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ABSTRACT

Recently we proposed a periodic surface model to assist geometric construction in
computer-aided nano-design. This implicit surface model helps create super-porous
nano structures parametrically and support crystal packing. In this paper, we study
construction methods of Minkowski sums for periodic surfaces. A numerical
approximation approach based on the Chebyshev polynomials is developed and can be
applied in the formulations of surface normal direction matching and volume
translations.
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1. INTRODUCTION
With the observation that hyperbolic surfaces exist in nature ubiquitously and periodic features are
common in condensed materials, we recently proposed an implicit surface modeling approach,
periodic surface (PS), to represent geometric structures at nano scales [1,2]. Periodic surfaces are either
loci or foci. Loci surfaces are fictional continuous surfaces that pass through discrete particles in 3D
space such as in crystals, whereas foci surfaces can be looked as isosurfaces of potential or density in
which discrete particles are enclosed. The surface model allows for parametric construction from
atomic scale to meso scale. Reconstruction of loci surfaces from crystals [3] and complexity control [4]
were also studied. In this paper, we study the Minkowski sum of PS models. Minkowski sums have
been widely applied in computer-aided design (CAD), computer-aided manufacturing (CAM), robotic
motion and assembly planning, computer graphics, etc. [5,6].

Let  and  be two objects in Euclidean space (  n and  n ). The Minkowski sum of  and

 is generally defined as         : | anda b a b . Minkowski sum is commutative. The sum

and union are distributive. However, the sum and intersection are subdistributive. That is,
                         ,                          . The

Minkowski sum of two convex sets is convex. In a special case, when one of the two objects is a
sphere, the Minkowski sum is an offset operation.

Minkowski sum is also closely related to convolution of curves or surfaces. If the boundaries of  and
 are denoted as  and  respectively, the convolution operator * is defined as

             : | , , a ba b a b N N , where aN and bN are the two parallel normal vectors of the

boundary surfaces  and  at positions a and b respectively. The problem of computing the

Minkowski sum boundary     can be transformed to the problem of computing the convolution

between  and  because of           . That is, the boundary of the Minkowski sum of
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two regions is a subset of the convolution of the two boundaries of the two regions. The boundary of
Minkowski sum thus can be derived from the convolution by identifying and removing those segments
that lie in the interior of the set.

In computer-aided nano-design, interactive shape manipulation and simulation also require the
operation of Minkowski sum. For instance, it can be used to append detailed structures, where small-
scale features are added on basic crystal features [7,8]. It is also a very useful tool to study imaging,
metrology, path planning in assembly, etc. In this paper, we study Minkowski sums of PS models. A
computational approach to generate surfaces based on Chebyshev polynomials is developed, which is
applied to surface normal match in convolutions and volume translation in Minkowski sums. In the
remainder of the paper, Section 2 gives a brief review of related work in Minkowski sum and
convolution of parametric and implicit curves and surfaces. Section 3 gives an overview of the PS
model. Section 4 describes the formulation of surface normal matching of periodic surfaces. Section 5
presents the volume translation formulation of Minkowski sums for PS models.

2. SURFACE CONVOLUTION, MINKOWSKI SUMS AND OFFSET
Minkowski sum has been studied extensively in the fields of CAD/CAM and robotics, particularly for
geometries with polyhedral representations. Here we only give a brief overview of recent work on
parametric and implicit surface models. For two parametric surfaces  ,u va and  ,s tb , a

reparameterization process can be conducted to find the convolution based on the relationship of

parallel normal vectors. If a mapping       , , , ,s t u s t v s t which maintains the parallelism can be

found, then the convolution       u s t v s t s ta b, , , , can be constructed by tracing the correspondence

between parameters. For some special curves and surfaces, closed-form rational convolutions are
available. For instance, the closed-form reparameterization for convolutions between ruled surfaces
can be derived [9]. Similarly, revolution surfaces with monotone slope profile curves have explicit
reparameterization and can be computed efficiently [10]. Rational convolution surfaces can be
obtained between linear normal surfaces and generic rational surfaces [11,12,13].

