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ABSTRACT

The feedrate along a tool path is directly related to the path curvature. High-curvature sections in
tool paths are caused by complex part geometry, data noise, and discontinuities in the model. High-
curvature sections cause the NC machine to reduce the feedrate along the tool path due to
acceleration and jerk limits. Reduced feedrates increase machining time and decrease production
rates. This paper presents new methods to decrease curvature on tool paths represented by splined
Bezier curves, within a tolerance band, thereby increasing production rates for complex surface
machining. In sample cases the algorithm decreased machining times by 1% to 9% for sections of
high curvature and by 16% to 75% for CAM induced ripples.
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1. INTRODUCTION
NC machines are used to manufacture complex part geometries because they efficiently and accurately machine parts.
Tool paths are now being represented by complex curves such as B-Splines and NURBS because they permit
smoother and faster motion, as compared to the conventional approach of passing large blocks of tessellated move
increments. High-curvature sections exist in B-Spline tool paths that cause the NC controller to decrease the tool
feedrate. High-curvature sections can be created by the designer or result from anomalies in the computer aided
design (CAD) model.
When a user plans a production process using a CAM system, a surface tolerance is defined according to the quality
specifications. A path tolerance radius is specified that limits the tool path to a tolerance band that is dependent on the
surface tolerance. A larger path tolerance allows the path to deviate further and produces a smoother path at the
expense of surface accuracy. Deviating the tool path within this tolerance band can smooth high-curvature ripples,
resulting in an overall reduced-curvature tool path. As a simple example, see the red line in Fig. 1 with reduced
curvature as compared to the blue line, both falling within the black tolerance bands. The new path allows higher
feedrates, resulting in reduced machining times and improved profits. The sum of the path tolerance and the machine
tool’s accuracy must be less than the allowable surface tolerance to ensure that the part will remain within finishing
tolerances. The tool path is allowed to touch the edge of the tool path tolerance band.

1.1 Related Research
Several researchers have proposed methods of interpolating data using various types of splines that are at least C2

continuous and that allow the tool to move smoothly along the path - see [1], [3–6], [8-9], [14]. Unfortunately,
undesirable high-curvature oscillations (ripples) may develop in these curves during the interpolation of the tool path.
Even though the mathematical representation of the tool path is C2 continuous, these ripples cause sections of high
curvature that slow the desired feedrate.
The main cause for high-curvature ripples is discontinuities in the position, tangency, and curvature of the model part
surface. Discontinuities that cause high-curvature sections can be created in a model in many ways. International
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TechneGroup Incorporated [7] explains how gaps and overlaps in CAD models caused by accuracy constraints create
inefficiencies in NC programming. An inexperienced designer may create a model with tangency and curvature
discontinuities. Bohez [2] says that tangency discontinuities in CAD models cause these high-curvature sections.
Even when a B-Spline is interpolated to fit a curvature-continuous surface, small ripples can form because interpolation
points represent discrete values along a continuous surface. Path position, tangency, and curvature of the surface will
change discretely between interpolation points, creating the same affect as a surface with minute discontinuities. These
minute discontinuities create continuity ripples in the tool path. The amplitude of the ripples correlates directly to the
severity of the discontinuity.

Not all high-curvature sections are created by anomalies. Many are created by the designer to satisfy a design
requirement. Complex parts may contain unnecessarily small radii with high-curvatures. The designer may not realize
the effect that these small radii have on machining times. If there is enough surface tolerance on the part, smoothing
can decrease the curvature in these high-curvature regions. Examples of parts with unnecessarily high-curvature are the
molds for children’s toys and tire molds as shown in Fig. 2. and Fig. 3.
To decrease the curvature of splines, researchers effectively filter noisy models ([2], [10], [13]), but none minimize
curvature and limit the tool path to a path tolerance band. Eilers [3] minimizes curvature by a penalty on sections with
high curvature, but does not consider NC tool paths constrained to a path tolerance.
Langeron [9] limits tool paths within a tolerance tube, by interpolating random points along the desired part surface
without regard to curvature. However, Langeron’s splines can introduce even more high-curvature sections as the
path wiggles back and forth within the tolerance band.
Although significant work has been done to generate optimal tool paths, none smooth paths without unnecessary
high-curvature sections, nor do any deviate the tool path within a path tolerance band to minimize curvature.

