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ABSTRACT

This paper presents an efficient and stable method for drawing compound-rhythm log-
aesthetic curves. Compound-rhythm curves are curves whose logarithmic curvature
graphs are represented by V-type or upside down V-type segments. We show that, once
the continuity condition is derived, compound rhythm curves can be efficiently
generated in a similar manner to generating monotonic rhythm curves. We also
present a method for drawing compound-rhythm curves by specifying two endpoints,
their tangential directions, 0 and 1 (which are the slopes of logarithmic curvature

graphs) and the ratio r of the change of the tangential angle of the curve 0 to the

change of the tangential angle of the whole curve.
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1. INTRODUCTION
For the generation of aesthetic surfaces, the generation of aesthetic curves themselves is very
important. Log-aesthetic curves [5,8,10,11,13] are curves based on Harada’s quantitative analysis of
many aesthetic curves in artificial and the natural objects. Harada found that many aesthetic curves
are curves whose logarithmic curvature graphs (LCGs) are almost linear. When Harada proposed the
curves with linear LCGs, the curves include monotonic-rhythm curves and compound-rhythm curves
[5,13]. A monotonic-rhythm curve is a curve whose LCG is represented by a single line segment. A
compound-rhythm curve is a curve whose LCG is represented by two connected line segments, which
are V-type or upside down V-type. Harada analyzed the characteristic lines of automobiles and he
found that many of such curves are compound-rhythm curves [5]. In the previous work [10], only the
generation method for monotonic-rhythm curves is clarified.

In this paper, we clarify an efficient and stable method for drawing compound-rhythm log-aesthetic
curves. The contributions of this paper are the following:

(1) We show that a compound-rhythm curve can be generated by one dimensional search. We show
that, once the continuity condition of a compound-rhythm curve is derived, we can efficiently
generate compound-rhythm curves in a similar manner to monotonic-rhythm curves.

(2) We present a method for drawing a compound-rhythm curve by specifying two endpoints, their
tangents, the slopes of the LCG 0 and 1 of each curve segment in the compound-rhythm curve,

and the ratio r of the change of the tangential angle of the curve 0 to the change of the

tangential angle of the whole curve.
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The rest of the paper is organized as follows. Section 2 reviews relevant literature and log-aesthetic
curves. In Section 3, we derive the continuity condition of the LCG for generating compound-rhythm
curves. Section 4 presents a method for drawing compound-rhythm curves. Section 5 shows
examples of compound rhythm curves. Finally, in Section 6, conclusions and future work are
presented.

2. RELATED WORK AND LOG-AESTHETIC CURVES
This section reviews related work and briefly introduces log-aesthetic curves for the explanation of
generating compound-rhythm curves in Section 4. More details of log-aesthetic curves, which are
originally called aesthetic curves, can be found in [5,8,10,11,13].

In previous work, there is a lot of work for generating curves with monotonically varying curvature.
Some of them are [1-14]. Most of the work, however, is related to generating curves with
monotonically varying curvature and does not care much about the curvature variation. Log-aesthetic
curves are curves in which curvature variation can be controlled by one parameter .

A log-aesthetic curve is a curve whose LCG [5,8,12,13] is represented by a straight line whose slope is
 . Let s and  be the arc length and the radius of curvature, respectively. We assume that the

radius of curvature is monotonically increasing with respect to the arc length. Then the horizontal

axis of the LCG is log and the vertical axis is 



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






d

d
log

s
. The linearity of the LCG constrains that the

curvature is monotonically varying.  can also be considered as the type of the curves. Depending on

 , log-aesthetic curves include the Clothoid ( 1 ), Nielsen’s spiral ( 0 ), the logarithmic spiral

( 1 ), the circle involute ( 2 ) and the circle (  ). In other words, log-aesthetic curves can be

considered as the generalization of these curves. Log-aesthetic curves are originally proposed by
Harada et.al. [5,13]. Miura derived the general formula[8] and Yoshida and Saito clarified the overall
shapes and presented a method for drawing a curve segment like a quadratic Bézier curve when  is

specified [10]. Yoshida and Saito have also proposed quasi-log-aesthetic curves that approximate log-
aesthetic curves by rational cubic Bézier curves [11].

Fig. 1: Five fundamental types of log-aesthetic curves.