Offset is a special case of Minkowski sum. The offset of a surface  ,u va at a distance d is

      , , ,d u v u v d u va a n where  ,u vn is the unit normal vector of a . The sufficient and necessary

condition for  ,d u va to be rational is that  ,u vn is rational [14,15]. Rational offsets are observed in

some special surfaces. For instance, the offsets of Pythagorean-Hodograph curves are rational [16,17].
The offsets of parabola [18] and sinusoidal spiral p-Bézier curves [19] also have rational forms. In
generalized offsets, the distance is no longer a constant and may vary at different locations, which has
various applications. For example, the variable radius offset of cubic Bézier curves with Bézier
interpolations of radius can be applied in brush stroke design [20]. Equivolumetric offset with radius
as a function of curvature can be applied to achieve cutting with a constant material removal rate [21].

For more general curves and surfaces, different constructing algorithms for Minkowski sums of
parametric curves or surfaces have been developed. By the aid of the implicit relation between tangent
directions, Farouki et al. [22] segmented parametric curves by inflection points and cusps. The
Minkowski sum is constructed by combinations of segments. Lávička and Bastl [23] used Gröbner bases
in reparameterization for rational convolutions. Various algorithms for offsets of parametric surfaces
were also developed. Lee et al. [24] generated offset curves by approximating the rolling circle with
quadratic Bézier curve segments. Piegl and Tiller [25] computed offsets of non-uniform rational B-
spline curves and surfaces with the steps of sampling, offset, interpolation, and knot removal.

Minkowski sums of regions defined by implicit curves or surfaces have also been studied. In general,
the construction of Minkowski sum can be looked as a projection process from a hyperspace to
Euclidean space. Since the Minkowski sum between two regions  n and  n can be generated
by sweeping or translating  with its origin kept in region  , a family of  ’s is created as a superset
in the hyperspace  n n with the Euclidean and translation subspaces. If the union of the superset is
projected back to the Euclidean space, the generated envelope is the Minkowski sum. Bajaj and Kim
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[26] developed generic algorithms to compute convolution for both parametric and implicit curves
based on the normal direction constraint. The projection was then achieved by eliminating parameters
or variables with resultants. Kaul and Farouki [27] constructed the Minkowski sum between an implicit

curve   0,f x y and a parametric curve     ,X t Y t . The projection was done by finding the resultant

of   , 0f x y and         , / 0f x X t y Y t t so that the parameter t is removed. Pasko et al. [28]

formulated Minkowski sums between implicit surfaces defined by R-functions [29,30]. The projection
was achieved by satisfying the necessary condition of maximum projections globally.

In this paper, we develop two Minkowski sum construction methods for the PS model, which was
recently proposed to represent nano-scale geometries, as introduced in Section 3.

3. PERIODIC SURFACE
The periodic surface model has the implicit form and is defined as

     
 

  
1 1

cos 2 ( ) 0
L M

T
lm l m

l m

r p r (3.1)

where l is the scale parameter,  
T

, , ,m m m m ma b c dp is a basis vector, such as one of



             
            

            
            
            
            

               
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           
                       
           

            



0 1 1 11

0 1 1 1 1

1 1 1 1 1

1 1 1 1 1

(3.2)

which represents a basis plane in the Euclidean space 3 ,  
T

, , ,x y z wr is the location vector with

homogeneous coordinates, and lm is the periodic moment. We assume  1w if not explicitly specified.

We call  T
m m md p r p corresponding to the basis plane mp as the projective distance. The degree of

  r in Eqn.(3.1) is defined as the number of unique vectors in the basis vector set  mp . The scale of

  r is defined as the number of unique scale parameters in  l . We can assume scale parameters are

natural numbers (   ).

Fig. 1 lists some examples of periodic surface models. Triply periodic minimal surfaces, such as P-, D-,
G-, and I-WP cubic morphologies that are frequently referred to in chemistry and polymer literature,
can be adequately approximated. Besides the cubic phase, other mesophase structures such as
spherical micelles, lamellar, rod-like hexagonal phases can also be modeled.

In this paper, we study the Minkowski sums of PS models. Construction methods are developed based
on Chebyshev polynomial approximations.

4. MATCHING SURFACE NORMAL DIRECTIONS
In the first formulation, we construct convolution surfaces by matching normal directions. The
numerical algorithm is based on polynomial approximations.

4.1 Surface Convolution Formulation
In general, we would like to find a convolution surface  between 1 and 2 , i.e.,    1 2 , where

     
 

  
1 1

1 1 1 1

1 1

(1) (1) (1)T
1 1 1

1 1

cos 2 ( ) 0
L M

l m l m

l m

r p r (4.1)
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Fig. 1: Periodic surface models of cubic phase and mesophase structures.

