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ABSTRACT

This paper presents a method for interactively generating a 3D class A Bézier curve
segment by specifying two endpoints and their tangents. We clarify geometric
properties of 3D class A Bézier curves and use them for efficiently generating 3D class
A Bézier curve segments satisfying the specified positional and tangential constraints.
The characteristics of typical 3D class A Bézier curves are also clarified.
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1 INTRODUCTION

In the design of aesthetic surfaces, such as the exterior surfaces of automobiles, the use of aesthetic
curves is very important. Such aesthetic curves should be curves whose curvature plots are composed
of relatively few regions of monotonically varying curvature[3]. The monotonicity of the curvature is
important since it dominates the distortion of the reflected image of curved surfaces generated by the
curves.

For generating curves with monotonically varying curvature, there has been a lot of work of which
most are related to planar curves. Farin and Sapidis used the curvature plot of a given curve so that
the curve meets the aesthetic requirements [2]. Higashi et al. has proposed to use an evolute to
control the curvature variation for generating aesthetic curves[6]. Wang et al. proposed to use the
monotone curvature condition to design fair curves [17]. Farin proposed class A Bézier curves to
generate 3D curves with monotone curvature and torsion [4], which was inspired by Mineur’s typical
curves[9]. In [4], however, interactive generation method for class A Bézier curves was not described.
Yoshida et al. proposed a method for interactively controlling planar class A Bézier curves [13]. Log-
aesthetic planar curves, which can be considered as the generalization of the Clothoid, Nielsen’s spiral,
logarithmic spiral, the circle involute, and circles have been proposed by Harada [5], Miura[10], and
Yoshida and Saito [11]. Quasi-log-aesthetic planar curves [12] in rational cubic Bézier forms and the
3D extension of log-aesthetic space curves [14] have also been proposed. Walton and Meek proposed a

2G curve design method using a pair of Pyhtagorean Hodograph (PH) quintic curves with monotone

curvature [16]. In general, the simultaneous control of the monotonicity of the curvature (and torsion
for space curves) and the endpoint constraints (two endpoints and their tangents) is not easy. The
papers [11,12,13,14] have addressed the problem. In case of space curves, log-aesthetic space curve
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segments[14] can be interactive controlled with user-specified endpoint constraints. However, the
curve is not compatible with free-form curves, such as Bézier curves or NURBS curves.

In this paper, we extend our previous work of interactively controlling 2D class A Bézier
curves[13] to 3D class A Bézier curves. In case of 2D class A Bézier curves, we used the geometric
properties of the curves for interactive control. However, such geometric properties cannot be directly
applicable to 3D class A Bézier curves. We clarify geometric properties of 3D class A Bézier curves
and use them for efficiently generating the curves satisfying the specified positional and tangential
constraints.

The rest of the paper is organized as follows. Section 2 reviews 3D class A Bézier curves. Two
kinds of 3D class A Bézier curves, which are typical and general, are also introduced in Section 2.
Section 3 presents a method for interactively drawing typical 3D class A Bézier curves by clarifying
geometric properties of the curves. Section 4 describes a method for interactively drawing general 3D
class A Bézier curves by using a projection whose normal is specified by a user. We present a novel
method that reduces the generation of 3D class A Bézier curves to finding 2D class A Bézier curves
and solving linear equations. Section 5 shows our results and clarifies several characteristics of
typical 3D class A Bézier curves. Finally, we present conclusions and future work in Section 6.

2 3D CLASS A BÉZIER CURVES

Let nbbb0 ,,, 1  be the control point vectors in R 3 of a Bézier curve of degree n . Let iii bbb  1 . 3D

class A Bézier curves are curves that have the following relationship and the curvature and torsion are
monotonically varying:

 1,1,i0  nM i
i bb (2.1)

where M is a 3  3 matrix. Note that when we refer to class A, it means that the curvature and torsion
are monotonically varying. 3D class A Bézier curves are originally proposed by Farin[4]. For a
symmetric matrix M , Cao et al. have presented a method for checking the monotonicity of the
curvature and torsion[1]. Matrix M , which we use in this paper, is not symmetric in general. To check
the monotonicity of the curvature and torsion, we simply compute these values sampling points on the
curve.