When Harada originally proposed log-aesthetic curves, it has 5 types of curves shown in Fig. 1. Harada
called a curve whose LCG is represented by a single segment, such as Fig. 1 (a), (b) or (c), a monotonic-
rhythm curve. A curve whose LCG is represented by two connected segments is called a compound-
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rhythm curve. In this paper, we present a method for generating compound-rhythm log-aesthetic
curves.

To generate compound rhythm curves, we consider the standard form of log-aesthetic curves that are
introduced in [10]. We briefly review the standard form of log-aesthetic curves. To make a log-
aesthetic curve to be in the standard form, we select a reference point of the curve; translate the
reference point to the origin; rotate the curve such that whose tangential direction becomes the
direction of positive x -axis at the reference point; and scale the curve such that the radius of

curvature at the reference point becomes 1 . The reference point can be any point on the curve whose
radius of curvature is not 0 nor  . Let the tangential angle and the slope of the straight line in the
LCG be  and  , respectively. Let i be the imaginary unit. The equation of a (monotonic-rhythm) log-

aesthetic curve  AEP [10] is given, on the complex plane, by
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Here,  is
d

ds
at the reference point. In other words, when 1 ,  can be considered as a parameter

that chooses the reference point. When 1 ,  is the parameter that changes the shape of the curve.

See [10] for details. Eqn. (2.1) is the equation of log-aesthetic curves formulated by the tangential
angle. We also have the equation of log-aesthetic curves formulated by the arc length [10]. The
relationship between the radius of curvature  and  is given by
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The relationship between  and the arc length s is given by
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In log-aesthetic curves,  , and s are related by Eqn. (2.2) and Eqn. (2.3). If one of  , and s is

decided, other two parameters are automatically computed using Eqn. (2.2) and Eqn. (2.3). Again, since
 changes from 0 to  ,  and s may have a upper or lower bound[10] depending on  . We show

the bounds in Tab. 1.

Tab. 1: The bounds of s and  depending on  .

In [10], Yoshida and Saito have proposed a method for drawing a monotonic-rhythm log-aesthetic
curve segment by specifying two endpoints and their tangents. We are given three points cba PPP ,, and

 . For drawing a log-aesthetic curve segment, we search for a triangle 210 PPP on the standard form


Lower bound Upper bound

1 -   1

1

1 - -

1   1

1
-

s

Lower bound Upper bound

0 -



1

0 - -

0



1
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that is similar to cba PPP by changing  in Eqn. (2. 1). If a similar triangle is found, the points on the

curve in the standard form is transformed under a similarity transformation such that 210 ,, PPP are

moved to cba PPP ,, . To stably compute the (nearby) point at 0 or  , we use two configurations

depending on  . See Fig. 2 for the two cases.

Fig. 2: Curve segments and their corresponding curve segments in the standard from.

3. The Continuity Condition of the Logarithmic Curvature Graph

This section derives the 0C continuity condition of the two segments in the LCG. In the next section,

we use this condition to generate compound rhythm curves. The continuity condition plays a key role
for generating compound-rhythm curves.

We consider a compound-rhythm log-aesthetic curve segment whose LCG is represented by two
segments. The slopes of the segments are 0 and 1 , respectively. See Fig. 3. In compound-rhythm

curves proposed by Harada, the signs of 0 and 1 are always different. See Fig. 1 (d) and (e).

However, we do not assume that the signs are different. Thus 0 and 1 can be arbitrary.

Fig. 3: Two connected segments in the LCG.
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curve respectively, the continuity of the LCG indicates that the curve should be 3G continuous.

The linearity of two segments in the LCG is represented by
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where 0c and 1c are constants. For the above two line segments to be 0C continuous,

P
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1100 loglog cc   (3.3)

and  at the connection point must be the same. By modifying Eqn. (3.3), we get

10

0

1

 

 
c

c e
e . (3.4)

Similar to [10], we set 0
0

ce and 1
1

ce . 0 and 1 have the same meaning as  in Section 2.

