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ABSTRACT

This paper presents an efficient method to reliably approximate medial axis spheres
for free-form surfaces. The calculated results are directly applicable to the selection
of gouge-free ball-end mills in three-axis free-form surface machining. The medial axis
sphere at each point on the surface is a global geometric property and equivalent to
the maximum non-gouging ball-end mill size at the point. The fundamental concept is
that the union of a point’s incident Delaunay spheres encompasses all spheres that
pass through the point and contain no other point inside. This leads to the present
method of approximating the medial axis sphere at a point via considering only its
Voronoi neighbors on the machining side of its tangent plane. The approximation
accuracy can be further improved by considering additionally sampled points around
the Voronoi neighbors. Extensive case studies have been carried out to demonstrate
the effectiveness of the present method in selecting gouge-free cutting tools.

Keywords: tool selection, machining, gouging, medial axis sphere, free-form surface.
DOI: 10.3722/cadaps.2009.839-849

1. INTRODUCTION
Objects with free-form surfaces are common in practice such as ship hulls, propellers, automobile
body panels, aircraft fairing surfaces, and aerospace engine parts. With today’s computers and shape
scanning devices becoming more and more sophisticated, representing the geometry of these objects
using the point cloud based format is now a viable option. Generally, an object is represented by
points because it contains unknown free-form surface geometry. Nonetheless, even when the exact
mathematical representation of the surface is known, it is becoming a general practice to employ a
triangular mesh to approximate the free-form surface to generate the NC tool path. The vertices of the
triangular mesh are sometimes also viewed as a point cloud representation of the free-form surface.

For point cloud based surface representations, various methods have been proposed to generate NC
tool paths directly from the discrete coordinate points [5],[9],[13],[16],[17]. However, comparatively
less work has been done on tool selection. For both roughing and finishing machining operations, it is
essential to determine the largest tool size that is able to carry out the intended machining operation
without gouging. The direct benefit of using the largest-sized tool is reduced scallop size, in particular
for three-axis machining with a ball-end mill. More importantly, larger tools are more rigid and able to
carry out the machining operation with much increased feed rate. Most existing methods, such as
[11],[12],[21],[22], analyze geometric features in smooth and continuous surfaces to select the gouge-
free cutter or cutters. Only recently, the point cloud based surface representations were employed to
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resolve the tool selection problem. One such method is based on the concept of Delaunay pole
spheres, developed by researchers in computer graphics and visualization [1]. The Delaunay poles
spheres are the two unique largest empty spheres respectively on each side of the surface at a given
point. The smallest Delaunay pole sphere size on the machining side of the surface could then be
regarded as the optimal ball-end mill size [15] for three-axis free-form surface machining. Since the
points are only a sample of the surface, estimated normal vectors [14] were to be employed to improve
the calculation accuracy.

Research studies dealing with free-form surface machining, e.g. [11], have been determining tool size
for the finishing machining operation using surface curvatures. It should be noted that curvature is a
local geometric property and only suitable for local gouging avoidance at (or in the immediate vicinity
of) the cutter contact point on the surface. Curvature contains no geometric information of the
surface away from the cutter contact point and thus cannot be used to detect global gouging at the
ball part of the ball-end mill. In fact, in three-axis free-form surface machining without the concern of
interference at the tool shank, global gouging is the primary concern for most tool accessibility issues.
Because of this, the medial axis sphere at each point, which is a global property of the surface, is to be
used for determining the optimal ball-end mills in machining the free-form surfaces.

2. MEDIAL AXIS
The medial axis of a surface in three dimensions is defined as the locus of points that have two or
more (generally two) closest points on the surface. Each point C on the medial axis can be considered
as the center of a maximized empty sphere (medial axis sphere) that does not contain any part of the

surface within its interior and touches at least two points,
i

P ( 1 , 2i k k  ), on the surface. C is in

the surface normal direction of
i

P . The medial axis can also be formulated as the locus of the center

of a maximal deformable sphere as it rolls around the surface. It is thus evident that the medial axis
sphere is the theoretical solution for the optimal tool size at the corresponding point.