1.2 Paper Objectives
This paper focuses on the feasibility of smoothing B-Spline tool paths. It smoothes tool paths with high-curvature
sections that are created by the designer or by anomalies in the CAD model. The methods are extendable to any
degree B-Spline. Only paths for 3-axis end mills are considered, meaning that only the position and not the
orientation of the tool is considered. Only 2-D planar paths are created, smoothed, and tested; still, many practical
contour machining methods fall within these assumptions.
The methods use C++ algorithms to parse CAM-produced spline data and reduce the curvature in CAM-produced
cubic B-Spline tool paths, modifying the splines within a path tolerance. Verification used test data and criteria to
ensure that the algorithms improve the tool path, by comparing curvature values of the tool paths before and after the
application of the smoothing algorithm. Path time evaluations used S-curve velocity profiles through the high
curvature regions to compare the time to move across the original and smoothed paths; see Red [12].
We will first provide some background information on the use of control point perturbations to change B-Spline
curvature properties, followed by the algorithmic exposition, and concluding with several test examples and related
smoothing data.

2. B-SPLINE CONTROL POINT BACKGROUND
Bezier curves are created using a control polygon made up of control points as in Fig. 4. Dr. Pierre Bezier designed
the Bezier curve (red line in Fig. 4) so that it would mimic the shape of its control polygon, by passing through the first
and last point in its control polygon, and also tangent to the control polygon at the endpoints.
The equation for the Bezier Curve is similar to the equation for the center of mass of point masses. If there are four
equal masses distributed for the cubic curve shown in Fig. 4, then their center of mass is

Fig. 1: Curvature smoothing in tolerance band. Fig. 2: High-curvature toy molds. Fig. 3: Tire complex
geometry.
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Bezier curves are created by using parametric equations to vary the masses of each point instead of using equal
constant values. The equations for the masses (the blending functions) in Fig. 4 become

   30 1 ttm  ;    21 13 tttm  ;    tttm  13 2
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As t changes from zero to one, the center of mass also changes. The Bezier curve is the path that the center of mass
follows as t changes from zero to one. In a more general form, the blending functions for Bezier curves are referred to
as Bernstein polynomials and represented by the following equations for an n degree Bezier curve with n+1 control
points:
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Equation (2.3) leads to the general equation for a Bezier curve:
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A B-Spline is formed by splining multiple Bezier curves together. B-Splines connect Bezier curves with Cn-1 continuity.
This means that a cubic B-Spline will be C2 continuous where the Bezier curves meet. The B-Spline uses a control
polygon like the Bezier curve, but it also has a knot vector. The knot vector is a list of parameter values, or knots, used
to determine the parameter values at which a Bezier curve begins and ends. Like Bezier curves, B-Splines follow the
general shape of their control polygon. If the control polygon is shaped like a semicircle, a saw-tooth, or a flat straight
line, the B-Spline will be shaped similarly, Fig. 5.

2.1 Distance Between Two Splines
The distance between points of equal parameter value on two splines can be represented as a new spline with a
control polygon calculated as the difference between the two splines’ control polygons. The two splines must have an
equal number of control points and parameterization to use this distance formula. Equation (2.5) is the spline that
represents the distance between the two splines:
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This equation compares the difference between the original and perturbed spline to the tolerance band and is used in
the control point perturbation algorithms of this paper. Note that this equation will work for both Bezier curves and B-
Splines. Fig. 6 shows a B-Spline that is the difference of two other B-Splines.

Control Polygon

Control Point P0

Control Point P1 Control Point P3

Control Point P2

Bezier Curve

Fig. 4: Bezier curve (red), control polygon. Fig. 5: B-Splines follow the control polygon shapes.
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2.2 Convex Hull Property
Both Bezier curves and B-Splines remain within the convex hull of their control points; see Fig. 7. The polygon
formed is the convex hull. The center of mass analogy for Bezier curves and B-Splines ensures that the spline will
always remain within the convex hull. All of the control points are either inside of or on the boundary of the convex
hull so it is impossible for the center of mass (the spline) to lie outside of the convex hull.
The convex hull property guarantees that the distance between two curves is bounded by the largest distance from the
origin to any of the control points of the difference B-Spline. This also means that if a spline’s control points are
moved, then the spline is guaranteed to not move a distance greater than the largest distance that any control point
moved. This is important to the control point perturbations used in our algorithm.

