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ABSTRACT

This paper proposes a conceptually simple strategy for adaptive subdivision of unified
subdivision surfaces with sharp features. A key feature of the proposed adaptive
subdivision algorithms is that it follows exactly the same rule of the respective
subdivision, which ensures correct evaluation of both refined control vertices and the
corresponding limit positions. Another important feature is that it provides a
universal API for unified subdivision surfaces with sharp features.
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1. INTRODUCTION
Subdivision surfaces are capable of defining a complex engineering object as a single surface using a
control mesh or arbitrary topology. Crease features, such as sharp edges, corners and darts, can also
be easily embedded on the surface. They have been widely used in the entertainment industry and
graphics applications for multi-resolution modeling and animation [6]. Their applications to CAD have
also been investigated systematically by researchers [19]. As face number increases exponentially,
however, it is pertinent to explore adaptive refinement strategies for efficient tessellation and
rendering of subdivision surfaces [11-12],[14],[29].
For proper implementation, several challenging issues must be addressed for adaptive subdivision.
One of the important issues is then an appropriate criterion in order to determine regions for further
refinement. As two faces sharing an edge may have a different subdivision level in adaptive
subdivision, cracks will usually appear along mesh boundaries of different levels if there is no special
treatment. Furthermore, extra data structure is needed in order to correctly evaluate vertices of a
refined mesh in adaptive subdivision.
We can roughly classify the error control criteria into two classes. One is based on the geometry of
control meshes and subdivision surfaces [3],[15],[17],[20],[23], [27],[30],[32] and the other relates to
non-geometric properties, such as viewpoint, projected size, spatial region and so on [7],[10],[13],[21],
[24-25],[31]. In literature, there are also adaptive strategies based on non-geometric metrics such as
view dependent tessellation [22], ratio of curvature to the silhouette dot production [1], interest-value
driven adaptive subdivision [10], directional light function error [13] and even combination of the
above metrics [21],[24-25]. In addition, hardware support is also exploited for adaptive tessellation on
the fly [2],[24-25].
Methods for correctly evaluating updated old vertices and newly inserted vertices can be put into three
categories. Carefully exploiting the relationship between positions of a vertex in different subdivision
levels, Müller and Jaeschke devised their adaptive scheme calculating vertices using the information of
the adaptively refined mesh itself [20]. The second kind of approaches usually records enough
neighboring information at the same subdivision level for areas to be modified [16],[24-25]. The last



Computer-Aided Design & Applications, 6(6), 2009, 851-864

852

category evaluates vertices using corresponding parametric representations of the subdivision
surfaces [4],[15],[30],[32].
Cracks are often removed using local triangulation of the critical regions where faces of different
levels meet together. A direct approach is to view the crack, a polygonal hole, as a new face [14]. Most
of the methods annihilate the cracks by splitting the faces with lower levels. Dyken et al. introduced an
elegant snap function to maintain consistency between regions with different resolution level [8].
Boubekeur and Schlick provided a generic adaptive refinement kernel for all kinds of representations
such as B-spline surfaces, Berzier patches and subdivision surfaces [5]. These GPU-oriented
approaches generally only perform semi-uniform adaptive strategy, namely, the depth may be
different for initial polygonal facets but refinement should be uniform inside the facets.
Though many papers have been devoted to adaptive subdivisions, most of them aim at a specific
subdivision scheme. Zorin and Schröder designed an adaptive strategy for their unified subdivision in
[8], it is not clear whether the approach was applied to all schemes of the framework. Recently,
Sovakar and Kobbelt [26] described an API design method for adaptive refinement of unified

subdivisions based on a 3 splitting operator. Sharp-features were however not addressed in [5]. The

vertex-centered adaptive subdivision of Smith [27] contributed to the treatment of sharp and semi-
sharp features for specific subdivisions. The approach results in an undesirable feature ending up with
arbitrary polygonal meshes for all schemes implemented so far. Moreover, only a simple example was
presented in [27].
This paper presents a strategy for adaptive subdivision with implementation details. It aims at
providing a general API for unified subdivisions with sharp features and semi-sharp features.
Theoretically, all aforementioned criteria can be reformulated to our strategy. We adapt the normal
angle and vertex distance error metrics and devise an edge error metric to test our approach in
implementation. In addition, an ordinary face splitting style previously used in [3] is employed to split
critical mesh faces for preventing cracks.