Medial axis was first introduced by Blum [3] for the analysis of biological shapes. Since then, it has
been widely used in many two-dimensional applications, such as image processing, path planning,
finite element mesh generation, and feature recognition. Medial axis can also be used to analyze 3D
shapes [4]. Some researchers have used it as a representation of deformable objects [18]. Extensive
research has been carried out to analyze two-dimensional medial axis. For example, Culver et al. [6]
have introduced algorithms for computing exact medial axis in three dimensions for some simple
shapes such as polyhedra. However, it is in fact difficult to construct the exact medial axis for general
surface shapes in three dimensions. Thus, continued efforts have been made to approximate the
medial axis for three-dimensional applications.

Many researchers have been using sampled points from a given surface and approximating the medial
axis via the Voronoi diagram of these points. Typically, these researchers used all of the Voronoi
vertices to approximate the medial axis under the assumption that the Voronoi vertices would
converge to the theoretical medial axis with increasing point sampling density [2],[19],[20]. Amenta et
al. [1] have proved that the Voronoi pole vertices do converge to the medial axis and proposed to use
the union of every point’s pole spheres to approximate the sampled object geometry and to use the
medial axis of the union spheres to approximate the exact medial axis. Dey and Zhao [8] proposed to
use user-defined angle and length criteria to select Voronoi facets directly from the Voronoi diagram
to approximate the medial axis. This is based on the observation that each point’s Voronoi cell will be
elongated along the point’s normal direction as the point density increases.

This paper proposes a new method that can efficiently and reliably approximate the medal axis sphere
for each point in a set of sampled points. The medial axis sphere center of a point P is to be on its
surface normal and the sphere will touch at least one other sampled point Q and contain no other

sampled point inside. Thus a medial axis sphere center will be on the Voronoi cell boundary of P but
is not necessarily a Voronoi cell vertex. It is evident that Q is a Voronoi neighbor of P . The medial

axis sphere at P can then be approximated from its surface normal and Voronoi neighbors, as to be
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described in the next section. If the surface normal vectors of the sampled points are not readily
available, the method by OuYang and Feng [14] can be employed to estimate the normal vectors at the
sampled points due to its demonstrated consistency under varying geometric complexity and sampled
point density. A specific algorithm is devised to further improve the accuracy of the approximated
medial axis sphere for the sampled points when the underlying sampled surface is unknown.

3. MEDIAL AXIS SPHERE APPROXIMATION
As stated in the previous section, a medial axis sphere at a point on a surface represents the largest
sphere that touches the surface at the given point and at least one other point without having any
other part of the surface contained within it. A point’s medial axis sphere center has to be on the
point’s surface normal. It was proposed to approximate the medial axis sphere at a given point P by
creating an initial sphere with the sphere center on the point’s normal using an arbitrarily large and
exaggerated radius. The center of the initial sphere was then updated along the surface normal using a
point found to be closer to the initial sphere center than P . This was an iterative process that needed
to examine every point on the surface. The point that constrains the smallest sphere is defined as the

gouging point of P . The computational complexity of this algorithm is 2( )nO , where n is the number

of the sampled points.

It can be shown, and as one would expect, that the sampled point density of the surface plays a vital
role in the accuracy of the calculated medial axis sphere size. It would seem that the accuracy issue
could be easily resolved by sampling a very large point set from the surfaces however, there is the
potential of incurring a major computing time penalty in doing so. The computer resources necessary
to process massive data point sets, along with the computing time required for the related tasks, is
sometimes a price too high to pay for the improvements that may be gained. In order to realize the
improvements that come by increasing the point density of a known geometric surface representation,
and not have to suffer the consequences therein, an improved and more computationally efficient
algorithm would have to be developed.

In order to maximize the efficiency of the search algorithm, the number of unnecessary points that
need to be visited must be reduced as much as possible. A point is deemed unnecessary if it has no
limiting effect on the medial axis sphere size at the given point. It would be difficult, however, to
recognize these points without calculating the distances between them and the others. The Voronoi
diagram of the sampled point set will provide this relationship efficiently for all the sampled points.