2.3 Continuity
A B-Spline of degree n is guaranteed to join Bezier curves with Cn-1 continuity. Two curves are Ck continuous if

               111111 ,...,'', tttttt kk QPQPQP  (2.6)

Parametric continuity Ck depends on the parameterization of the B-Spline (t), but geometric continuity (Gk) does not.
If a spline is Ck continuous then it is also Gk continuous. G0 means that the two curves have a common endpoint but
not necessarily the same parameter value. Tangency continuity or G1 continuity is when the control polygons are
tangent where they meet. Curvature continuity or G2 continuity is when the curvature is equal for both curves where
they meet. This is considered sufficiently smooth for most tool paths.

3. SMOOTHING ALGORITHM
This section will present a smoothing algorithm that uses control point perturbations to decrease spline curvature
within a tolerance tube. First note that in high-curvature sections, a NC machine reduces the feedrate to remain within
acceleration and jerk limits. Total acceleration for motion in Cartesian space is the vector sum of the tangential and
centripetal acceleration:

tangentiallcentripitatotal AAA  (3.1)

where Acentripetal = kV2
feedrate and k is the path curvature. High curvature increases centripetal acceleration. As

centripetal acceleration increases with high curvature, the allowable tangential acceleration must decrease.
The smoothing algorithm in this thesis reduces the curvature of all ripples even if the curvature is below the value that
would reduce the feedrate, because it takes longer to calculate the curvature to distinguish between negligible and
significant curvature values than it does to smooth the path. The algorithm thus reduces the curvature in tool paths
within a tolerance band without calculating the curvature.

3.1 Path Tolerance

The path tolerance band is formed by offsetting the given tool path in two directions by the path tolerance radius ρ.
The offset band is formed by the set of all points (Pb) that lay a perpendicular distance ρ from a given curve point P, as
shown in (3.2), where x’ and y’ represent the derivatives of the spline at P with respect to the spline parameter t, Fig. 8.

Pb(, x(t), y(t))=
    

   tytx

txty
tytxP

22 ''

','
))(),((




  (3.2)

Fig. 6: B-Spline difference is purple line (lower left figure). Fig. 7: Convex hull property (dashed line).
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3.2 Algorithmic Basis
When all of the control points of a B-spline form a single straight line, the spline becomes a straight line with zero
curvature. Thus moving the control points towards a straight line, considering the tolerance tube limit, will reduce
curvature. This observation forms the basis of the smoothing algorithm. The algorithm incrementally perturbs the
various control points to flatten the control point polygon, comparing the perturbed spline to the offset splines, exiting
the iterations when the perturbed spline is sufficiently close to the tolerance band. During each iteration: 1) the control
points are re-categorized; 2) the control points are moved in new directions; 3) the minimum distance between the
spline and tolerance is calculated; and 4) all of the control point move distances are rescaled.
To test the curvature improvement we must determine the curvature, but the algorithm has the advantage of not
requiring curvature calculations. Equation (3.3) is the curvature calculation for point P0 in Fig. 9 formed by splitting the
Bezier at the point of curvature interest. The Bezier curve containing the point where the curvature value is to be
calculated is extracted from the B-Spline. Then the Bezier is divided at the point of interest. This creates an endpoint
where the curvature is to be calculated. The first three points of the Bezier control polygon are shown in Figure 9. P0

is the point where the curvature is being calculated and the first point in the Bezier control polygon. The value h is the
distance from P2 to the line formed by P0 and P1. If two line segments are flattened, h is decreased and the curvature k
is also decreased.
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3.3 Direction Vectors for Control Point Perturbation
To reduce the curvature, first, we determine a direction vector for each control point according to its geometry and
category. The direction vector is the direction that the control point will move to form a straight line with its
neighboring control points. Control points are placed in one of three categories, depending on how they must be
perturbed to form a straight line. The first category contains the endpoints of the control polygon. The next category
consists of ripple points. These points are recognized because the control polygon forms a saw-tooth pattern, i.e., each
point in the control polygon lies in the opposite direction, Fig. 5. The direction vector that smoothes the ripple point is
the normalized bisector of the triangle formed by the ripple point and the two adjacent control points in the control
polygon. Smooth control points make up the final category. These are recognized because the control polygon
continues in the same direction along an arc at these points and the spline is smooth.
All adjacent smooth control points are placed in groups that contain a beginning point, one or several middle points,
one or two apex points, and an ending point. The apex point(s) are the median point(s) in each group. If there are an
odd number of points in a group then there is only one apex point. If there is an even number of points then there are

