerance allowed. User constraints fall under two categories: (i) strict, for which no
tolerance is allowed and (ii) flexible, for which we wish to acquire the best approximation but we
cannot guarantee their strict enforcement. For the purposes of usability we allow only for constraints
that can be expressed as equation (e.g. distances, angles, relations of distances and angles, co-
planarity, coincidence, tangency). Inequalities can also be handled but they tend to confuse the user
with the multiplicity of solutions that they imply. Each flexible constraint has an associated weight
which expresses its importance and is derived by two factors: explicitly by a user preference and
implicitly by the rank in the user constraint enforcement. Finally the weighted sum of flexible
constraint deviations properly normalized is used as the objective function to minimize and the strict

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

747

constraints are used as the set of constraints for this non-linear optimization problem. To solve this
system we employ a local non-linear optimization algorithm from IpOpt [16]. The disadvantage of this
method is that it may be trapped in local minima, which makes it depending heavily on the initial
configuration. The user is thus advised to make incremental editing. Using global optimization
methods or other constraint solving techniques is an interesting research problem [6]

5 RECONSTRUCTING SOLID PARTS

5.1 Point Re-sampling

The construction of the object’s surface requires the generation of parts of the surface that lies in
between two slices using triangulation. Triangulation may not be based on the thinned point set of
each slice because its density would result in creating many small area triangles. To solve this issue,
we must resample the point set to obtain a reduced set of points.

Point sampling is an important intermediate step for a variety of computer graphics applications.
Specialized sampling strategies have been developed to satisfy the requirements of each problem. In
this section, we present a sampling technique for 2D models. Our sampling domain is the set of
points on a single cross section. Aim of the technique is to generate evenly spaced samples by
subdividing the sampling domain into non overlapping parts.

Given a data set of points Q={Qi} for which we have already determined the best fitted set of
rational quadratic Bezier curves P={Pk}, we suggest replacing the points Q with a reduced set of new
points R={Rj: Rj=P(tj)} that satisfy the curve equations.

In a previous chapter we fitted a rational Bezier curve on the points of each cross section. A
Rational Bezier curve is usually defined over the interval [0, 1] but it may also be defined over any
interval [0, c]. The part of the curve that corresponds to [0, c] may also be defined by a Bezier polygon.
To subdivide the curve [13] to k equal length arcs we would first divide the interval [0, 1] into k
subintervals of length 1/k. The end points of each arc Ri are P(ti-1) and P(ti) where ti= i/k and i=0..k.
The length of each chord ||P(ti) P(ti+1)|| converges to the length of the arc Ri between ti and ti+1 when k
is a rather large value (Eqn (5.1)).

1
0

() ()
k

i i
i

P t P t

 (5.1)

Considering that the size of the sample set S of points is μ:

1, 0...(1), /i i is S i s s (5.2)

Fig. 7: Sample points (in red).

The last relation ensures that all points in the sample set S are evenly spaced by a distance of Λ/μ.
All other points that do not satisfy the above relation are discarded and will not be used in the surface
reconstruction process (Fig. 7).

5.2 Similar Adjacent Cross-Sectional Feature

The main design paradigm of CAD systems nowadays is feature-based design. Feature – based systems
contain a vocabulary of design elements as long as object operations that are used to create the
intended design. By performing operations such as extrusions, protrusions and cuts on the design
elements (cylinders, cones, parallelepipeds, pyramids etc) we may generate the desirable design. Our

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

748

feature based CAD model provides modeling primitives that may be enforced low-level constraints,
reducing the number of variables necessary to represent an object. Constraint based techniques apply
high-level constraints over these features enforcing the hypothesized design intent.

In this section we will investigate ways for converting 3D point cloud to a set of features
describing exactly the original object’s geometry and satisfying all imposed constraints. Based on the
fact that our method generates a set of planar consecutive curves for each cross section, we will be
considering features that are based on a planar profile swept into a 3D shape by an extrusion
operation. Consequently, our final CAD model will consist of a set of connected features. This makes
our final CAD model easily modifiable since we only need to deal with modifying the geometry of the
features.