     
 

  
2 2

2 2 2 2

2 2

(2) (2) (2)T
2 2 2

1 1

cos 2 ( ) 0
L M

l m l m

l m

r p r (4.2)

A surface normal matching process is required. That is, for any point  3 1r on the surface   r ,

there exists a 1r such that the surface normal vectors at the positions r and  2 1r r r with respect to

surfaces  1 1 0 r and    2 1 0r r have the same direction. For the periodic surface in Eqn.(3.1), the

surface normal vector is

       
 

 
     

 
  T

1 1

2 sin 2 ( )
M L

l lm l m m

m l

r p r p (4.3)

The normal vector is a linear combination of periodic basis vectors with coefficients that are
dependent on the position r . If considered in a Gauss map, as illustrated in Fig. 2(a), a normal vector

represented by a point on the unit sphere 2 is a combination of basis vectors mp 's. In order to ensure

a match of normal vectors, one of the two surfaces 1 and 2 should have at least three non-coplanar

basis vectors. As illustrated in Fig. 2(b), to find a match of any normal vector 2( )q of 2 , we need at

least three basis vectors (1)
1p , (1)

2p , and (1)
3p of 1 where    (1) (1) (1)

1 2 3 0p p p such that 2( )q is a linear

combination of (1)
1p , (1)

2p , and (1)
3p .

The two constraints

       1 1 2 1 0r r r (4.4)

       1 1 2 1 0r r r (4.5)

need to be satisfied to match normal directions. The convolution surface   0 r then can be derived

by removing 1r in the implicit surface
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(a) (b)
Fig. 2: Gauss map of periodic surfaces.

      
 

    
2 2

2 2 2 2

2 2

(2) (2) (2)T
2 1 1

1 1

cos 2 ( ) 0
L M

l m l m

l m

r r p r r

and rewriting it with respect to r based on the relations in Eqn.(4.4) and Eqn.(4.5).

To simplify the notation, let

     


 
1

1 1 1 1 1 1

1

(1) (1) (1) (1) (1)T
1

1

sin 2
L

m l l m l m

l

p r

      


  
2

2 2 2 2 2 2

2

(2) (2) (2) (2) (2)T
1

1

sin 2
L

m l l m l m

l

p r r

The constraint of Eqn.(4.4) becomes

 
 

  
1 2

1 1 2 2

1 2

(1) (1) (2) (2)

1 1

0
M M

m m m m

m m

p p (4.6)

With    1 1 1 1 1

T(1) (1) (1) (1) (1), , ,m m m m ma b c dp and    2 2 2 2 2

T(2) (2) (2) (2) (2), , ,m m m m ma b c dp , Eqn.(4.6) is rewritten as

   

   

   

  

       
        
       
       

     
     
     
     

   

  

1 2 1 2

1 1 2 2 1 1 2 2

1 2 1 2

1 2 1

1 1 2 2 1 1 2

1 2 1

(1) (1) (2) (2) (1) (1) (2) (2)

1 1 1 1

(1) (1) (2) (2) (1) (1) (2)

1 1 1

0
M M M M

m m m m m m m m

m m m m

M M M

m m m m m m m

m m m

b c c b

a c c a

   



   





  

  
   


       
        
              



   

2

2

2

1 2 1 2

1 1 2 2 1 1 2 2

1 2 1 2

(2)

1

(1) (1) (2) (2) (1) (1) (2) (2)

1 1 1 1

0

0

M

m

m

M M M M

m m m m m m m m

m m m m

a b b a

Equivalently,

 

 

 

 

 

 

 

 

 


  




 


  


 

 

 

1 2

1 2 1 2 2 1

1 2

1 2

1 2 1 2 2 1

1 2

1 2

1 2 1 2 2 1

1 2

(1) (2) (1) (2) (2) (1)

1 1

(1) (2) (1) (2) (2) (1)

1 1

(1) (2) (1) (2) (2) (1)

1 1

0

0

0

M M

m m m m m m

m m

M M

m m m m m m

m m

M M

m m m m m m

m m

b c b c

a c a c

a b a b

Substituting 
1

(1)
m and 

2

(2)
m with their original forms, we need to derive the relationship between r and

1r from
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        

 

     

    

   

     
 