2. UNIFIED SUBDIVISION ON TRIANGLE MESHES
In connection with unified subdivision, Zorin and Schröder [33] and Stam [28] independently proposed
a unified subdivision scheme generalizing tensor-product B-spline surfaces of higher degree. This
section briefly describes the unified subdivision as an extension of Loop subdivision to which our
adaptive strategy will be applied.
For a given mesh, a linear 1-4 splitting operator firstly inserts a vertex (E-vertex) into each edge, and
then splits each face into four (see Fig. 1(a)). A refined mesh is produced after one round of splitting
and repeated averaging operations. A VF-type averaging operator produces the centroid for each face
from the corresponding corner vertices (see Fig. 1(b)), while a FV-type averaging operator produces a
new position for each mesh vertex from the centroids of its neighboring faces (see Fig. 1(c)). Similarly,
a VV-type averaging operator updates the position of a vertex as the weighted average of its adjacent
vertices as well as itself (see Fig. 1(d)).

Fig. 1: Key operators for unified subdivision: (a) Face linear splitting; (b) VF-type averaging operation;
(c) FV-type averaging operation; and (d) VV-type operation with weights.

2.1 Stam’s VV-type Operation
Stam generalized three-direction box splines to arbitrary triangular meshes using a VV-type geometric
operator (see Fig. 1(d)). The weights of the VV-type averaging operator are defined such that one linear
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refinement and one step of VV-type operator (with d=1) is identical to Loop scheme (see Fig. 2). It
results in [28]

nnn n  , nn  2 ,  22
4
1

8
3

8
51 )cos(

nnn
  nn n 1 (2.1)

Fig. 2: Unified subdivision with d=1 is equivalent to the Loop subdivision scheme: (a) linear refinement;
(b) VV-type averaging operator on the refined mesh; and (c) V-vertex mask for Loop subdivision.

2.2 Stam’s Unified Subdivision

Algorithm 1 in Tab. 1 presents one step of uniform refinement for the unified subdivision with d steps

of the VV-type averaging operator. In the algorithm, function LinearSplit(Mesh) is the 1-4 linear

splitting operator described above, the refined mesh is still stored in Mesh. Let ||V , || E and || F be

the vertex number, edge number and face number of Mesh, respectively. As a new vertex is inserted

into each edge, the total vertex number of the refined mesh should be |||| EV  . In addition, the face

number of the refined mesh increases up to ||4 F . Give face i, suppose that ]0[iv , ]1[iv and ]2[iv are

three vertices of i while and ]0[ie , ]1[ie and ]2[ie are indices of its three edges ( ]0[iv , ]1[iv ),

( ]1[iv , ]2[iv ) and ( ]2[iv , ]0[iv ), respectively. It is then partitioned into four new triangles (v[0], ||V +

e[0], ||V + e[2]), (v[1], ||V + e[1], ||V + e[0]), (v[2], ||V + e[2], ||V + e[1]) and ( ||V + e[0] , ||V + e[1], || V +

e[2]) after a step of 1-4 splitting. Algorithm 2 in Tab. 1 shows the linear splitting operator.

Algorithm 1 UniformUnifiedSubdivision

Input: Initial mesh "Mesh"; and number of averaging operations d

Output: Refined mesh also stored in "Mesh".

1 LinearSplit(Mesh); // Producing a linearly refined mesh.

2 for (i = 0; i < d; i++) // Performing averaging operation

3 VVOperator(Mesh); // on refined mesh "Mesh".

Algorithm 2 LinearSplitting

Input: Initial mesh "Mesh"; and number of averaging operations d

Output: A refined mesh through the linear splitting operator.

1 for (i = 0; i < || E ; i++)

2 Append the midpoint of edge i to the vertex array;

3 for (i = 0; i < || F ; i++) {

4 Append (v[0], ||V + e[0], ||V + e[2]) to the face array;

5 Append (v[1], ||V + e[1], ||V + e[0]) to the face array;

6 Append (v[2], ||V + e[2], ||V + e[1]) to the face array;

7 Append ( ||V + e[0] , || V + e[1], ||V + e[2]) to the face array;

8 }

Tab. 1: Uniform refinement for unified subdivision.
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2.3 Boundaries and Sharp Features Modeling