Fig. 1 shows an example of 3D class A Bézier curves with its curvature and torsion plots. In the
figure, curves are drawn by quadratic prisms so that the user can sense the change of the torsion.
Also, the shadow of the curve on the plane is also drawn so that the user can understand the shape of
the 3D curve. To draw a 3D class A Bézier curve, we need to specify 10 ,bb , the degree n and M such

that the generated curve has monotonically varying curvature and torsion. Finding M that generates a
curve with monotonically varying curvature and torsion is not easy. Moreover, the endpoint of the
curve is not known unless we draw the curve. In this paper, we will present a method for drawing a
3D class A Bézier curve by specifying endpoint conditions, which are two endpoints and their tangent
vectors.

Fig. 1: 3D class A Bézier curve.

Farin called a class A Bézier curve generated by a matrix TM , which is composed of a uniform

scaling and a rotation around some axis, a typical class A Bézier curves. We call a class A Bézier
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curves generated by a general matrix GM , which is not just a composition of uniform scaling and a

rotation, a general class A Bézier curves. We start from a generation of 3D typical class A Bézier
curves and then present a method for generating 3D general class A Bézier curves.

3 INTERACTIVE GENERATION OF 3D TYPCIAL CLASS A BÉZIER CURVES

We present a method for drawing a 3D typical class A Bézier curve generated by matrix TM , which is

composed of a uniform scaling and a rotation around some axis. Let s ,  , u  u0 u1 u 2  u  1  be

the scaling factor, the angle of rotation, and the axis of rotation, respectively. Then M T can be

represented by

M T  R S (3.1)

where
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    2cos1sin AAIR   . (3.3)

Here, I is the identity matrix and
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To interactively generating a 3D typical class A Bézier curve, we specify two endpoints and their
tangents by four points 210 ,, aaa and 3a . 30 ,aa are two endpoints. 21,aa are used to compute the

tangents 1, vv0 by   00 / aaaav 110  and   23231 / aaaav  . Therefore, changing the lengths 0aa1 

and 23 aa  do not change the tangents 1, vv0 unless they are 0. We use 21,aa to specify tangential

directions at two endpoints.

We are given the degree n and four points 3210 ,,, aaaa , which specifies two endpoints 30 ,aa and

their tangents 1, vv0 . We would like to find a 3D typical class A Bézier curve satisfying the specified

endpoint constraints. Thus, we need to find 1,bb0 and TM such that 0ba 0 , nba 3 , 0vbb  00 / and

111 / vbb   nn .

For the position and the tangent to agree with the specified ones at 0a , we need to set 00 ab  and

01 vbb 00 b , where 0b0b is currently not known. However, changing 0b means just scaling the

curve, we simply set 10 b ( 0b can be an arbitrary value if 00 b ). Once the 3D typical class A Bezier

curve is generated, 0b can be easily computed by a 3  a 0 / bn  b0 .

Now we need to find a matrix M T such that     03030n0n aaaabbbb  // and 111 / vbb   nn .

The former condition corresponds to the positional coincidence at 3a under an appropriate scaling

changing 0b . From Eqn. (2.1) and (3.1) and the coincidence of tangential directions, the following

equation must be satisfied:

0vv 1
1

 nR . (3.5)

Eqn. (3.5) means that the axis of rotation u of R is in the plane that is equiangular to both 0v and 1v .

See Fig.2 (a) and (b). If we set 01 vvu  , the axis of rotation u must be a vector that is a rotation of u

about the axis v 0  v1 by angle  , which is not known yet. See Fig. 2(c).



Computer-Aided Design & Applications, 7(2), 2010, 163-172
© 2010 CAD Solutions, LLC

166

Fig. 2: The axis of rotation u has one degree of freedom.

For an arbitrary , we can find the angle of rotation  of R in the following manner. We project

0v and 1v to a plane whose normal is u by a parallel projection, and call them 0v̂ and 1v̂ , respectively.

See Fig. 3. Let  be the angle between 0v̂ and 1v̂ . By setting  1/  n , Eqn. (3.5) is always satisfied

without depending on  . This means that the tangential coincidence at 3a is satisfied.

Fig. 3: Computing the angle  in a projected plane with normal u .

The remaining constraint that needs to be satisfied is the positional coincidence at 3a . We use an

optimization such that the following function becomes 0.
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We use the downhill simplex method for optimization. Now, we can generate 3D typical class A Bézier
curves that satisfy the endpoint constraints. Note that although the parameters ( 0b and TM ) for

generating a Bézier curve are always found, the curve may not be class A, which means the curvature
and torsion are not monotonically varying. In such a situation, we simply do not draw the curve.

4 INTERACTIVE GENERATION OF 3D GENERAL CLASS A BÉZIER CURVES

Using the method of Section 3, we can generate 3D typical class A Bézier curves with specified
endpoint conditions. By introducing 3D general class A Bézier curves, we can generate a variety of
class A Bézier curves with the same endpoint conditions. In 3D general class A Bézier curves, the
matrix M in Eqn. (2.1) is not just a composition of a uniform scaling and a rotation around some axis.