 
1 2 1 2

1 2 2 1 1 2 1 1 2 2 1 1 2 2

1 2 1 2

1 2 2 1 1 2 1 1 2 2 1 1

(1) (2) (2) (1) (1) (2) (1) (2) (1) (1)T (2) (2)T
1 1

1 1 1 1

(1) (2) (2) (1) (1) (2) (1) (2) (1) (1

sin 2 sin 2 0

sin 2

M M L L

m m m m l l l m l m l m l m

m m l l

m m m m l l l m l m l m

b c b c

a c a c

p r p r r

p      

        



     

   

   





       

     
 



 

 

1 2 1 2

2 2

1 2 1 2

1 2 1 2

1 2 2 1 1 2 1 1 2 2 1 1 2 2

1 2 1 2

)T (2) (2)T
1 1

1 1 1 1

(1) (2) (2) (1) (1) (2) (1) (2) (1) (1)T (2) (2)T
1 1

1 1 1 1

sin 2 0

sin 2 sin 2 0

M M L L

l m

m m l l

M M L L

m m m m l l l m l m l m l m

m m l l

a b a b

r p r r

p r p r r






(4.7)

A degenerated situation occurs when  
1 2 2 1

(1) (2) (2) (1) 0m m m mb c b c ,  
1 2 2 1

(1) (2) (2) (1) 0m m m ma c a c , and  
1 2 2 1

(1) (2) (2) (1) 0m m m ma b a b in

Eqn.(4.7) for all  1 11, ,m M and  2 21, ,m M . This happens when, for example, (1) 
1 2

(1) (2)
m ma a ,


1 2

(1) (2)
m mb b , and 

1 2

(1) (2)
m mc c for some    (  0 ) and any 1m and 2m ; (2)  

1 1 1

(1) (1) (1)
m m ma b c and

 
2 2 2

(2) (2) (2)
m m ma b c for all 1m and 2m ; (3)   

1 1 1

(1) (1) (1)
m m ma b c and   

2 2 2

(2) (2) (2)
m m ma b c for all 1m and 2m ; and so on.

In these degenerated situations, Eqn.(4.7) has no solutions. Convolution surfaces can only be found for
some special cases. For instance,

 When  1 2 1M M , lamellar surfaces      


   1

1 1
1

(1) (1) (1)T
1 1 11

cos 2 ( ) 0
L

l ll
r p r and

     


   2

2 2
2

(2) (2) (2)T
2 2 21

cos 2 ( ) 0
L

l ll
r p r have only one basis vector (1)p and (2)p respectively,

there is no convolution surface    1 2 unless  (1) (2) 0p p . The convolution surface is a

lamellar surface.

 When 1 1M and 2 2M , a lamellar surface 1 0  has one basis vector 1( )p , and a prism alike

surface 2 0  has two basis vectors (2)
1p and (2)

2p . The necessary condition that a convolution

surface exists is  (1) (2) (2)
1 2 0  p p p . The convolution surface is a lamellar surface.

Remark The convolution surface between a lamellar surface and another PS surface is always a
lamellar surface, if there exists one.

The convolution associated with lamellar surfaces is the simplest case, which is also of special interest
due to its usage in feature based crystal constructions [7,8]. The convolution surface between a
lamellar surface and another PS surface can be constructed by searching the points on the PS surface
that has the same normal direction as the lamellar surface.

Theoretically, solving Eqn.(4.7), we can derive an algebraic relation  1 r rρ . Then   2 0  r rρ is

the Minkowski sum between 1 and 2 . However, this is not practical due to the computational

complexity. A closed-form nonlinear relationship ρ is not easy to derive. Therefore, we develop a local

approximation method based on the Chebyshev polynomials so that the resultant methods in symbolic

computation can be applied in deriving   2 0  r rρ . This is described in Section 4.2.

4.2 Polynomial Approximation
With the Chebyshev polynomials of the first kind

     1cos cos 1,1jT x j x x   (4.8)

the expansion of a locally continuous function  f x within the domain  1,1x   is

     0
1

1
1,1

2
j j

j

f x c c T x x




    (4.9)

where
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   

1

2
1

2 1
0,1,2,

1
j jc f x T x dx j

x


 


  (4.10)

The Chebyshev polynomials also have a recursive relation 1 12n n nT xT T   for ease of computation,

where 0 1T  and 1T x , and an identity relation  /2i j i ji jT T T T    .