We follow the idea of [9] to model sharp features for the above unified subdivision. An edge of the

given control mesh is called a crease edge if it corresponds to a segment of curve on which the

subdivision surface is only 0C continuous. Otherwise the edge is called a smooth edge. The control

vertices are put into four categories: smooth vertices, darts, crease vertices and corners. A dart belongs

to only one crease edge; a crease vertex is adjacent to two crease edges while a corner is the common

vertex of at least three crease edges. All other vertices are smooth vertices. To ensure that the limit

surface is also smooth at darts, special care is needed when computing E-vertices of crease edges near

darts. Initially, smooth vertices, darts, crease vertices and corners are tagged with types 0, 1, 2 and 3

respectively. Let d be the number of averaging operations. We first replace the type of crease vertices

and corners with 2d and 3d respectively. For each dart, we then update the tags of crease vertices

whose distance to the dart via crease edges is d or less as the distance plus 1. Notice that if a corner is

encountered, the procedure is then terminated. Fig. 3 depicts how the tag change for 2d . In mesh

splitting, linear refinement is applied to both crease and smooth edges while all old vertices are

interpolated. The type of crease vertices and newly inserted vertices on crease edges changes as

follows. Let

t vL be the type of a crease Lv . After a step of refinement,


t vL  is replaced by


t vL1  min d  2, 2t vL 1 . (2.2)

As for E-vertex L
Ev of a crease edge ),( 10

LL vv , it is tagged with type


t v

E

L1  min d  2, 2t v
0

L , 2t v
1

L  . (2.3)

Fig. 3(d) shows the updated crease type of the crease vertices of Fig. 3(c) and crease type of newly

inserted crease vertices when refining the crease edges of Fig. 3(c).

In each smoothing step, Stam’s VV-type averaging operator as shown in Fig. 2(b) is applied to vertices

whose type is not greater than d . Crease vertices of type 1d are calculated using the curve averaging

operator shown in Fig. 4 while corners remain unchanged. We have mentioned that the unified

subdivision reduces to Loop scheme for d =1. However, a slightly different rule should be devised for

internal edges incident to boundary or crease vertices for Loop scheme in order to sustain 1C
continuity of the subdivision surface on boundaries or creases [31].

Fig. 3: Modification of vertex labels/types for d = 2: (a) the original labels; (b) all crease vertices are
tagged with type d+2 = 4 and corners are tagged with d+3 = 5; (c) crease vertices whose distance to a
dart is not greater than d are tagged with the distance plus 1; and (d) labels of crease vertices after a
step of linear subdivision for the crease of (c).

Fig. 4: Averaging operator for boundary and crease vertices.

1

4 4

54

1

(b)

1

2 2

32

1

(a)

1

2 4

53

1

(c)

1

3 4

54

1

2 4
1

24 4

(d)

4
1

2
1

4
1



Computer-Aided Design & Applications, 6(6), 2009, 851-864

855

3. THE PROPOSED ADAPTIVE SUBDIVISION STRATEGY
Our approach is a generalization of the strategy described in [16]. After each level of adaptive
subdivision, we partition the mesh faces into two sets, i.e. divisible and indivisible faces. Divisible faces
should be further refined. As all faces in the divisible mesh have the same subdivision level and, hence,
only the ordinary uniform subdivision is performed to refine them further. However, in order to
correctly perform refinement near boundaries, we need to maintain a number of extra layers of faces
around the boundaries of the divisible mesh (see section 4).
Fig. 5 illustrates the process of partitioning an initial mesh into divisible and indivisible meshes for
further adaptive subdivision. Fig. 5(a) shows all divisible faces (yellow) and indivisible faces (purple)
after evaluation. In Fig. 5(b), all divisible faces are marked with label 0, while all indivisible faces are
marked with label 1 if they fall within the layer of immediate neighbors of the divisible faces, or label 2
otherwise (for the case of d = 1, with d being number of averaging of the unified subdivision). Vertices
can also be marked in a similar way for d > 1. All new indivisible faces are further added to the
indivisible mesh as shown in Fig. 5(c) (the initial set of indivisible faces is a zero set in this case).
Indivisible faces with a label 2 (d+1) are removed from the divisible mesh and the resulting updated
divisible mesh is shown in Fig. 5(d) for further adaptive subdivision.