Then Eqn. (3.3) becomes
 01

01
  . (3.5)

Therefore, for the two segments to be 0C continuous in the LCG,  at the connection point of the two

curve segments must be the same and Eqn. (3.5) must be satisfied. Note that the continuity in the LCG

does not necessarily mean that the curve is 0C or 1G continuous. Suppose that there are two curve

segments whose LCG is continuous and 3G continuous. Translating and/or rotating one of the curve

segments does not change their LCG. LCG is only related to the second and the third derivatives of the
curves, which are related to the curvature and the derivative of curvature with respect to the arc length,
respectively.

For generating a compound-rhythm curve, the two curve segments in the compound rhythm curve

should be 2G continuous and Eqn. (3.5) must be satisfied. As will be explained in the next section, 2G

continuity can be easily achieved. Thus the continuity condition of the LCG reduces to Eqn. (3.5).

4. Generation of Compound Rhythm Curves
This section presents a method for drawing a compound-rhythm curve when the two endpoints, their
tangents, the slopes of the LCGs of the two curve segments 0 and 1 and the ratio r of the change

of the tangential angle of the curve 0 with respect to the change of the tangential angle of the curve

1 . The two endpoints and their tangents are specified by three points 10 ,aa and 2a like a quadratic

Bézier curve. See Fig. 4.

Fig. 4: Generation of a compound-rhythm curve.

Referring to Fig. 4, the change of tangential angle  of the whole curve is computed as the angle

formed by the vectors 01 aa  and 12 aa  . 0 and 1 are computed by    r0 and 01   ,

respectively.

Without loss of generality, we assume that 1201 aaaa  . If this inequality does not hold, we just

swap the coordinates of 0a and 2a . With this assumption, the radius of curvature monotonically

increases from 0a to 2a . The radius of curvature is the smallest at 0a and the largest at 2a .

Similar to a monotonic-rhythm curve, a compound-rhythm curve is generated by searching for the
similar triangle formed by a compound-rhythm curve on the standard form to the triangle formed by
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10 ,aa and 2a . If the similar triangle is found, the points on the compound-rhythm curve in the

standard form are transformed such that the vertices of the similar triangle are transformed to 10 ,aa

and 2a under a similarity transformation.

For monotonic-rhythm curves, we have used two configurations to stably compute a curve that have a
nearby point at 0 or  . When 1 , we have used the configuration shown in Fig.2 (a). When

1 , we have used the configuration shown in Fig. 2 (b). Due to the same reason as monotonic-

rhythm curves, we also use two configurations for drawing compound-rhythm curves depending on

0 .

We first consider the case of 10  . We do not assume anything about 1 . Thus 1 can be an

arbitrary value. Currently, we do not know the value of 0 . Since 0 must be between 0 and

 00 1

1

 
(derived from Tab. 1), we assume, for example,

 00
0

12

1

 
 . As will be explained shortly,

finding a compound-rhythm curve reduces finding an appropriate 0 . Since we know 0 , we can draw

an log-aesthetic curve of 0 using Eqn. (2.1) from 0 to 0 . Now in Fig. 5(a), the curve is drawn

from 0p to 2p . 1p is the intersection of tangent lines at 0p and 2p . Using Eqn. (2.2), we compute

the radius of curvature  at 0 . Now we can compute 1 using Eqn. (3.5). Using the computed 

and 1 guarantee that the second and third derivatives of the two curves with respect to the arc

length are the same. Using 1 and  at 2p ( 0  ), we compute the starting tangential angle s of the

curve 1 using Eqn. (2.3). We compute the curve of 1 using Eqn. (2.1) from s to 1 s on the

standard form, translate the curve such that the starting point becomes 2p and rotate the curve such

that the tangential direction at the starting point becomes equal to the tangential direction of the

curve 0 at 2p . The translation and rotation guarantee that the two curves will be 2G continuous.

Now, the curve 1 from 2p to 4p is drawn as shown in Fig. 5(a). 3p is the intersection point of

tangent lines of the curve 1 at 2p and 4p . 5p is the intersection of the tangent lines at 0p and 4p .