Fig. 8: Path tolerance tube.
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Fig. 9: Curvature from control point polygon.
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two apex points. The rest of the points in the group are middle points. For example, in Fig. 10 points 4 and 9 are the
beginning and ending points of a smooth section, respectively. Points 5 and 8 are middle points and points 6 and 7
are the apex points.
The algorithm begins by determining perturbation directions based on the control point properties described in the
following sections. All control points are initially perturbed by the tolerance  to establish control point perturbation
sensitivity. The movement of the path spline is then measured, establishing a non-uniform set of control point
sensitivity perturbations. The sensitivity value for each control point is the ratio of the spline move distance to the
control point’s move distance from the previous iteration. The maximum allowable move distance is the minimum
distance between the spline and the tolerance tube remaining after the last iteration. This step is repeated iteratively to
reduce path curvature until the perturbed spline approaches sufficiently close to the tolerance band. See reference [11]
for more detail.

3.3.1 Endpoint Perturbations
Each endpoint has a direction vector that is perpendicular to both its control polygon line segment and the tolerance
tube. The control polygon is initially parallel to the tolerance tube at both ends. Each endpoint is smoothed by
perturbing it towards the line formed by the next two or previous two control points in the control polygon in Fig. 11
and in this direction:
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where 01 XXX  and 01 YYY  . The actual perturbation distance depends on the sensitivity determined in

each perturbation.

The direction vectors for endpoints are perpendicular to the initial control polygon. As the control polygon moves with
each perturbation, it will no longer be parallel to the tolerance tube at the ends. However, the endpoint direction vector
is always forced to be perpendicular to the tolerance tube so that the endpoint remains at the end of the tolerance tube
to force tool path continuity. It is possible to overshoot the target line in a given iteration which may require a reversing
of the direction vector to again point towards the line. If the minimum distance to the line is negative, the direction
vector is reversed. If the distance to the line is zero the direction vector is set to null. The direction vector for the last
control point is calculated in a similar manner to the first point.

3.3.2 Ripple points
The direction vector for a ripple control point directs the control point towards a straight line formed by its two adjacent
control points. The procedure to find the red normalized direction vector for ripple control points, Fig. 12, uses the
green normalized direction vectors from point 2 to point 1 and 3, respectively. The generalized equations are:
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Fig. 10: Curvature from control point polygon.
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where ii XXX  1 and ii YYY  1 define Ai, and ii XXX  1 and ii YYY  1 define Bi. These

define the ripple perturbation vector iii BADV  .

3.3.3 Smooth Points
The procedure to calculate the direction vectors for smooth sections combines multiple vectors as shown in Fig. 13.
Direction A vectors for the apex points are calculated first. Then preliminary direction B vectors are calculated for the
middle and ending points. Each preliminary vector is then combined with a scaled version of the apex direction vectors
(C vectors, black) to create the non-apex final direction vectors A.
The apex direction vectors are calculated in one of two ways. If a single apex, the direction vector is calculated using
the same method used for a ripple point’s direction vector in (3.5). If a double apex, each apex is assigned the same
direction vector that is calculated using Equation (3.6). It is perpendicular to the line that goes through both apex
points (points 6 and 7) as illustrated by line D in Fig. 13.
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where ii XXX  1 and ii YYY  1 . Note that (3.6) does not guarantee that the direction of the apex vectors

is correct. To determine if the apex direction vectors must be reversed, the minimum distance from the control point

immediately following the second apex point to the line through the two apex points is calculated. If the distance to

the line is negative, the preliminary direction vector is reversed.

Preliminary vectors B are calculated the same way as ripple points in (3.5) except that they are reversed to point

outwards as shown in Fig. 13. The preliminary direction B vectors move the control points out, widen the path, and

lower the curvature.

A scaled vector C is created at each non-apex point by scaling the apex direction vector by some factor  using

Equation (3.7) Scale values of 9 – 10 produced the best combination of widening (vector B) and flattening (vector C).

Combining vectors B and C with the given weights was found to best reduce the curvature in smooth sections in the

most cases. Vectors A align the movement of the non-apex points with the apex points, so that the entire curve moves

together as it flattens. The normalized sum of vector B and vector C in Equation (3.8) is the direction vector for each

of the smooth points.
apex
ii AC  (3.7)

Fig. 12: Direction vector (red) for ripple point defined
as normalized sum of vectors A and B.