Fig. 5: Mesh splitting: (a) faces are tagged with divisible (yellow) and indivisible (purple); (b) all divisible
faces are marked with label 0, while indivisible faces are marked with positive labels; (c) all newly
found indivisible faces are added to the indivisible mesh (purple), while (d) all divisible faces (yellow)
and a portion of indivisible faces (purple) remain in the divisible mesh.

4. INDIVISIBLE FACE DICISION
We consider two types of criteria to determine whether a face needs to split further. The first criterion
is to test the planarity of the mesh face, while the second criterion is used to verify whether the
position of a vertex meets a pre-specified termination error.

4.1 Planarity of Faces
We slightly make a modification to the approach of
Amresh and Farin [8] by extending the set of

neighboring faces. Let )( fN F be the 1-ring face

neighborhood of f , namely the set consisting of all

faces sharing at least one vertex with f as well as f

itself, as shown in Fig. 6. Denote the unit normal of

f by )( fn . The planarity of f is defined as

      fgfC
ffNg

A
F

nn 


1max
}{)(

. (4.1)

For a given threshold 0 , we say f is indivisible if

  fCA , and divisible otherwise. If a threshold is

specified by the normal angle T between two faces,

it can be converted into the  threshold as follows:

T cos1 . (4.2)
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However, further exploration is necessary for those f containing a non-smooth vertex. To clearly

describe this case, we firstly define a face path on )( fN F (Fig. 6). Let 110 ,,, nfff  be a sequence of n

faces such that if and 1if share an edge for 2,,1,0  ni  , we call the sequence a face path from 0f

to 1nf . If there is no crease edge shared by these faces, we say that the path is a crease-free face path.

On the submesh consisting of faces of )( fN F , we introduce a notation fg  which denotes the case

that there is a crease-free face path from g to f . The planarity of f is adapted to

      fgfC
fgffNg

A
F

nn 


1max
}{)( 

. (4.3)

The divisibility of a face having crease or boundary edges depends on not only the planarity of the face
itself, but also the divisibility of the associated crease or boundary edges. Suppose that v is a crease

vertex and ),( vv and ),( vv  are two crease edge incident to it. Let us further introduce the following

parameter

 
vv

vv

vv

vv
vCA









1 . (4.4)

In case that v is not a crease vertex, we set 0)( vCA . The planarity of a crease edge ),( 10 vv is then

defined as

    10 ,max)( vCvCeC AAA  . (4.5)

The planarity of e can be defined similarly if e is a boundary edge. Also, introduce 0)( eP for an

internal smooth edge e . It finally results in the following extended planarity of face f .

        











)(max,1maxmax
}{}{)(

eCfgfC A
fEefgffNg

A
F

nn


, (4.6)

where  fE is the edge set of f .

We have pointed out that the normal angle criterion is a 1C condition. However, there exists the

possibility in practice that some refined areas may violate the 1C continuity constraint. To make the

algorithm robust, we further introduce an auxiliary criterion to terminate the face splitting. A face is
considered indivisible if the length of all edges of a face is less than the threshold  . Specifically, for a

given face ),,( )(
2

)(
1

)(
0

)( llll vvvf  generated after l steps of subdivision, this auxiliary criterion for

determining whether the face is indivisible is defined as


max
i0,1,2

v
mod(i1,3)

(l ) v
i

(l )   . (4.7)

If a face satisfies Eq. (4.7), it is regarded as indivisible and not needed to further test the normal angle
between the face and its neighbors. Note that the criterion can be disabled by setting 0 .

Also, Eq. (4.7) is a scale-dependent constraint. Therefore, in order to make the strategy comparable for
models with different scales, we introduce a so-called relative error r to replace  . Let

 minminmin ,, zyxBl  and  maxmaxmax ,, zyxBu  be the two extreme corner points of the bounding box

of the control mesh with minimum and maximum coordinates, respectively. Error terms r and  have

the following relationship

lu BBr  . (4.8)

4.2 Vertex Error Metric
With the increase of averaging times, the termination condition described in section 4.1 becomes
inaccurate due to the fact that the underlying subdivision masks are much larger than the 1-ring
neighborhood of a mesh face. Here we describe another criterion based on vertex distance. We then
adapt the criterion to general subdivisions for which the explicit vertex limit is unavailable.
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Given face ),,( )(
2

)(
1

)(
0

)( llll vvvf  generated after l steps of subdivision, assume that
)(

2
)(

1
)(

0 ,,  vvv are

the limit positions of the three V-vertices of the face. Denote a vertex error metric as