As shown in Fig. 8, sweeping a planar profile creates a tubular surface that its bottom base is the
planar profile and its top base is the same planar profile translated. Let two planar profiles P1 and P2

consisting of a set of quadratic rational Bezier curves. P1 is said to be similar to P2 if and only if all
curves in P1 are congruent to all curves in P2 up to the same affine transformation. In other words,
profile congruence requires curve congruence. Bezier curve congruence property implies control
triangle congruence and middle weight equality. Therefore, two planar profiles are invariant if and
only if all respective control triangles are congruent and all respective weights equal.

Fig. 8: Sweeping of a planar profile.

As it is defined in Euclidean geometry, triangles are congruent when all corresponding sides and
interior angles are equal. These triangles will have the same shape and size. However, they can be in a
different location, rotated or flipped over. Consequently, two triangles R and R’ are congruent even if
R is a mirror of R’. In contrast, in our method we are interested in triangles that may not be mirror
images of each other because they generate different curves that cannot be interpolated.

Definition 1: We define as topologically congruent in 2D two polygons that are the same up to
rotation and translation

Therefore, two profiles P1 and P2 are said to be congruent if and only if all control triangles are
topologically congruent.

The extrusion direction vector may be either perpendicular or it may form any angle with the
profile plane. As long as the starting and ending cross sections are invariant, computing the center of
mass of both cross sections may derive the extrusion direction vector. This is true even for cases
where the second polygon is scaled or rotated.

Detecting similarity between two or more polygons is performed based on two key ideas:
 normalizing a shape about its diameter and
 the notion of the ε-envelope.

Normalizing about the diameter. In order to detect whether two or more polygons are similar
some kind of “normalization” is applied so that the matching is translation-, rotation-, and scaling-
independent. In previous work researchers would normalize each shape about each of its edges: they
translate, rotate, and scale the shape so that the edge is positioned at ((0, 0), (1, 0)). Although this
approach gives good results in many cases, it would fail to detect similarity between slightly distorted
shapes.

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

749

In our method, instead of normalizing about the edges, we normalize about the diameter of the
shape, i.e., by translating, rotating, and scaling so that the pair of shape vertices that are farthest apart
are positioned at (0, 0) and (1, 0). This ensures better results, because the diameter is less susceptible
to local distortion which is very common in shapes extracted using thinning and other point-based
techniques.

The ε-envelope [7]. Polygon matching works by considering a “fattened” version of the one polygon
which is computed by taking lines parallel to the query shape edges at some distance on either side;
we call this fattened shape the ε-envelope. The good matches are expected to fall inside or at least
have most of their vertices inside the ε-envelope even for small ε. Therefore, if we start by using a
small initial value of ε and keep increasing it, we expect to collect the good matches after a few
iterations of this procedure.

The ε-envelope can be seen as a collection of trapezoids of height 2ε, one for each edge of the
query shape. (For simplicity, we assume that ε is such that no two trapezoids are overlapping; the
method can be extended to handle overlapping trapezoids.)

The center of mass of a planar profile may be approximated by the center of mass of its convex
hull polygon. A better approximation could be the minimal control polygon’s center of mass. To
determine the minimal control polygon of a planar profile all quadratic Bezier middle control points
are used as polygon vertices. The minimal control polygon must include all Bezier curves. While a
Bezier curve is always inside its control triangle, the minimal control polygon may not always include
a curve. The polygon in Fig. 9(a) depicts this case.

Fig. 9: (a,b) Derivation of minimal Control Polygon, (c) Ray casting algorithm.

In the case where a curve is excluded from the minimal control polygon we edit the list of polygon
vertices by replacing the specific middle control point with the respective Bezier curve’s end points.
The polygon in Fig. 9(b) illustrates this procedure.