0

1

2

3

4

2’

A B

DV

Fig. 13: Smooth section control point perturbations.
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ii
apexnon

i CBA 
(3.8)

By summing the two vectors together and normalizing the result, the final direction vector obtains attributes from both

of the vectors. The curve is widened by vector B and flattened by vector C. The final direction vectors for the control

points in a smooth section cause the curve to move to the inside of the tolerance tube at the apex and to the outside of

the tolerance tube at the beginning and ending points as shown in Fig. 14.

4. RESULTS
Five sample tool paths shown in Fig. 15 (not to scale) were created to test the smoothing algorithm. The tool paths
represent a single pass across a surface. Each tool path is composed of a single B-spline and contains a different set of
high-curvature ripples.
The Case 1 tool path represents a tool path with low curvature radii (maximum curvature is 0.175 mm-1). The tool
feedrate will approach the commanded value. The tool path of Case 2 is mostly low curvature with two high-curvature
sections. The path is 376 mm long with a maximum curvature of 9.0 mm-1, where the tool feedrate will slow
significantly. The tool path for Case 3 is complex with multiple high-curvature ripples. The tested path is 210 mm long
and has a maximum curvature of 28 mm-1. This path represents an extreme case in which the feedrate will be very
slow. The tool path shown in Case 4 is generated for factory siping on a snow tire mold with complex geometry. The
final case (Case 5) was designed as a straight line with zero curvature but two of the data points used to interpolate the
tool path were designed as noisy discontinuity bumps. These noisy points create ripples in the tool path that
significantly increase the curvature and cause the spline to deviate from the desired tool path by up to 0.4 mm.

4.1 Smoothing Parameters
The accuracy of all tool paths was set to 1%. Therefore, the iterations terminated when the tool path closed to within
1% of the path tolerance. The precision, defined as the number of points checked on each knot interval of the B-spline
per iteration, was set to 5 causing each Bezier in the B-spline to be split into 5 sections. Each of the tool paths was
smoothed using three different path tolerances: 0.025 mm, 0.125 mm, and 0.25 mm.

4.2 Smoothing Results: Path Shape
Fig. 16 shows several results (not to scale) for a tolerance band of 0.25 mm with the more critical improvements
expanded for visualization purposes. The results are identified for several of the selected cases shown in Fig. 15, where
the red line represents the curvature flattened spline. Note how the red line approaches the tolerance band as you
would expect based on the curvature properties, thereby reducing the curvature. Naseath [11] also shows that his
smoothing algorithms essentially eliminate the curvature noise of Case 5. The results are similar for the tighter
tolerances of 0.025 mm and 0.125 mm.

Fig. 14: Smooth section widened and flattened to reduce curvature.

Case 1 Case 2

Case 3
Case 4

Case 5

Fig. 15: Test cases.
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4.3 Smoothing Results: Curvature
Tab. 1 shows average curvature improvements over the splined paths in Cases 1 – 5, from small % improvements
ranging to 9.5%, depending on case and path tolerance. One case of interest is the improvement of 10% to 94% for
Case 5 noisy paths.

Part Path Tol (mm)
Curvature Avg (1/mm) Curvature Diff (1/mm) % Improvement

Original 0.040314 0 0.00%

R = 0.025 0.040154 0.0001592 0.39%

R = 0.125 0.039588 0.0007257 1.80%

Test Case 1:
Simple

R = 0.250 0.038976 0.001338 3.32%

Original 0.14091 0 0.00%

R = 0.025 0.140219 0.0006906 0.49%

R = 0.125 0.137186 0.0037242 2.64%

Test Case 2:
Medium

R = 0.250 0.133279 0.0076309 5.42%

Original 0.564505 0 0.00%

R = 0.025 0.557309 0.0071956 1.27%

R = 0.125 0.53213 0.0323753 5.74%

Test Case 3:
Complex

R = 0.250 0.510896 0.0536084 9.50%

Original 0.296756 0 0.00%

R = 0.025 0.295998 0.0007578 0.26%

R = 0.125 0.292879 0.0038774 1.31%

Test Case 4:
Snow Tire

R = 0.250 0.288374 0.0083822 2.82%

Original 0.093916 0 0.00%

R = 0.025 0.08424 0.0096766 10.30%

R = 0.125 0.04706 0.0468563 49.89%

Test Case 5:
Line

R = 0.250 0.005922 0.087994 93.69%

Tab: 1: Relative curvature improvement after smoothing algorithm.