D

V
f  max

i0,1,2
v

i

() v
i

(l ) . (4.9)

Obviously,  )(l
V vD converges to zero when l . When  )(l

V vD becomes small enough, we may

assume that the refined mesh has closely approximated to its limit surface. Therefore it can be
employed to determine the divisibility of mesh

faces. Given a threshold  , f is indivisible if

  fD , and divisible otherwise. Obviously, error

 can be replaced by the relative error defined in

Eq. (4.8) as well.
The unified scheme discussed in this paper
reduces to Loop subdivision for averaging time

1d . The limit behavior has been addressed by

Loop for the original Loop scheme [18] and by
Hoppe et al. for the extension version with sharp
features [9]. For completeness, we list the results
here. Fig. 7(a) and (b) are the masks for computing
the limit position of smooth/dart vertices and
crease/boundary vertices, respectively, in which

n
n




83

3


 and

 n

n
n

n 




83

8


 . (4.10)

Though the limit position of a control vertex can be computed analytically or numerically for a specific
subdivision scheme it is not available for general unified subdivisions. We introduce the following
metric as an alternative criterion in this case


D

V
f (l )  max

i0,1,2
v

i

(l1) v
i

(l ) , (4.11)

where
)1(

1
)1(

0 ,  ll vv and
)1(

2
lv are the three V-vertices corresponding to

)(
1

)(
0 , ll vv and

)(
2
lv .

4.3 Edge Error Metric
Noting that the vertex error metric does not work for interpolatory subdivisions for which control
vertices are on the limit surface. We explore another error metric, the so-called edge error metric such
that the strategy is capable of handling both approximatory and interpolatory subdivisions. Also,

assume that
)(

2
)(

1
)(

0 ,,  vvv are the limit positions of the three V-vertices of a given face

 )(
2

)(
1

)(
0

)( ,, llll vvvf  . Furthermore, denote
)(

2
)(

1
)(

0 ,,  vvv the limit positions of the three E-vertices

corresponding to edges  )(
)3,1mod(

)()( , l
i

l
i

l
i vve  ( 2,1,0i ), respectively. The direction of line segment

 )(
)3,1mod(

)()( , 


  iii vve can be evaluated by

)()(
)3,1mod(

)()(
)3,1mod(

)3,1mod(, 












ii

ii

vv

vv
ii

e . (4.12)

The edge error metric is then defined as the maximum of the orthogonal distances from limit position
)(

iv of
)(l

ie to line segment
)(

ie , 2,1,0i :


D

E
f  max

i0,1,2
v

i

() v
i

()  v
i

() v
i

()  ei,mod(i1,3)  ei,mod(i1,3) . (4.13)
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For given threshold  , f is indivisible if   fDE and divisible otherwise. In this case, the relative

error given in Eq. (4.8) also works. Certainly, for subdivisions whose limit behavior is unknown, Eq.
(4.13) can be modified to


D

E
f  max

i0,1,2
v

i

(l1)  1
2
(v

i

(l )  v
i1

(l ) ) , (4.14)

where
)1( l

iv is the same as that in Eq. (4.11), while
)1( l

iv is the E-vertex of edge  )(
)3,1mod(

)( , l
i

l
i vv  .

4.4 Classification of Faces and Vertices
As described in section 3, we do not remove all indivisible faces from the divisible mesh after its faces
being classified into divisible and indivisible ones in order to correctly subdividing the divisible faces

in the next step of refinement. Let d be the number of averaging operations involved. Then d layers

of faces around a face f are required in order to achieve this goal. In other words, those indivisible

faces located within the d-ring neighborhood of f should be kept in the divisible mesh. Therefore we

assign a label, which ranges from 0 to d , to each vertex and each face of the divisible mesh firstly.

Initially the label of f is assigned as follows

 





eindivisiblis1

divisibleis0
0,

f

f
fL . (4.15)

And the label of vertex v of a face is given by

    0,min0,
)(

fLvL
vNf F

 . (4.16)

Now assume that  jfL , and  jvL , have been calculated for all faces and vertices. We update labels

according to the following rules:

    jvLjfL
fVv

,min1,
)(

 ,     1,min1,
)(




jfLjvL
vNf F

. (4.17)

 dfL , and  dvL , are then the appropriate labels of faces and vertices of the divisible mesh.