If one point of the curve is inside the polygon then the entire curve is inside also. Therefore, we
only need to determine if a single point on the curve is inside the polygon. A ray casting algorithm
may be used to determine whether a specific point is included in the control polygon. The algorithm
is based on a simple observation that if a point moves along a ray from infinity to the probe point and
if it crosses the boundary of a polygon, possibly several times, then it alternately goes from the
outside to inside, then from the inside to the outside, etc. As a result, after every two "border
crossings" the moving point goes outside. Therefore, the number of intersections is an even number if
the point is outside the polygon, and it is odd if it is inside (Fig. 9(c)).

Both the convex hull and the minimal control polygon of a profile are n-polygons. Computing the
center of mass of an n-polygon {A1, A2, …, An} is rather straightforward using Eqn (5.3).

1
2

1 n

i
i

C M A A
n

(5.3)

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’ respectively.
The orthogonal extrusion of R is defined to be a solid obtained by sweeping profile R in a direction
perpendicular to C up to the parallel cross section C’ resulting to one or more tubular surfaces (Fig.
10(a)).

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

750

Fig. 10: (a) Orthogonal Extrusion, (b) Oblique Extrusion, (c) Orthogonal Rotated Sweeping, (d) Oblique
Rotated Sweeping, (e) Orthogonal Linear Scaled Skinning, (f) Oblique Linear Scaled Skinning.

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’ respectively.
Also let V be a vector on the line that connects the centers of mass of the profiles R and R’. The
oblique extrusion of R is defined to be a solid obtained by sweeping profile R in a direction specified by
vector V up to the parallel cross section R’ resulting to one or more oblique tubular surfaces (Fig.
10(b)).

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’ respectively.
Also let profile R’ be determined by a θ angle rotation of profile R with the center of rotation being the
center of rotation. Let’s also denote as d the distance between the centers of mass of R and R’. The
orthogonal rotated sweeping of R is defined to be a solid obtained by sweeping profile R in a direction
perpendicular to C and the same time rotating the profile R with a rate of rotation / d up to the

parallel cross section R’ resulting to one or more rotated tubular surfaces (Fig. 10(c)).

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’ respectively.
Also let profile R’ be determined by a θ angle rotation of profile R with the center of mass being some
point P. This rotation is equivalent to a θ angle rotation of profile R with the center of mass being
center of rotation, followed by a translation in the same plane. Therefore, we may denote as V the
vector on the line that connects the centers of mass of the profiles R and R’. Let’s also denote as d the
distance between the centers of mass of R and R’. The oblique rotated sweeping of R is defined to be a
solid obtained by sweeping profile R in a direction specified by vector V and the same time rotating

the profile R with a rate of rotation θ/d up to the parallel cross section R’ resulting to one or more

oblique rotated tubular surfaces (Fig. 10(d)).

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’ respectively.
Also, let μ be the linear scaling factor of the two profiles and d the distance between the centers of
mass of R and R’. The orthogonal linear scaled skinning of R is defined to be a solid obtained by
skinning profile R in a direction perpendicular to C and the same time scaling the profile with a scale
rate / d , up to the parallel cross section C’ resulting to one or more frustrum surfaces (Fig. 10(e)).

Let R and R’ be two congruent closed profiles on the parallel cross sections C and C’ respectively.
Also, let μ be the linear scaling factor of the two profiles, d the distance between the centers of mass
of R and R’, and V the vector on the line that connects the centers of mass of the profiles R and R’.
The oblique linear scaled skinning of R is defined to be a solid obtained by skinning profile R in a

direction specified by vector V and the same time scaling the profile with a scale rate μ/d, up to the

parallel cross section C’ resulting to one or more frustrum surfaces (Fig. 10(f)).

5.3 Non-similar Adjacent Cross-sectional Features

So far, we investigated ways for reconstruction by extrusion of solid parts that are between similar
adjacent cross sections. In this section we will investigate ways to reconstruct solid parts that are
between non-similar adjacent cross sections.

5.3.1 Curve-based Morphing and Interpolation

When we dealt with similar adjacent cross sections the same sweeping strategy was applied to the
entire profile. For cases with non-similar adjacent profiles, we cannot apply the same sweeping
strategy to the entire profile. Curve-based morphing is an advanced type of sweep where each curve is
being applied a different sweeping strategy.