We consider the Minkowski sum of  1 1 0 r and  2 2 0 r within two domains 1 and 2 . The

Chebyshev polynomials can be used to approximate 2 and Eqn.(4.7) within the domains. Notice that

translation and scaling are required in order to map the spatial domain to the Chebyshev parameter
range of  1,1 . Then the resultant from the four equations is the convolution envelope surface. We

illustrate the computation by the following example of surface offset.

Example 1 Given a P surface        1 1 1 1 1 1 1, , cos 2 cos 2 cos 2 0x y z x y z       , we would like to find its

offset surface with a distance ratio r that is proportional to the local surface normal vector. The

surface normal vector of 1 at  1 1 1, ,x y z is      
T

1 1 1 12 sin 2 , 2 sin 2 , 2 sin 2x y z             . We need to

find relations  1 1 , ,x x y z ,  1 2 , ,y x y z , and  1 3 , ,z x y z from

 

 

 

1 1

1 1

1 1

2 sin 2

2 sin 2

2 sin 2

x x r x

y y r y

z z r z

 

 

 

   



  


  

(4.11)

so that  , , 0x y z  can be found by substituting 1x , 1y , and 1z in  1 1 1 1, , 0x y z  with 1 , 2 , and 3

respectively.

Let  1 1cos 2X x ,  1 1cos 2Y y , and  1 1cos 2Z z . Eqn.(4.11) becomes

   

   

   

1 2
1 1 1 1 1

1 2
2 1 2 1 1

1 2
3 1 3 1 1

1/2 cos 2 1 0

1/2 cos 2 1 0

1/2 cos 2 1 0

f X C X r X x

f Y C Y r Y y

f Z C Z r Z z

 

 

 







       



      

       


The constants  1,2,3jC j  and  signs are domain-dependent. For instance, considering a subdomain

where 10 0.25x  , 10 0.25y  , and 10 0.25z  , we have 1 2 3 0C C C   and

   1 2
1 1 1 11/2 cos 2 1f X X r X x      , because  1sin 2 0x  . 2f and 3f are similar. When 0.01r  , the

Chebyshev polynomial approximations of 1f , 2f and 3f with degree of three in this subdomain are

 

 

 

(3) 3 2
1 1 1 1 1

(3) 3 2
2 1 1 1 1

(3) 3 2
3 1 1 1 1

0.0245896 0.0312159 0.159148 0.187168

0.0245896 0.0312159 0.159148 0.187168

0.0245896 0.0312159 0.159148 0.187168

f X X X X x

f Y Y Y Y y

f Z Z Z Z z

      



     


     

(4.12)

Fig. 3 compares the function  1 21/2 cos 2 1X r X     with the polynomial approximation

3 20.0245896 0.0312159 0.159148 0.187168X X X    within the subdomain  0,1X  .

From the three equations from Eqn.(4.12) along with the original surface 1 1 1 1 0X Y Z     , we

eliminate 1X , 1Y , and 1Z by recursively computing the resultants from the determinants of Sylvester

matrices. The final resultant  , , 0x y z  contains 184 monomials. Fig. 4 shows the polynomial

approximations in four subdomains, where the red are the original surfaces and the yellow are the
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offsets. In Fig. 5, the polynomial approximations in the subdomain 10 0.5x  , 10 0.5y  , and

10 0.5z  with degrees of three and four are compared.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

X

1/2 acos(X)-0.01 2 (1-X2)1/2

poly approx

real curve

Fig. 3: Local approximation by Chebyshev polynomials in Example 1.

(a) (b) (c) (d)
Fig. 4: P surface offset with Chebyshev polynomial approximations in four subdomains in Example 1.
(a)      0,0.25 , 0,0.25 , 0,0.25x y z   ; (b)      0,0.25 , 0.25,0.5 , 0,0.25x y z   ; (c)

     0.25,0.5 , 0,0.25 , 0,0.25x y z   ; (d)      0.25,0.5 , 0.25,0.5 , 0,0.25x y z   .

(a) (b)
Fig. 5: Polynomial approximations with degrees of three and four. (a)

3 2
1 1 1-0.0271349 0.0325528 - 0.159319 0.187171 -X X X x  ; (b)

4 3 2
1 1 10.00828778 0.0188471 0.0299628 0.159060 0.187167X X X X x      .