5. CRACKS PREVENTION
If a face in the indivisible mesh shares an edge with a divisible face in the divisible mesh, cracks appear
after the divisible face is refined in the next round of subdivision. Some indivisible faces of the
indivisible mesh are also refined according to the number of the divisible faces sharing the same edge
with the indivisible face in order to annihilate the cracks. The treatment is initiated after the divisible
mesh is subdivided because newly inserted vertices into the shared edges are produced at this stage. In
general, each indivisible face has four possible splitting patterns which respectively correspond to the
number of neighboring divisible faces sharing an edge with the indivisible face being 0, 1, 2 and 3 as
shown in Fig. 8.

Fig. 8: Splitting patterns for boundary indivisible faces when shared with (a) 0, (b) 1, (c) 2 and (d) 3
edges with neighboring divisible faces.

6. SEMI-SHARP CREASES HANDLING
In uniform subdivisions, semi-sharp creases are produced by refining the mesh through applying
geometric rules for generating sharp features to regions tagged with sharp features in initial several
steps of subdivision and then performing smooth rules in the rest of subdivision. Hence, in adaptive
refinement, we always refine those faces adjacent to sharp feature vertices in the initial several steps

(a) (b) (c) (d)
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of subdivision, namely, tag these faces as divisible regardless their planarity. We denote the number of
the initial steps by  . Fig. 13 illustrates an example with 2 .

7. RESULTS AND DISCUSSIONS
As an example, we implemented the proposed adaptive refinement of unified subdivisions operating
upon triangle meshes. The implementation was realized using a Thinkpad T60p laptop PC with 2.0GHz
CPU and 512MB RAM. When the number of averaging operations for each level of refinement equals to
one, the unified subdivision on triangle meshes produces Loop subdivision surfaces. In this case, we
also tested the strategy for Loop subdivision using the criterion defined by Eqs. (4.8)-(4.9) which
prevents a face from further splitting using the distance between vertices as well as midpoints of edges
of the face and their limit positions. In the following we demonstrate the versatility of the proposed
approach by applying the proposed adaptive subdivision to a variety of models.
Fig. 9 depicts the results of different unified subdivisions with 1, 2, and 3 steps of averaging

operations. All results are generated under a normal angle threshold T = 5 . Fig. 10 illustrates an

example for adaptively subdividing open models with also T = 5 . Both examples demonstrate that the

resolution levels uniformly increase from the area with lower curvature to the area with higher
curvature. In fact, the proposed strategy generally produces adaptively refined meshes with less
difference of subdivision levels of adjacent faces for models without sharp features. The proposed
strategy can produce an adaptive triangle mesh with good aspect ratio for this kind of models.
The situation is different for adaptive refinement of models with sharp features. It is possible that a
flat region and a highly curved region are separated by a crease on such models. This leads to the
connection of faces with much lower resolution (in a flat region) with faces of higher resolution (in a
curved region) through a crease edge. The proposed strategy tends to produce narrow triangles along
crease edges in this situation since it has to split the faces with lower resolution multiple times along
the crease edge in order to avoid cracks. This can be observed from the examples shown in Figs 11-12.
The rendering quality is satisfactory as seen in Fig. 11(c) and Fig. 12(c). Selected experimental data of
Figs 9-12 are summarized in Tab. 2. In this table, V num and F num represent the number of vertices

and the number of faces of the associated mesh, respectively, T is the normal angle threshold, and d

is the steps of averaging operations picked up from the corresponding figures. Also note that a relative
error threshold r is also used in these examples, but as a very small threshold value is used, the

results are mainly dictated by the normal angle threshold T .

Models Initial meshes Adaptive meshes
T r d Max.

depth
Time (s)

V
num.

F
num.

V num. F num.

Bunny (Fig. 9) 456 904 68746 137380 5 4e-6 2 7 8.48

Engine (Fig. 10) 194 332 26108 51703 5 0 2 8 3.52

Fandisk (Fig. 11) 204 404 38062 76120 2 0 1 12 14.86

Mechpart (Fig. 12) 229 466 299442 598892 4 4e-13 1 19 569.50

Tab. 2: Experimental results using the normal angle criterion.