The idea of generating 3D general class A Bézier curves is first projecting the four points

3210 ,,, aaaa to an arbitrary plane whose normal is specified by u , computing a 2D class A Bézier curve

in the plane as described in [13], and getting the information back to 3D. The 2D class A Bézier curve
can be either typical or general. For drawing a general class A Bézier curve, the user needs to specify
the direction of projection u in addition to four points 3210 ,,, aaaa and the degree n . The user may
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also specify five other parameters that change the shape of the curve. These parameters will be
described shortly in this section.

Without loss of generality, we assume that the projection plane is xy plane, that is u  0 0 1 
T
.

If u  0 0 1 
T
, we initially rotate the four points 210 ,, aaa and 3a such that u becomes  T100 . Then

we rotate the four points and the computed 3D Bézier control points back after the curve is generated.
This assumption simplifies the computation of the matrix GM , which generates a 3D general class A

Bézier curve.

We first project the four points 210 ,, aaa and 3a to the xy plane (whose normal is u ) by a parallel

projection and rename them 210
ˆ,ˆ,ˆ aaa and 3â , respectively. Let v̂ 0  â1  â 0 / â1  â 0 and

v̂  â 3  â 2 / â 3  â 2 . See Fig.4 (a). Note that either of â1  â 0 or â 3  â 2 is 0, the curve cannot be

generated.

(a) Projection of the four points (b) Computing a 2D class A Bézier curve

(c) Projecting back

Fig. 4: Generating a general class A Bézier curves.

We then generate a 2D class A Bézier curve whose endpoints are 0â and 3â and their tangents are

0v̂ and 1v̂ , respectively, using the method described in [13]. See Fig. 4 (b). The 2D class A Bézier

curve can be either typical or general. When generating a 2D general class A Bézier curve, the user

may need to specify additional four parameters that perturbs the 22 matrix[13]. Let nbbb ˆ,,ˆ,ˆ
10  be

the computed control points of 2D class A Bézier curve.

Since the projection plane is xy plane, the yx, coordinates of the control points nbbb0 ,, 1 of the

3D general class A Bézier curve are equal to the yx, coordinates of nbbb ˆ,,ˆ,ˆ
10  , respectively. Thus, we

need to find the z coordinates of nbbb0 ,, 1 . Since b0  a 0 and 3ab n , the z coordinates of 0b and nb

are those of a 0 and a 3 , respectively. The z coordinate of 1b can be computed by projecting 1b̂ back

toward the line formed by 0a and 1na . The z coordinate of 1nb can also be computed in a similar

manner. See Fig. 4 (c). The remaining coordinates of 22 , nbb  must be computed such that the z
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coordinates of 1nb and nb (computed by backward projection) are the same as the ones computed

using GM .

Let 
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M 2 be the 22 matrix that generates the 2D class A Bézier curve on the projection
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matrix be both 0, the x and y coordinates of the 2D class A Bézier curve agree with the x and y

coordinates of the 3D class A Bézier curve. Thus GM becomes
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Here, 10 , are currently unknown and e is a parameter which is specified by a user. We initially set

0e .
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Since Eqn. (4.2) and (4.3) are linear equations, we can compute 0 and 1 . Using GM and Eqn. (2.1), we

can generate all the control points that satisfies the endpoint constraints. Again, note that the
generated curve may not be class A. In such a case, we just do not draw the curve segment.

5 RESULTS AND THE CHARACTERISTICS OF TYPICAL CLASS A BÉZIER CURVES

5.1 Generation Results of 3D Class A Bézier Curves

Fig. 5, 6 and 7 show examples of three kinds of class A Bézier curves of degree 5 with the same
endpoint conditions. To help understand the 3D shape of the curve segments, the shadows of the
curves are also drawn. Fig. 5 shows typical class A Bézier curves whereas Fig. 6 and 7 show general
class A Bézier curves. The curves of Fig. 6 and 7 are different in that the parameters dcba ,,, and e in

Eqn. (4.1) are different. To show the characteristics of these curves, we show the curvature and
torsion plots as well as logarithmic curvature graphs(LCGs) and logarithmic torsion
graphs(LTGs)[14,15]. LCGs and LTGs can be used to identify the shape information of the curve. In
case of a 2D curve whose LCG is linear with slope  , it indicates that the curvature of the curve is

(under an appropriate scaling) equal to that of log-aesthetic curves with its slope of the LCG  .