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

751

Two adjacent cross sections C1 and C2 are non-similar when there is at least one curve in C1 that
is non-similar (not congruent) to its respective curve in C2. Fig. 11(a) depicts a case with two non-
similar adjacent profiles.

Fig. 11: (a) Non-Similar profiles, (b,c) Control triangle linear morphing, (d) Curve mapping.

Curve-based morphing breaks down the profile sweeping problem to a number of curve sweeping
problems. Since a rational quadratic Bezier curve is fully specified by its control triangle and its
middle weight, we only need to sweep the source control triangle to the destination control triangle
and gradually change the value of the middle weight from the source to the destination value (Eqn
(5.4)). Fig. 11(b,c) illustrates this type of sweep. Morphing curve P to Q is equivalent in morphing
between their control triangles. The middle weight undergoes a gradual transition from value WP to
WQ. Let R be a triangle in some ith state of morphing P to Q. Each control point Ri should be on the
line segment PiQi such that

(5.4)

Morphing of two dimensional shapes can be divided into two sub problems that have to be solved.
These problems deal with vertex correspondence and vertex path. Common morphing literature is
usually concerned with the vertex path problem. However both problems are equally important. 2D
morphing techniques pay special attention to the goal that all intermediate shapes are free of self-
intersections because apart from some fancy special cases, a morphing sequence that contains self-
intersections is considered to be unnatural transition from source to target.

The vertex correspondence problem deals with the creation of a bijective mapping between the
vertices contained in the source S, and target T cross sections in a way that for each vertex in S there is
exactly one vertex in T that is mapped to and vice versa. Obviously, such a mapping is not always
possible. In the case that two cross sections S, T do not have the same number of curves an extra
processing of the set of curves is required. This extra processing involves curve splitting or curve
concatenation resulting in two cross sections with the same number of curves. Therefore, when
dealing with one curve from each slice, the vertex correspondence problem between the two sets of
control points is solved by least square distance minimization. Since the control point sets are
ordered, vertex correspondence must maintain this order. Therefore, if Si is mapped with Tj then Si+m

should be mapped with Tj+m.

The vertex path problem deals with the selection of a path that a point will travel from the source
cross section to its mapped point in the target cross section.

A cross sectional profile consists of a set of rational quadratic Bezier curves. For cases where two
non-similar adjacent profiles consist of a different number of curves, some curves might need to be
concatenated or split, if possible, so the necessary matching of the two profiles can take place. Fig.
11(d) shows two adjacent non-similar profiles with different number of curves. To perform curve-
based morphing on these profiles either profile Q needs to be concatenated to one curve or profile P
needs to be split to two curves.

0 0 0

1 1 1 1

2 2 2 2

() ()

() ()

() ()

() ()

o

R P Q p

R t P t Q P

R t P t Q P

R t P t Q P

W t W t W W

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

752

5.3.2 Polygon-based Morphing and Interpolation

The task of surface reconstruction deals with the creation of a ribbon between two adjacent cross
sections. This may be accomplished by performing triangulation between the sampled sets of vertices
that belong to a pair of adjacent cross sections. In most real cases the material of interest lies in the
region that separates the adjacent contours.

A rather simple solution that forces a connection of each vertex of a section with some vertices of
the adjacent sections was proposed by the literature in the past. However, as the distance between
two cross sections may vary, the chance of missing important information of the places where
ramifications occur is rather high. As a result, the reconstructed object does not have the correct
shape. To overcome this problem, we propose a method that automatically creates intermediate
sections.

The projection of the region, which separates the adjacent cross sections, on an intermediate
parallel plane is the region that is not common to both contours. We will denote a cross section as a
binary image where the two values represent the background and the object. This intermediate plane
projection may be expressed as an exclusive OR (XOR) operation on the binary images of the two
contours [4]. In the case where the contours of the adjacent sections intercept, it is required to
include the pixels of the contour boundary where the interception occurs.

Fig. 12: XOR operation on sections A and B.