Case 2

Case 4Case 3

Fig. 16: Smoothing test results.
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4.4 Smoothing Results: Feedrate and Time
The time to machine each of the tool paths was simulated using a trajectory generator. The trajectory generator uses
S-curve velocity profiles that are limited by the curvature of the tool path. The maximum values for the trajectory
generator were set to: feedrate = 400 mm/s; acceleration = 4000 mm/s2; jerk = 20,000 mm/s3.
An initial velocity profile was determined by assuming that the velocity was only limited by the curvature. This profile
contained the maximum allowable velocities since it assumed that the velocities could change instantly between
positions along the tool path and were not limited by tangential acceleration. The maximum and minimum velocities
correspond to specific positions along the tool path.
All of the velocities that were not local maximum or minimum values were removed. S-curves were created to
accelerate between the maximum and minimum velocities. The S-curves were required to traverse the distances
between the positions on the tool path that correspond to the maximum and minimum velocities. Local maximum
velocity values were decreased until the robot was capable of accelerating between the minimum and maximum
velocities and traversing the required distance. More detail can be found in [11].
Tab. 2 shows feedrate improvement up to 5%, depending on tolerance, except for the case of noisy data where
feedrates are improved tremendously. Of course, the improvement will be most appreciable when machining complex
surfaces, where improvements of 5 – 10% can represent large manufacturing savings. Naseath [11] shows that the %
time improvements are actually larger by a few % over these numbers because feedrate improvements reduce the time
spent in acceleration periods.

Part
Path Tol

(mm)
Feedrate Avg

(mm/s)
Feedrate Diff

(mm/s)
% Feedrate

Improvement

Original 195.0 0.0 0.00%

R = 0.025 195.1 0.1 0.07%

R = 0.125 195.4 0.4 0.22%

Test Case 1:
Simple

R = 0.250 195.4 0.4 0.21%

Original 180.8 0.0 0.00%

R = 0.025 180.9 0.1 0.03%

R = 0.125 181.1 0.3 0.14%

Test Case 2:
Medium

R = 0.250 186.2 5.4 3.00%

Original 52.3 0.0 0.00%

R = 0.025 52.4 0.1 0.26%

R = 0.125 53.8 1.5 2.93%

Test Case 3:
Complex

R = 0.250 54.8 2.5 4.84%

Original 71.4 0.0 0.00%

R = 0.025 72.6 1.2 1.63%

R = 0.125 72.9 1.4 2.01%

Test Case 4:
Snow Tire

R = 0.250 73.0 1.5 2.17%

Original 73.1 0.0 0.00%

R = 0.025 74.9 1.8 2.45%

R = 0.125 91.9 18.8 25.74%

Test Case 5:
Line

R = 0.250 299.5 226.4 309.58%

Tab. 2: Feedrate measurements from before and after smoothing.
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Naseath [11] also lists CPU calculation times for the cases in Tab. 2, which in most cases are less than 1 CPU second
(none greater than 2 seconds). These were calculated using a Pentium Core 2 Duo with two 2.13 GHz processors and
1.98 GB of RAM. Note that these calculation times are for one tool path pass and not for an entire part. The CPU
calculation times increase with the number of control points.

5. SUMMARY
Tool paths that are designed with high levels of curvature can be smoothed with the smoothing algorithms presented in
this paper. In test cases both curvature and machining times were decreased by 1% to 9% based on the degree of
curvature and the tolerance. Resulting savings can be significant on highly complex parts. Tool paths with high-
curvature ripples caused by discontinuities can be substantially smoothed using the algorithm, as can design features
with little or no filleting between intersecting edges. In Case 5 Naseath shows that machining times can be decreased
by 16% to 75%.
Anomalies should be removed before creating tool paths. But if they are not, the smoothing algorithm will diminish
their negative affects on machining times. High-curvature ripples in CAD models caused by the designer, bad data, or
discontinuities can cause unnecessary increases in machining times. These high-curvature ripples can be smoothed
with these algorithms, decreasing machining times.
The algorithm has been simplified by fundamental observations that relate control point perturbations to spline
perturbations, and by applying procedures that do not require the computation of spline curvature. These methods,
though iterative, are simple to apply, computationally efficient, but are not real-time.
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