Notice that the approximation error can be reduced by either increasing the degrees of polynomials or
subdividing domains. It is well known that a good local approximation of a continuous function by
polynomials can always be obtained by increasing the degree, stated as follows.
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Theorem 1 (Weierstrass Theorem) For any given  f x that is continuous in the domain  ,x a b and

for any given 0  , there exists a polynomial np for some sufficiently large n such that nf p 


 

where  denotes L norm.

The above local polynomial approximation can be extended to the criteria of pL norms for any 1p  ,

since pL norms are bounded by L norm. In general,
1 2p pz C z with 1 21 p p    and a finite

constant C for any z in a
2pL subspace. Chebyshev polynomials give the best L or minimax

approximations of continuous functions based on the criterion of L norm due to the following

alternation theorem.

Theorem 2 (Alternation Theorem [31, Theorem 3.4]) For any continuous  f x in the domain  ,x a b ,

the sufficient and necessary condition that a unique minimax polynomial approximation  np x with

degree of n exists is that there are at least 2n  points  ,ix a b where      n nx f x p x   attains its

maximum absolute value, i.e.
 

    
,

max n n i
x a b

x x 


 for  1, , 2i n  , but with alternating  signs.

The Chebyshev polynomial  nT x has 1n  extrema ( 1 or 1 ) at  cos /ix i n where  0,1, ,i n  .

Therefore, Chebyshev polynomials give best approximations of continuous functions in terms of L

norm. In addition, with the inner product between f and g defined as

   

1

2
1

1
,

1
f g f x g x dx

x





which is used in Eqn.(4.10),  nT x ’s are orthogonal polynomials, with the corresponding 2L norm as

2
,f f f . The approximation error is

   
2 2

2
1 1 1

, ,n n n j j j j j

j n j n j n

f p f p c T x c T x c
  

     

      

The convergence rate depends on the smoothness of  f x , asserted as follows.

Lemma 3 [3]. If  f x is d times continuously differentiable, the coefficient nc in the Chebyshev

approximation of  f x as in Eqn.(4.10) converges at a rate of ( )dO n .

The PS model is infinitely differentiable. Therefore the Chebyshev approximation of PS models has the

advantage of fast convergence. In Example 1,  1cos X and 21 X are also infinitely differentiable in

domain  1,1X   . Fig. 6 illustrates the convergence of Chebyshev polynomial approximations.

(a) (b) (c)
Fig. 6: Convergence of polynomial approximations (in blue) towards P surface (in red) in domain

     0.5,0 , 0.5,0 , 0.5,0x y z      . (a) degree of 1; (b) degree of 2; (c) degree of 3.
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5. VOLUME TRANSLATION
We can construct the Minkowski sum based on the volumetric information of PS models. In the second
formulation, the Minkowski sum is found by translating volumes and projecting from the hyperspace
to the Euclidean space.

5.1 Volume Translation Formulation

Consider two domains  1 1 0 r and  2 2 0 r in Euclidean space 3 . The Minkowski sum   0 r

can be regarded as the union of translated 2 ’s with the translation vectors in 1 . If considered a six-

dimensional hyperspace 3 3  , the intersection between  1 1 1, r r r and  2 1 1, r r r , where

1 2 r r r , can be projected back to 3D Euclidean space. The resulted projection in Euclidean space is

  0 r . The intersection between  1 1 1, 0  r r r and  2 1 1, 0  r r r is

     1 1 1 1 2 1, max , 0       r r r r r r .

The direct computation process is straightforward. In a specified domain 1 , the union of the

translated 2 with 1 is recorded if the intersection between the two is not empty. The envelope of all

unions will be the Minkowski sum. The construction algorithm is listed in Fig. 7. Some examples are
shown in Fig. 8.

0k  ;
     1
k r r ;

FOR all 1 1r 

1k k  ;

IF there is a 1r  such that     1 2 1max , 0   r r r

THEN              1
1 2 1min min , ,k k     r r r r r ;

END IF
END FOR

Return    
k r ;

Fig. 7: Volume translation algorithm.