The result of the XOR operation is also a binary image whose boundary is formed by the contours
of the contiguous sections. Fig. 12 shows that the outer border of the binary image is formed by the
second contour while the inner border is formed by the first contour. Fig. 13 shows two slices that
their boundaries intersect. The XOR operation result is shown in pink while the result of the region
thinning is shown by the curves in the pink regions.

Fig. 13: Inner and outer boundaries intersecting. XOR region in pink.

In many cases we may see portions of the binary image to have both inner and outer borders
formed by the same contour. This is an indication that in the particular portion of the material of
interest there is a ramification. For these cases the skeleton of that portion of the binary image may
be used to represent the place where the ramification occurs at an intermediate height of the analyzed
sections.

Applying a thinning algorithm on the binary image we may obtain its skeleton (Fig. 12, Fig. 13).
Using the shortest diagonal algorithm [5] we are able to create two ribbons (one with each slice).

6 EXPERIMENTAL EVALUATION

We have implemented and tested a prototype of the proposed method using the

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

753

• MS Visual C++ programming language,
• the OpenGL graphics libraries,
• the IpOpt optimization software [16]
• the ACIS solid modeling libraries by Spatial Corporation [15].

The entire system was built using the object oriented design framework. We have used extensive
testing with several cloud point sets. For the internal representation of the contours (sequences of GS

rational Bezier patches) we have used NURBS.

To demonstrate how this method works we have used a 3D point cloud of a screwdriver object
containing 27500 points which was then sliced to equidistant parallel cross sections (Fig. 14(a)).

Fig. 14: (a) Screwdriver point cloud slicing, (b,c) Slice thinning, (d) Concavity change detection.

Fig. 14(b) shows part from a cross section of the screwdriver’s handle containing 437 points.
Thinning and quantization of this cross section results in a point set with 323 points that form a 1-
point-thick curve boundary.

While partitioning the thin slice point set, the algorithm filters out all noisy points (Fig. 14(c)). The
final result of the concavity detection process is a set of contours that have the same concavity
direction and may be approximated by a low degree rational Bezier curve.

Fig. 15(a) shows the computation of the middle control point of all quadratic rational Bezier
curves that we are going to construct. This is actually a slice from the screwdriver’s handle.

Fig. 15: (a) Deriving Control Points, (b) Control point method selection, (c) Minimized point distances
from the curves by middle weight adjustment, (d) Fitted Rational Bezier Curves.

Depending on the point topology either method may be used to determine the middle control
point. The method selection criterion should be the minimum squared distance of the point set from
the fitted curve. Fig. 15(b) shows a data set with seven points and the curves that are fitted on them
by both methods. The minimum squared distance for the first method (green color) is 0.004091 and
0.007578 for the second method (red color). It is clear that for the particular data set the first method
produces a better fitted curve

Following, for each partition of points, the computation of the middle control point weight is
performed by minimizing the sum of squared distances of all points from the fitted curve (Fig. 15b,c)
using the IpOpt libraries. Fig. 15(d) shows the set of curves built by the algorithm.

The following diagrams evaluate the effectiveness of the fitting method. We compare 6 different
point sets from different slices. Each point set has a different number of points to be fitted (curve1

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

754

24, curve2 31, curve3 43, curve4 17, curve5 10, curve6 26). The first diagram (Fig. 16(a)) shows the
relation between the number of points that are to be fitted and the time that the fitting method
needed to complete the task. Thus we observe that the time needed is linear on the number of points
that are fitted. These experiments were conducted on an average computer system.

Fig. 16: (a) Time for fitting, (b) Average Error per point.

The diagram in Fig. 16(b) evaluates the effectiveness of the fitting method. It shows the average
error of a curve point from the fitted curve. We notice that curve3 error is a lot above the average
error. There are two factors that are responsible for this issue:

 The start point normal vector forms an angle greater than π/2 with the end point normal

vector.

 The smoothing tolerance of the partition process was not used to split the set of points into

two partitions.

Despite the above average error, the normalized error values are fairly low even though the
original point cloud had a lot of noise.