In this work, the Voronoi diagram is generated using the publicly available C++ library called CGAL
[10], which is known to be accurate and efficient. It is well established that the Voronoi diagram of n
points (or sites) will divide the space into n Voronoi cells. Each site corresponds to one Voronoi cell
such that any point inside this cell is closer to this site than to any other sites. Delaunay triangulation
is the dual of Voronoi diagram. The space, instead of being partitioned into Voronoi cells, is now
partitioned into Delaunay simplex, for example, Delaunay triangles in the 2D space and Delaunay
tetrahedrons in the 3D space. In the 2D space, each Delaunay triangle connects three sites and its
circumcircle will contain no site inside. In this work, each circumcircle of a Delaunay triangle is
referred to as a Delaunay circle. In the 3D space, the circumsphere of a Delaunay tetrahedron, which
connects four sites, is referred to as a Delaunay sphere.

Fig. 1 shows the basic elements of a 2D Voronoi diagram and Delaunay triangulation pertaining to a

sampled point
0

S . In this figure, sampled points
i

S ( 1 5i   ) are the Voronoi neighbors of
0

S . Each

vertex
i

P ( 1 5i   ) of the Voronoi cell of
0

S is the Delaunay circle center. For example,
1

P is the

Delaunay circle center of the Delaunay triangle
0 1 5

S S S . It is evident that the union of the Delaunay

circles at
0

S will include all circles that pass through
0

S and contain no sampled point inside. In other

words, if any 2D circle, containing no sampled point inside, touches
0

S and another sampled point S ,

then S must be a Voronoi neighbor of
0

S and its center C has to be on the Voronoi cell boundary. It
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is because C cannot be inside of the Voronoi cell of
0

S ; otherwise it contradicts the Voronoi cell

definition that requires any point in the Voronoi cell is closer to
0

S than to any other point. C cannot

be outside of the Voronoi cell; otherwise C is closer to another site and the circle will then include
such a site inside. Thus C has to be on the Voronoi cell boundary. And according to the Voronoi cell

definition, S must be one of the Voronoi neighbors of
0

S . The same conclusion can also be extended

to higher dimensional space. For example, in the 3D space, if any sphere contains no sampled point

inside and passes through two sampled points
i

S and
j

S , then
i

S and
j

S must be Voronoi neighbors.

It is thus unnecessary to examine every sampled point to approximate the medial axis sphere at a
given point. Only the Voronoi neighbors on the machining side of the point’s tangent plane need to be

checked. For example, in Fig. 1, only
1

S and
5

S are checked to approximate the medial axis sphere at

0
S due to the indicated normal direction. Also, in order to improve the accuracy of the approximated

medial axis sphere, more points can be sampled and checked in the vicinity of
1

S and
5

S .
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Fig. 1: Typical Voronoi diagram and Delaunay triangulation in 2D.

Suppose the normal of the sampled point
0

S is n ,
i

S is a Voronoi neighbor of
0

S on the machining

side, and a candidate sphere (with radius
i

R and center
i

C on n ) passes through
0

S and
i

S :

0i i

i i i

R

R

 



C S n

C S
(3.1)

The sphere radius
i

R can be easily calculated for each Voronoi neighbor on the machining side of the

tangent plane at
0

S . The sphere with the smallest radius is then taken as the approximated medial

axis sphere at
0

S and the corresponding
i

S is regarded as an approximation of the global gouging

point. It is evident that the approximated medial axis sphere will converge to the theoretical medial
axis sphere as the sampled point density increases. It should be noted that the above procedure is

equivalent to the calculation of the intersection point C of n with the Voronoi cell of
0

S in Fig. 1.
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The computational complexity of the above algorithm to approximate the medial axis sphere is ( )knO ,

where k is the expected number of Voronoi neighbors for each sampled point. Since the complexity of
Voronoi diagram computation is ( log )n nO , the overall computational complexity is ( log )n nO . The

presented algorithm is thus much more efficient than the existing method which searches every

sampled point in the data set and has complexity 2( )nO as indicated previously.

4. PRELIMINARY EVALUATION
In order to illustrate the properties of the approximated medial axis spheres generated in this work,
point cloud data were obtained from several NURBS surfaces. These data sets were sampled from the
parametric expressions ( , )u vP of the surfaces at predefined intervals of the two independent

parameters u and v according to the desired sampling density. Each point’s surface normal was also
recorded when it was sampled. Fig. 2 shows three typical point cloud data sets used in this work. It
can be seen that the surface of Fig. 2(c) is more geometrically complex than that of Fig. 2(b), which is
again more complex than that of Fig. 2(a).

