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ABSTRACT

This paper addresses the problem of automatic hole-filling on polygon meshes based on radial basis
functions (RBFs). Firstly, we use the topology connectivity of a watertight triangle mesh to detect the
undesired holes. Secondly, 2 or 3-ring vertexes of the boundary of the holes are sampled from the
original mesh. Thirdly, a surface patch is reconstructed from the sampled interpolation points by
using RBFs. In order to stitch the surface patch and the original mesh with holes, we project the
surface patch and the boundary polygon of the holes onto a plane with maximum areas, which can
reduce the complexity by converting the problem from 3D into 2D. After we blend the projected
polygons and the projected surface patches, then they are remapped into 3D space to finish the
stitch operation. Lots of experiments reveal the efficiency and accuracy of our proposed algorithm.
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1. INTRODUCTION
Polygon meshes are extensively used in computer graphics, geometric processing, or even in engineering. One of the
methods of creating polygon meshes for a real 3D object involves scanning it from a number of different view points
and realigning the different point datasets into a coordinate system, and then constructing the surface model from point
cloud. However, during this process of scanning, several factors such as occlusion, low reflectance coefficients of the
surface, high grazing angles, or even missing pieces in the original object can lead to incomplete data. Fig. 1 gives an
example to illustrate the holes caused by view occlusion.

Fig. 1: Reconstructed surfaces with holes due to occlusion.

Although there are some interactive mesh-repairing tools, it could become very tedious if the input mesh model is huge
and complex. A variety of methods have been developed to fill in the undesired holes on meshes. These methods can
be distinguished into two main categories: the geometric and volumetric schemes [1]. Among the geometric
approaches, there are methods of Liepa’s minimum area triangulation of its 3D contour [2], Schneider and Kobbelt’s
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scheme based on solving a non-linear fourth order partial differential equation [3], Desburen’s iterative implicit fairing
[4], and other approaches based on the moving least-squares projection [5],[6].
Considering the volumetric methods approaches, Curless and Levoy [7] use a volumetric representation to detect the
desired areas on meshes. Davis [8] applies a volumetric diffusion process to extend a signed distance function through
this volumetric representation until its zero set bridges whatever holes may be present, which is also an iterative
approach. Nooruddin and Turk [9] propose a simplified method to repair polygonal models using volumetric
techniques. Clarenz et al. [10] use a finite element method to minimize the integral of the squared mean curvature of
the filled holes. Casciola, et al. [11] suggest a method based on positive definite radial basis functions to reconstruct
surface from point cloud and progressively fill the holes by using the neighboring information.
However, the main drawback of most of these methods concerns the use of iterative processes to find the shape of the
mesh. Moreover, Podolak [12] suggests the following criteria to define a robust hole-filling algorithm.

Step1: Produce a non-self-intersecting watertight mesh;
Step2: Process arbitrary holes in complex meshes;
Step3: Avoid changing, approximating or re-sampling the original data away from the holes;
Step4: Incorporate user-provided constraints to allow the selection of multiple topologically differing solutions;
Step5: Process large scanned meshes with a running time proportional to the size of the holes, rather than that of

the input mesh;
Radial basis functions are extensively used in neural network [13], PDE solving [14] and surface reconstruction
[15],[16]. In this paper, we propose an approach to fill holes automatically based radial basis functions to meet the
Podolak’s standard. Firstly, the holes on the mesh are detected according to the topology of a watertight triangular
mesh, then a set of centers are selected in the neighborhood area of the detected holes, thirdly, an implicit surface is
reconstructed from these selected centers, and finally, the implicit surface is extracted and blended with the original
mesh and the holes can be filled in.
The paper is organized as follows. In section 2 we present the basics of radial basis functions. In section 3 our new
hole-filling method is described in detail, including holes detection, selection of interpolation centers, creation of the
implicit surface patch and blending of the patch and the mesh. Some experimental results are performed in section 4 to
validate our algorithm. The final section is conclusions.

2. RADIAL BASIS FUNCTIONS

The problem of scattered data interpolation can be stated as given a set of fixed points
1
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The interpolant can be chosen from (2) 3( )BL R , the Beppo-Levi space of distribution on 3R with square integrable

second derivatives. This space is sufficiently large to have many solutions to the interpolation problem, and therefore
we can define the affine space of interpolants:
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The space (2) 3( )BL R is equipped with the rotation invariant seminorm defined by
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This seminorm is a measure of the energy of “smoothness” of functions, Duchon[21] shows that the smoothest
interpolant, i.e.,
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This function is a particular example of a radial basis function. In general, a RBF is a function of the expression
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Where
i

x are called RBFs interpolation centers, and
i

 are coefficients corresponding to each center, ( )g r ,

i
r  x x , is basis function with real value unbounded [0, ) .

There are lots of useful basis functions g which are either positive definite (PD) or conditionally positive definite (CPD)

of order m, such as Gaussian, Multiquadric, Triharmonic, Thin-plate spline, etc. When PD basis function is used, the
polynomial ( )P x can be eliminated. On the contrary, CPD basis functions of order m require a polynomial with

degree of at least m [17]. Wendland [18] has developed a minimum degree polynomial solution for compact, locally-
supported radial basis functions (CSRBF) that guarantee positive definiteness of the sparseness of RBFs matrix and

continuity nC of the radial basis function. For 2C continuity, the form of CSRBF is 4( ) (1 ) (4 1)g r r r


    . The 3D

profiles of some basis functions with a single center are plotted in Fig. 2.
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Tab. 1: Commonly used basis functions g.