We will now constrain the handle of the screwdriver by user defined constraints. We will consider
the editing area to be the part of the screwdriver’s handle between cross section A and B (Fig. 17(c)).
Intra Cross Section Constraints will be defined on a user selected cross section M where maximum
cavity depth occurs.

Fig. 17(a) shows the control polygon that results from the curve fitting process. We define a
normal hexagon which is centered on the center of mass of the cross section. Each side of the
hexagon is the base of an isosceles triangle (Fig. 17(b)). All peaks (S1, S2,..,S6) are equidistant from the
center of mass H=14. All hexagon sides are equal d=7 while all cavity peaks (E1, E2, …,E6) are
equidistant from the center of mass d=7. The values H and d are completely independent of each
other. In other words, the value of H controls the diameter of the handle while the value of d controls
the radius of the normal hexagon, the height of the isosceles triangles and therefore, the depth of the
handle cavities.

For inter cross section constraints we define that all slices between cross sections A and B must
have their centers of mass on the same z-axis. The diameter of the handle changes linearly. Therefore,
all corresponding slice peaks belong to the same line. Consequently the value H may be easily
evaluated by the line equation. Furthermore, we determined a quadratic Bezier curve that best fits all
corresponding cavity peaks among different slices. Therefore, the value d (radius of normal hexagon)
may be easily evaluated using the Bezier curve (Fig. 17(c)).

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

755

Fig. 17: (a) Control polygon, (b) Intra Constraints, (c) Inter Constraints.

The resampling step computes the length of each rational Bezier segment in the slice. The
approximate length of the entire contour is Λ=95.76. Setting μ=60, we obtain the distance Λ/μ of each
point from its neighbors to be around 1.596. Fig. 18(a) shows the set of representative points that
were selected.

Fig. 18(b) shows the intermediate slice generation using the XOR operation. Fig. 18(c) shows the
result of the intermediate slice generation by curve morphing. The reconstructed part of the object
between the two adjacent cross sections is shown in Fig. 18(d).

Fig. 18: (a) Resampling result, (b) Auto slice generation by XOR, (c) Auto slice generation by curve
morphing, (d) Reconstruction of part using intermediate slice generation.

Fig. 19(a) shows the fully reconstructed object (exact copy). Fig. 19(b) shows the modified
reconstructed object with the cylindrical part of the steel shaft longer. To accomplish this
modification we increased the distance between the cross sections on the steel shaft by a factor of 1.4.
Fig. 19(c) shows the modified reconstructed object with the lower part of its handle wider. The
modification actually made was an increase of the diameter of the lower handle by a factor of 1.3.

Fig. 20 illustrates a modification in the cavities of the screwdriver handle. The designer decreased the
value of d by 25% in the revision slice. This decrease propagated to all slices in the editing area
automatically by the reevaluation of the Bezier curve that constrains the value of d in the editing area.
As a result, the depth of all cavities in the screwdriver handle were increased accordingly. Notice that
the other constraint value H remained constant (line equation did not change) and therefore, the
diameter of the handle does not change. Fig. 20(a,b) illustrate the original and the modified slice. The
difference in the cavity depths is clearly seen in Fig. 20(c,d). The original and the modified object may
be seen in Fig. 21(a,b).

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

756

Fig. 19: (a) Result of Reconstruction, (b,c) Result of Editing after Reconstruction.

Fig. 20: (a) Original revision slice constraints, (b) Modified revision slice constraints, (c) Original
reconstructed object part, (d) Modified object part.

Fig. 21: (a) original screwdriver, (b) modified screwdriver (deeper cavities).

7 CONCLUSIONS

We have presented an effective and efficient method to build a 3D CAD model from a given point
cloud representing the surface of an object.
Our approach to re-engineering uses point cloud slices along a principal axis. These slices are then
processed to obtain a thinned, ordered set of planar points. Subsequently, this set is used to obtain a
fully functional cross section represented by a number of constrained rational Bezier curves.

We have introduced inter-cross-section and intra-cross-section geometric constraints for
supporting editability.