If the triangle formed by 450 ,, ppp and the triangle formed by 210 ,, aaa are similar, we can draw a

compound-rhythm curve by transforming the curve on the standard form such that 450 ,, ppp are

transformed to 210 ,, aaa under a similarity transformation. We search for a similar triangle by

changing 0 . Since the angle formed by 05 pp  and 54 pp  and the angle formed by 01 aa  and

12 aa  are always the same, the similarity of the triangles can be checked by comparing the angle

formed by 05 pp  and 04 pp  and the angle formed by 01 aa  and 02 aa  . If the two angles are the

same, we can say that the two triangles are similar. Similarly as monotonic rhythm curves, we use the

bisection method to find 0 . When 10  , the range of 0 is
 00

0
1

1
0

 
 . When 10  , the

range of 0 is  00 . When 10  , the bisection method is extended so that 0 can be arbitrarily

large.

A compound rhythm curve with 10  and arbitrary 1 can be generated in a similar manner except

that the configuration shown in Fig. 5 (b) is used. We assume that 0 is known and draw the curve of

0 from 0 to 0 . The curve is drawn from 2p to 0p as shown in Fig. 5 (b). 1p is the intersection

of tangent lines of the curve 0 at 0p and 2p . Using Eqn. (3.5), we compute 1 .  at 2p is always 1

because of the constraint of the standard form. We compute the starting tangential angle s of the

curve 1 using Eqn. (2.3). We then compute the curve of 1 using Eqn. (2.1) from s to 1 s on the

standard form and rotate the curve such that the tangential direction at the starting point becomes
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equal to the tangential direction of the curve 0 at 2p . As shown in Fig. 5 (b), we can draw the curve

1 from 2p to 4p . 3p is the intersection point of tangent lines of the curve 1 at 2p and 4p . 5p is

the intersection of the tangent lines at 0p and 4p . If the triangle formed by 450 ,, ppp and the triangle

formed by 210 ,, aaa are similar, we can draw a compound-rhythm curve by transforming the curve on

the standard form such that 450 ,, ppp are transformed to 210 ,, aaa under a similarity transformation.

The search for a similar triangle is performed by changing 0 using the bisection method. We change

0 within the range of
 1

1
0

00
0





.

Fig. 5: Two configurations for generating compound-rhythm curves.

In the above, we do not talk about the bounds of 1 s , which is very important for the stable

computation. When 11  , 1 s have an upper bound. Note that this bound does not depend on 0 .

If 11  ,
 11

1
1

1





s must hold without depending on 0 . If this inequality does not hold, we

search for a smaller 0 in the bisection method such that 1 computed by Eqn.(3.5) gets smaller.

Fig. 6 shows a process for finding a similar triangle. Fig. 6 (a) show the positions of 210 ,, aaa . The

search for a similar triangle is performed by changing 0 using the bisection method. As the curves

change from Fig. 6 (b) to (f), the triangles formed by 210 ,, ppp get similar to the triangle formed by

210 ,, aaa .

Fig. 6: A search process for generating a compound-rhythm curve ( 10  , 5.11  ).

5. RESULTS
We show examples of compound-rhythm curves generated by the proposed method. Fig. 7 shows
various compound-rhythm curves and their evolutes with the same endpoints and the tangents.
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Evolutes are curves that are the loci of the center of the curvature. A black dot on a curve indicates
the connection point of the curve 0 and the curve 1 . As was explained earlier, compound-rhythm

Fig. 7: Various compound-rhythm curves with the same end points and tangents.
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curves are 3G continuous. From Fig. 7, we can see that the curves are 3G continuous since their

evolutes are 1G continuous.

Fig. 8 shows another example of compound-rhythm curves. Fig.8 (a),(b),(e) and (f) show curves in
which both 0 and 1 being positive or negative.

Fig. 8: Another example of compound-rhythm curves.

6. CONCLUSIONS
We have presented a method for drawing compound-rhythm log-aesthetic curves by specifying two
endpoints, their tangents, the slopes ( 0 and 1 ) of the straight lines in the LCG, the ratio r of the

change of the tangential angle of the curve 0 with respect to the change of the tangential angle of the

curve 1 . We have derived the continuity condition of the LCG and using the continuity condition, we

showed that the generation of compound-rhythm curves reduces to one-dimensional search.

Due to the constraint of monotonically varying curvature, the position of three points, 0 , 1 and r

dictate whether a compound-rhythm curve is drawn or not. One direction of future research is
clarifying the drawable regions depending on these parameters. Another area of future research
includes the approximation by free-form curves, such as NURBS or Bézier curves, and the extension to
3D log-aesthetic curves.
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