(a) (b) (c)

Fig. 2: Typical point cloud data sets used in the present work.

After the Voronoi diagram and Delaunay triangulation computation of such a point cloud data set,
each point was associated with one Delaunay pole sphere and one approximated medial axis sphere on
the machining side of the sampled surface. The Delaunay pole sphere at a sampled point was defined
as the largest Delaunay sphere incident to the point on the machining side of the surface [1],[15]. Since
the surface normal of every sampled point was known, the Delaunay pole sphere at the point was
identified as the largest Delaunay sphere among the incident Delaunay spheres whose centers were
located on the machining side of the point’s tangent plane. The approximated medial axis sphere for a
sampled point was calculated using the algorithm introduced in the previous section. Thus for each
valid sampled point a direct comparison between the two spheres can be made. A valid point is one
for which the Delaunay pole sphere and the medial axis sphere are of finite size. It should be pointed
out that any sampled point on the convex hull of the point cloud data set cannot be a valid point as its
Delaunay pole sphere and medial axis sphere are both unobtainable/undefined on the outward
(machining) side of the sampled surface.

It is evident that the Delaunay pole sphere is invariably larger than its corresponding medial axis
sphere due to the fact that it not only must touch the point of interest, but also must grow to touch
three other points in order to constrain its size. The medial axis sphere, however, grows in the
direction of the surface normal and only touches one other point, resulting in a sphere that is always
smaller. The Delaunay pole sphere’s perimeter is forced to grow and extend in-between the points it
touches, and hence very likely gouges the surface in those areas. Nonetheless, it is proven that the
Delaunay pole sphere will converge to the theoretical medial axis sphere as point density increases [1].

Since both the Delaunay pole sphere and the approximated medial axis sphere will converge to the
theoretical medial axis sphere as point density increases, and it is in general difficult to construct the
exact medial axis in the 3D space, comparison of the applicability of the two spheres was made
according to the consistency in the calculated results at reduced point densities. In this work, the
Delaunay pole sphere and the approximated medial axis sphere at a given point in a highly dense
sampled point cloud data set was evaluated first and regarded as the reference. These two spheres’
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diameters are denoted as
0DP

D and
0MA

D , respectively. Reduced point density was achieved by

randomly deleting 10 to 90% of points from the original data set. The two spheres, with diameters

respectively denoted as
DPr

D and
MAr

D , were calculated again at each point in the reduced data sets. It

is evident that
0DP

D is always smaller than
DPr

D and
0MA

D is always smaller than
MAr

D since the

reduced data sets are always subsets of the original data.

The deviation between the Delaunay pole spheres for the original and reduced data sets at a sampled
point was quantified as:

0

0

100%DPr DP
DPr

DP

D D

D



  (4.1)

Similarly, the deviation between the approximated medial axis spheres was quantified as:

0

0

100%MAr MA
MAr

MA

D D

D



  (4.2)

Comparisons of the average deviations and the corresponding root mean square (RMS) values of the
deviations for the three point cloud data sets (Fig. 2) are shown in Figs. 3-5. It can be seen that the
approximated medial axis sphere yields much smaller deviations and better consistency than the
Delaunay pole sphere.
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Fig. 3: Consistency comparison of Delaunay pole spheres and approximated medial axis spheres with
reduced point densities for the data set of Fig. 2(a).
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Fig. 4: Consistency comparison of Delaunay pole spheres and approximated medial axis spheres with
reduced point densities for the data set of Fig. 2(b).
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It is clear from the figures that the point density of a data set has a dominating effect on the accuracy
of the calculated results due to the resolution of the surface representation. Also evident are the high
deviations of Delaunay pole spheres when the surfaces are represented by low-density points. The
deviations are particularly pronounced because Delaunay pole spheres are able to grow larger and shift
the location of their centers in surface regions with high curvature and low point density. This is a
direct result of the inter-point spacing, not necessarily the linear distance between the sampled points,
but the true distance along the surface if it were there [15]. The Delaunay pole sphere is able to grow
in-between the sampled points when the true surface geometry is unknown. And it is from here that
the errors stem.
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Fig. 5: Consistency comparison of Delaunay pole spheres and approximated medial axis spheres with
reduced point densities for the data set of Fig. 2(c).