3D contour-based reconstruction has been extensively studied, and we have employed and tested
several slice morphing and slice insertion techniques for covering between non similar adjacent cross
sections. Model editability is also supported at this level by defining parameters for the 3D
reconstruction of user defined slice groups.

Computer-Aided Design & Applications, 7(5), 2010, 739-757
© 2010 CAD Solutions, LLC

757

We have performed a preliminary evaluation of the usability of our method with very good results
even for users with no former CAD software experience. Our method provides the tools for robust and
accurate editing of the produced CAD model prior to remanufacturing.

Automated detection of an optimal slicing direction is an addition that can save users a lot of
effort. Finally, the effectiveness of the reconstruction process could be improved for complicated
objects by first decomposing the object by employing sophisticated decomposition methods such as
the one presented in [8].

REFERENCES

[1] Au, C. K.; Yuen, M. M. F.: Feature-Based Reverse Engineering of Mannequin for Garment Design,
Computer-Aided Design, 31, 1999, 751-759.

[2] Benko, P.; Martin, R. R.; Varady, T.: Algorithms for reverse engineering boundary representation
models, Computer-Aided Design, 33(11), 2001, 839-851.

[3] Benko, P.; Kos, G.; Varady, T.; Andor, L.; Martin, R. R.: Constrained fitting in reverse engineering,
Computer-Aided Design, 19(3), 2002, 173-205.

[4] Christiansen, H.; Sederberg, T.: Conversion of complex contour line definitions into polygonal
element mosaics, Computer Graphics, 13, 1978, 187–192.

[5] Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide,
Academic Press, Boston, 1997.

[6] Fudos, I.; Hoffmann, C. M.: A Graph-constructive Method to Solving systems of Geometric
Constraints, ACM Transactions of Graphics, 16(2), 179-216.

[7] Fudos, I.; Palios, L.: An Efficient Shaped-based Approach to Image Retrieval, Discrete and Applied
Mathematics, 2000.

[8] Lien, J. M.; Keyser, J.; Amato, N. M.: Simultaneous Shape Decomposition and Skeletonization,
ACM Solid and Physical Modeling Symp., 2006, 219-228.

[9] Parker, J. R.; Jennings, C.: Defining the Digital Skeleton, SPIE Vision Geometry, 1832, 1992.
[10] Parker, J. R.; Jennings, C.; Molaro, D.: A Force Based Thinning Strategy with Sub-Pixel Precision,

Vision Interface, AB, 1994, 18-20.
[11] Protopsaltou, A.; Fudos, I.: Creating Editable 3D CAD Models from Point cloud slices, GraVisMa,

2009, 118-125.
[12] Protopsaltis, A.: Reconstructing 3D CAD Models based on geometrically constrained cross

sections, Ph.D. Thesis, University of Ioannina, 2009.
[13] Randrianarivony, M.: Arc Length of Rational Bezier Curves and Use for CAD Reparametrization,

World Academy of Science Engineering Technology, 34, 2008.
[14] Stamati, V.: Reconstructing feature-based CAD models based on point cloud morphology, Ph.D.

Thesis, University of Ioannina, 2008.
[15] The 3D ACIS Modeler, http://www.spatial.com, ACIS Corporation
[16] The Ipopt - Interior Point Optimizer Project, https://projects.coin-or.org/Ipopt
[17] Thompson, W. B.; Germain, H. D. S.; Henderson, T. C.; Owen, J. C.: Constructing High-Precision

Geometric Models from Sensed Position Data, ARPA Image Understanding Workshop, 1996.
[18] Thompson, W. B.; Owen, J. C.; Germain, H. D. S.; Stark, S. R.; Henderson, T. C.: Feature-Based

Reverse Engineering of Mechanical Parts, IEEE Transactions on Robotics and Automation, 15(1),
1999, 57-66.

[19] Varady, T.; Facello, M.; Terek, Z.: Automatic Extraction of Surface Structures in Digital Shape
Reconstruction, Computer Aided Design, 39, 2007, 379-388.