Fig. 13 presents an example for generation of semi-sharp features with an initial mesh of 48 faces and
26 vertices and with 1d averaging operation. The adaptively refined mesh, which consists of 144712

faces and 72358 vertices, is generated under normal angle threshold  5T only (vertex and edge

metrics not used). In the first two rounds of subdivision, faces incident on crease vertices and corners
are enforced to be divisible. The maximum depth of subdivision is 8 and a face compression ratio is
4.2% compared with that of uniform subdivision of 8 levels. The face compression ratio refers to the
ratio of face number of adaptive subdivision over that of uniform subdivision. Fig. 14 illustrates some
examples produced by applying vertex metric only or edge metric only to the above initial models.
Related experimental data is listed in Tab. 3. The initial models used in this table are the same as those
summarized in Tab. 2.
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Regarding the selection of appropriate error metrics, both vertex and edge error metrics can be used to
produce an adaptive mesh with a roughly expected relative mesh error, though the relative error
threshold r is actually not a direct measure for model accuracy. Experimental results also show that
such metrics tend to yield results with small difference in resolution between adjacent faces than that
using the normal angle metric. This can be observed by comparing Fig. 9(c), Fig. 10(c), Fig. 11(c) and Fig.
12(c) with Figs. 14(a)-(b), respectively. As the normal angle between adjacent faces reflects the most
important visual property, it is generally easier to produce adaptive meshes with good visual
appearance using the normal angle metric. If a visually high quality appealing adaptive mesh is needed,

one should use the normal angle metric with an appropriate normal angle threshold T for adjusting

mesh resolution.

Models Adaptive meshes Error
metrics

Relative
error
threshold
r

Steps of
averaging
operations
d

Maximum
subdivision
depth

Face
compression
rate (%)V num. F num.

Bunny 9580 19132 V 0.001 1 5 2.07

Engine 4955 9666 E 0.001 1 5 2.84

Fandisk 69892 139780 E 0.0001 1 11 0.01

Mechpart 59142 118292 E 0.0001 1 10 0.02

Tab. 3: Experimental results for the vertex / edge error criteria.

8. CONCLUSIONS
We described a universal strategy for adaptively refining general models with sharp features. A unified
interface is proposed for the implementation of adaptive subdivisions of unified subdivision schemes
based on a splitting operator and repeated averaging operations. Though only subdivisions based on
the 1-4 splitting operator for triangular meshes are discussed in the paper, the approach is applicable
to any other topological operators and polygonal meshes. As future work, it is useful to conduct a
comparative study and further investigate the impact of different error criteria on the complexity and
quality of the refined meshes of adaptive subdivision. On the other hand, this paper only considered
primal subdivisions, while adaptive dual unified subdivisions remain open due to the difficulty in
modeling sharp features with this kind of subdivisions. It is also an interesting topic to apply the
proposed adaptive subdivision strategy for the manipulation of subdivision surfaces, such as
intersection, trimming, Boolean operations and collision detection of subdivision based 3D models.
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Fig. 9: Adaptive subdivision of a bunny model: (a) the initial control mesh; (b)-(d) adaptively refined
meshes corresponding to subdivisions with d = 1, 2 and 3 step(s) of averaging operation, respectively.

All results are produced with a normal angle  5T and relative error r=4e-6.

Fig. 10: Adaptive subdivision of an engine model: (a) and (b) the initial control mesh in wire frame and
shading, respectively; (c) and (d) the resulting mesh in wire frame and shading, respectively, generated

with d = 2 using a normal angle  5T and relative error r=0.

Fig. 11: Adaptive subdivision with sharp features of a Fandisk model; (a)-(b) the initial control mesh in
wireframe and shaded image, respectively, for each of the models; (c)-(d) the adaptively refined Fandisk

model with  2T and r=0.

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)
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Fig. 12: Adaptive subdivision with sharp features of a Mechpart model: (a)-(b) the initial control mesh in
wireframe and shaded image, respectively, for each of the models; (c)-(d) the adaptively refined

Mechpart model with  4T and r=4e-13.

Fig. 13: Adaptive subdivision with semi-sharp features: (a) the initial control mesh; (b) the subdivision
surface generated by two steps of Loop subdivision with sharp features followed three steps of smooth
Loop subdivision; (c) the adaptive subdivision result with semi_sharp_level=2 and normal angle

 5T only; (d) the shaded image of (c).

Fig. 14: Adaptive subdivision using two different distance metrics for smooth models: (a) a Bunny
model using a vertex error metric only; (b) an Engine model using an edge error metric only.

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b)