5. IMPROVEMENT OF APPROXIMATION ACCURACY

5.1 Surfaces of Known Geometry
As stated above, the point density of a data set has a dominating effect on the accuracy of the
approximation results. When the point density increases, the computational time would increase quite
dramatically as the computational complexity is ( log )n nO . To improve the approximation accuracy of

the medial axis sphere at a sampled point while keeping the number of points the same for calculating
and constructing the Voronoi diagram (and not repeatably reconstructing the Voronoi diagram), it is
proposed that more points be sampled and evaluated in the vicinity of the Voronoi neighbors of the
sampled point, to see if a better representative of the global gouging point can be identified.

To demonstrate the improvement, for each surface shown in Fig. 2, two sampled point data sets, PS1
and PS2, were obtained from the parametric expression ( , )u vP : PS1 was sampled in the parametric

space at intervals

u

1
 0.01 and


v

1
 0.005 and PS2 was sampled at intervals


u

2
 2u

1
 0.02 and


v

2
 2v

1
 0.01 . In other words, PS2 was a subset of PS1, with one quarter the number of points.

The approximated medial axis sphere at each point in PS1 and PS2 was evaluated first using the
standard method presented in Section 3 with the result of PS1 regarded as the reference. The

calculated diameters are denoted as
REF

D and
STD

D , respectively, for the same point in PS1 and PS2.

The improved medial axis sphere at each point in the reduced data set PS2 was obtained via:

For each point in PS2, calculate the medial axis sphere size using Eqn. (3.1) for every incident
Voronoi neighbor identified in PS2 as well as the corresponding locally added sampled points
from PS1. The sphere with the smallest diameter was taken as the approximated medial axis

sphere at the point. The diameter is denoted as
IMP

D .
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Similar to Eqns. (4.1) and (4.2), the error of the approximated medial axis spheres in PS2 using the
standard method (with PS1 results regarded as the reference) can be quantified as:

100%STD REF
STD

REF

D D

D



  (5.1)

And the error of the approximated medial axis spheres in PS2 using the improved method can be
quantified as:

100%IMP REF
IMP

REF

D D

D



  (5.2)

Comparisons of the average errors and the corresponding RMS values of the errors for the three point
cloud data sets (Fig. 2) are shown in Fig. 6. It can be seen that the improved method yields more
accurate results than the standard method. It should be noted that in Fig. 6 the average error for the
improved method is not zero although it is very close to zero. The reason is that for certain points in
PS2, the identified global gouging points are not the same as those found by using PS1. In other words,

for certain points in PS2, say
i

S , the PS1 global gouging point is not in the local neighborhood of PS2

Voronoi neighbors of
i

S . This also leads to the RMS values in Fig. 6 not being zero.
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Fig. 6: Comparison of standard and improved method in approximation accuracy.

With the accuracy improvement, the benefit in computational time savings for the improved method
becomes evident. Fig. 7 shows the computational time comparison for calculating the medial axis
spheres with almost the same accuracy (as shown in Fig. 6). The computational time of the improved
method for the 75% reduced data set is about 13% of the computational time of the standard method
for the original data set.
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Fig. 7: Comparison of standard and improved method in computational time with the same accuracy.
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5.2 Surfaces of Unknown Geometry
If the points are measured data points from a physical object surface with an unknown mathematical
representation, the method developed by OuYang and Feng [14] can be used to establish the local
triangular mesh surface for each point and estimate its normal vector. Thus, the method presented in
Section 3 can still be used to approximate the medial axis sphere at every point. The accuracy of a
point’s approximated medial axis sphere can be improved by decreasing the size of the approximated
sphere to avoid intersecting the local triangular mesh facets of any of its global Voronoi neighbors (not
including the local Voronoi neighbors). This accuracy improvement method can be demonstrated
clearly for 2D cases. In the 2D space, the approximated medial axis corresponds to the trajectory of
the center of the medial axis circle at each point. Fig. 8 shows the curve reconstruction result for the
Sharp Star point cloud data set [7]. Each point’s normal vector was estimated as the normal vector on
the fitted quadric curve of the point and its two immediate (connected) neighbors. The medial axis
circle at each point was first generated by using the standard method presented in Section 3, and then
it was reduced along its estimated normal vector to avoid intersecting the line segments incident to its
global Voronoi neighbors.