Especially when  is -1, 0, 1, or 2, the curve is the Clothoid, Nielsen’s spiral, logarithmic spiral, or the

circle involute, respectively. The same argument is true for a 3D curve. If the LTG of a 3D curve is
linear whose slope is  , it gives us the information of the torsion function similarly as in the

curvature function. Note that the curves whose LCGs and LTGs are both linear are called log-aesthetic
space curves[14]. We find that the shapes of LCGs and LTGs of typical 3D class A Bézier curves are
rather restricted in comparison with general 3D class A Bézier curves. This restriction will be
investigated more detail in the next section. As is shown in the LCGs and LTGs in Fig. 6 and 7, the
general 3D class A Bézier curves have wider variety of shapes than typical 3D class A Bézier curves.
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Fig. 5: An example of typical 3D class A Bézier curves.

Fig. 6: An example of general 3D class A Bézier curves.

Fig. 7: Another example of general 3D class A Bézier curves.
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5.2 Characteristics of Typical 3D class A Bézier Curves

To investigate the characteristics of typical 3D class A Bézier curves, we shows the LCGs and
LTGs[13.14] of typical 3D class A Bézier curves with their slopes of approximated lines by least
squares and their variances (var). See Fig. 8. Without depending on the two endpoints and their
tangents, we found that the LCGs and LTGs get closer to a straight line whose slope is 1 as the degree
gets higher. A curve whose slopes of the LCG and LTG are both 1 is the 3D extension of logarithmic
spiral:

   tatat betetetL ,sin,cos .

Here a and b are constants. Although this does not prove that typical 3D class A Bézier curves are

approximations to 3D logarithmic spirals, this fact shows that the representation space of typical 3D
class A Bézier curves is rather limited.

Fig. 8: LCGs and LTGs of typical 3D class A Bézier curves with various degrees.
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The position of four points, thus two endpoints and their tangents, dictates whether the curve is
class A or not. In case that the curve is not class A, we do not draw the curve. Fig. 9 shows the
drawble regions of typical 3D class A Bézier curves. We set  0010 a ,  0sincos11 a .

a 2  cos cos sin cossin  and  0013 a . For  80and60,40,20 and degrees 3, 4, 5, 7 and 10,

we changed  and  within 0   90 and 90   90 , respectively. If a class A Bézier curve is

generated, we draw the point a 2 in either red or cyan. We draw the point in red if the curvature and

torsion are both monotonically increasing from a 0 to 3a . We draw the point in cyan if the curvature

and torsion are both monotonically decreasing. Note that changing the length a1  a 0 or a 2  a 3 does

not affect the shape of the curve unless they are 0. Since polynomial curves cannot represent curves
with constant curvature, the red and cyan regions in Fig. 9 are always disconnected. When  is small,

the starting point ( a 0 ) tend to become the curvature minimum thus the red region is larger than the

cyan region. When  becomes large, the starting point tend to become the curvature maximum and

the cyan region gets larger. The drawable region gets larger as the degree gets higher.

Fig. 9: Drawable regions of 3D typical class A Bézier curves.

6 CONCLUSIONS

This paper presented a method for interactively generating a 3D class A Bézier curve by specifying two
endpoints and their tangents. For typical 3D class A Bézier curves, we clarified geometric properties
of the curves and used them for efficient generation. For general class A Bézier curves, we proposed a
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novel method that reduces the generation of general 3D class A Bézier curves to finding 2D class A
Bézier curves in a plane whose normal is specified by a user and solving linear equations. Using LCGs
and LTGs, we showed that the slopes of LCGs and LTGs of typical 3D class A Bézier curves gets closer
to 1 as the degree gets higher. We also clarified experimental drawable regions of typical 3D class A
Bézier curves.

There are several interesting directions for future research. For generating general class A Bézier
curves, we need to specify 5 additional parameters in addition to the normal of the projection and
endpoint constraints. Reducing the number of additional parameters and finding how the curve shape
will change depending on the parameter are useful. For an arbitrary (non-symmetric) matrix M , we
also need a more efficient and mathematically rigorous way for checking the monotonicity of the
curvature and torsion. It is pointed out that in a space curve resulting from the bending of a physical
wire, the curvature and torsion are oppositely varying[8,7], which means the curvature is low at the
region of high torsion and vice versa. Log-aesthetic space curves[14] include curves whose curvature
and torsion are varying oppositely. The generalization of class A Bézier curves to curves whose
curvature and torsion are oppositely varying is also an interesting direction for future research.
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