(a) (b) (c) (d)
Fig. 8: Some examples of Minkowski sums constructed based on volume translations. (a) P surface and
Micelle      8 cos 2 cos 2 cos 2 0x y z      in domain      1,0 , 1,0 , 1,0x y z      (grid size:

25×25×25); (b) P surface and Micelle in domain      0.5,0 , 0.5,0 , 0.5,0x y z      (grid size: 25×25×25);

(c) G surface and Sphere 2 2 2 0.0025 0x y z    in domain      1,0 , 1,0 , 1,0x y z      (grid size:

50×50×50); (d) G surface and Sphere in domain      0.5,0 , 0.5,0 , 0.5,0x y z      (grid size: 50×50×50).
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The volume translation can also be formulated as an optimization problem. Since we try to find the

union of the moving region  2 1 0  r r within the region  1 1 0 r , the Minkowski sum   0 r is

equivalent to the optimal solution of the minimization problem

    
1 1

1 1 2 1max ,MIN  


  r
r r r


(5.1)

Because the objective function in Eqn.(5.1) is not 1C continuous due to the max function, we divide it
into two equivalent sub problems as

  

   
1 1 1

1 1 1 1
, ,

1 1 1 1 2 1 1 1

, ,

: , , , ,

x y z
MIN x y z

subject to x y z x x y y z z



    
(5.2)

and

  

   
1 1 1

2 1 1 1
, ,

1 1 1 1 2 1 1 1

, ,

: , , , ,

x y z
MIN x x y y z z

subject to x y z x x y y z z



 

  

   
(5.3)

The respective necessary conditions of the optimality are

 

 

 

1 2 1
1

1 1 1

1 2 1
2

1 1 1

1 2 1
3

1 1 1

1 2 1

2 2 1

3 2 1

0

0

0

0

0

0

x x x

y y y

z z z

  


  


  


  

  

  

   
   

   

   
   

   

   
   

   

 

 

 

(5.4)

and

 

 

 

2 1 2
1

1 1 1

2 1 2
2

1 1 1

2 1 2
3

1 1 1

1 1 2

2 1 2

3 1 2

' 0

' 0

' 0

' 0

' 0

' 0

x x x

y y y

z z z

  


  


  


  

  

  

   
   

   

   
   

   

   
   

   

 

 

 

(5.5)

Therefore, the resultant found from either Eqn.(5.4) or Eqn.(5.5) along with  2 1 1 1, , 0x x y y z z     is

the Minkowski sum of two PS models for some given subdomains.

5.2 Polynomial Approximations
To compute resultant, we also apply polynomial approximations. Similar to Section 4.2,
approximations can be achieved based on the Chebyshev polynomials as in Eqn.(4.8). Here, we only
approximate 1 and 2 , as in Eqn.(5.4) and Eqn.(5.5). The following example is used to illustrate the

process.

Example 2 We would like to construct the Minkowski sum between a P surface

       1 1 1 1 1 1 1, , cos 2 cos 2 cos 2 0x y z x y z       and a spherical micelle
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       2 2 2 2 2 2 2, , 4 3cos 2 3cos 2 3cos 2 0x y z x y z        within the subdomains

     1 1 10.5,0 , 0.5,0 , 0.5,0x y z      and      2 2 20.5,0 , 0.5,0 , 0.5,0x y z      . The two surfaces in the

subdomain are shown in Fig. 6, where the P surface is in red color, and the spherical micelle is in blue.

We construct local linear approximations of 1 and 2 based on Chebyshev polynomials. They are

1 1 13.400945 4.534593 4.534593 4.534593 0x y z    and

1 1 1-6.202834 - 13.603778( - ) - 13.603778( - ) - 13.603778( - ) 0x x y y z z  respectively. The Minkowski sum of the

two regions are constructed based on Eqn.(5.4). Eliminating the Lagrange multipliers 1 , 2 , and 3 we

derive the resultant, which is 337.342041 279.728110 279.728110 279.728110 0x y z    , as shown in Fig. 9

in yellow.

Fig. 9: The P surface (red), spherical micelle surface (blue), and approximated Minkowski sum (yellow)
in Example 2

The linear approximation in the above example is easy to compute. However, if the degrees of
polynomials increase, the computation will become much more expensive. In this case, a direct
computation of translational volumes is more favorable.

6. SUMMARY
In this paper, we study Minkowski sum construction methods for the recently developed PS model. A
numerical approximation approach based on Chebyshev polynomials is formulated, which can be
applied to both matching surface normal directions and volume translations. The polynomials provide
good approximations of PS models. Symbolic resultant computation then can be applied to eliminate
variables, and implicit forms can be derived. However, the major issue of this approach is the cost of
symbolic computation when the degrees of polynomials increase. This is even more significant
compared to the direct computation of volume translation. Future study may include other
construction approaches such as domain subdivision and sample based surface reconstruction so that
accuracy can be improved without increasing degrees.
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