Delaunay
Pole Standard

Method

Improved
Method

S0

Fig. 8: Medial axis approximation for the Sharp Star data set.

Fig. 9 illustrates the improved accuracy for the point
0

S in Fig. 8, for which the standard method offers

the worst approximation accuracy. In this figure,
1

S and
4

S are the local Voronoi neighbors of
0

S ,
2

S

and
3

S are two global Voronoi neighbors of
0

S and
1

P ,
2

P and
3

P are three related Voronoi vertices of

0
S . Note that

2
P is the Delaunay pole sphere center for

0
S . The medial axis circle approximated by

the standard method presented in Section 3 passes through
0

S and
3

S , and its center lies on the

approximated normal vector. It can be seen from Fig. 9 that this circle intersects the segment
2 3

S S ,

which is incident to both
2

S and
3

S , two global Voronoi neighbors of
0

S . This circle is thus reduced

along the estimated normal vector to avoid intersecting the line segment
2 3

S S to establish the resulting

improved medial axis circle. It should be emphasized that the improved medial axis circle may

intersect the line segments
0 1

S S and
0 4

S S , which are incident to the local Voronoi neighbors of
0

S , but

not incident to any global Voronoi neighbor of
0

S . In Fig. 8, the estimated medial axis circle centers



Computer-Aided Design & Applications, 6(6), 2009, 839-849

848

obtained via the proposed standard and improved method are shown. It can be seen that all Delaunay
poles and approximated medial axis circle centers by the standard method as well as their improved
solutions are all close to the theoretical medial axis. However, the deviations for the Delaunay poles
are apparently much larger than those for the approximated medial axis circle centers, with the center
positions established by the improved method being the most accurate.

S0

S1

S2

S3

S4

P1

P2

P3

Approximated
Normal Vector

Improved
Medial Axis Circle

Medial Axis Circle
via Standard Method

Fig. 9: Improved medial axis circle approximation for
0

S in Fig. 8.

6. CONCLUSIONS
Optimal cutting tool selection is an active research subject in computer-aided machining process
planning. A larger cutter leads to many machining benefits such as higher machining rigidity and feed
rate than a smaller cutter. The major constraint is geometry-oriented due to the possible tool gouging
or interference with the desired part surface with its increased size. Presented in this work are
effective methods for the approximation of medial axis spheres for discrete coordinate points, which
are either sampled from surfaces of known geometry or measured from surfaces of unknown
geometry. Since the medial axis sphere at each point is a global geometric property and equivalent to
the determination of the associated gouge-free ball-end mill, the proposed methods can be directly
applied to selecting the optimal size of ball-end mills in the three-axis machining of free-form surface
geometry. A more complicated tool access problem arises in five-axis free-form surface machining
where the tool would be subject to interference with the work part at the tool shank due to the
changing orientation of the tool. Determining the largest possible tool size in five-axis machining is
much more challenging than in three-axis machining and needs to consider the tool path trajectory as
well as the tool orientation at each cutter contact point. The long-term objective is to fully implement
the automatic tool selection module within a futuristic virtual machining simulation system.

The Voronoi diagram and Delaunay triangulation have been used to establish the global geometric
relationships among the data points and to create the Delaunay pole sphere at each data point on the
machining side of the surface. Centers of the Delaunay pole spheres were known to converge to the
theoretical medial axis with increasing point density. If the sampled surfaces are of known geometry,
approximated medial axis spheres with superior accuracy for each sampled point can be obtained
efficiently by employing the point’s normal vector and the local surface patches around its Voronoi
neighbors. If the sampled surfaces are of unknown geometry, approximated medial axis spheres with
improved accuracy for each data point can also be obtained by using the estimated normal vector at
the point and the associated local triangular meshes of its global Voronoi neighbors. The correlation
between the approximation accuracy and the sampled point density is, however, not explicitly known.
This is an unresolved research subject and would be pursued actively.
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