In Eqn. (6), ( )P x is a polynomial of low degree. If P is a linear polynomial, the coefficients
i
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following side conditions or orthogonality.
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Combine the Eqn. (1) and (6) and the constraints (7) give rise to the following linear system:
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and a 3-order polynomial is used. The solutions of the linear system (8) compose of the weight coefficients and the
polynomial coefficients for the interpolation function ( ) x .

3. DESCRIPTION OF HOLE-FILLING ALGORITHM
3.1 Detection of Undesired Holes
The first step of hole-filling algorithm is to detect the undesired holes in a mesh model. In most applications, the mesh
should be watertight. So, all of the vertexes and edges establish well topological connectivity, illustrated in the left in Fig.
3. If there is a hole on the mesh surface, the topological connectivity can be degraded, shown in the middle and right
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of Fig. 3. From the right figure in Fig. 3, it is clear that a hole consists of a loop of boundary edges which are defined as
an edge only belonging to one triangle, as opposite to non-boundary edges which must be shared by two triangles. So
we can use this property to detect the unwanted holes.

Fig. 2: 3D profiles of six different basis functions, from left to right there are Gaussian, Thinplate spline, Multiquadric,
Inverse multiqudric, Triharmonic, Compactly supported, respectively.

The naive method to detect a hole is traversing all of the vertexes and the edges to check the topological connectivity,
which is substantially time consuming. In our approach, we use a Kd-tree to accelerate the detection of undesired
holes. The Kd-tree is a binary search tree in which each node represents a partition of the k-dimensional space. The
root node represents the entire space, and the leaf nodes represent subspaces containing mutually exclusive small
subsets of dataset. At any node, only one of the k dimensions is used as a discriminator, or key, to partition the space.
The performance of the Kd-tree search is O(log n). Our hole-detection algorithm can be described as follows.

Step1: Compute the center of each triangle and the correspondences between the center and three vertexes of the
triangle;

Step2: Set up the Kd-tree according the centers of triangles;
Step3: Search the Kd-tree and check up the topological connectivity of the corresponding edges, and find the

boundary edges;
Step4: Distinguish the different boundary loops according to the topological connectivity of vertexes;

Now, we can detect all the holes from original meshes. Fig. 4 is an example of hole detection, the left figure is a mesh
model with holes and the right is the detected boundaries.

Fig. 3: Hole on a mesh model and the detected hole boundary. Fig.4: A mesh model and the detected holes.

3.2 RBFs Interpolation Centers
Since we want to fill the holes enclosed by the boundary edges, we only reconstruct the local implicit surface to cover
the holes. From section 2, we have known that there should be some distinct points as interpolation centers. So some
interpolation centers should be sampled from the original mesh. As illustrated in Fig. 5., the pink dots are the vertexes
of the hole boundary loop. We can employ the topological connectivity of the boundary edge to find n-ring of its
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neighborhood, demonstrated as the green and red dots in Fig. 5., from which the implicit surface can be reconstructed
using radial basis functions interpolation. In our implementation, we select 2 or 3-ring of the neighborhood vertices of
the boundary loop, which is sufficient to guarantee the accuracy.

3.3 Surface Patch Creation and Blending
After we solve the coefficients of RBFs of Eqn., (8), we can extract the iso-surface from the reconstructed implicit
surface. As illustrated in Fig. 6., the left figure is the original mesh with a hole and the bounding box of interpolation
centers, and the reconstructed surface patch; and the right figure only shows the interpolation centers’ bounding box
and the extracted iso-surface. The next step of hole-filling algorithm is to blend the reconstructed surface and original
mesh. As the reconstructed surface patch is larger than the holes need to be repaired. The procedure can be revealed
in Fig. 7. In order to blend the surface patch and the original mesh, we must find the vertices of the surface patch
locating inside of the hole. However, it is difficult to determine a point inside or outside of a polygon in 3D space. To
tackle this problem, we project the surface patch onto a 2D plane, which converts the inside or outside test problem
from 3D to 2D. Firstly, we use the Principal Component Analysis (PCA) method to estimate a normal to express the
orientation of the surface patch, see Fig. 8. Then, the surface patch is projected onto a medium coordinate

plane, ' ' 'x o y , demonstrated in Fig. 8. The relationship between coordinate system oxyz and ' ' ' 'o x y z is can be

expressed as follows.
'P MP , (8)

where P is a point in oxyz space; 'P is a point in ' ' ' 'o x y z space and M is a transformation matrix, [ | ]M R t . R

and t are the rotation matrix and the translation vector, respectively. Thirdly, the polygon of the hole is also projected
onto the same plane, shown in Fig. 8. Then, all of the vertexes of the reconstructed surface patch inside the projected
hole can be maintained as the final mesh vertexes and the triangles outside the projected polygon are eliminated. To
blend the surface patch, we only deal with the triangles intersecting with the projected hole, illustrated in Fig. 9. In Fig.
9., (a) is the projected surface patch and the projected polygon (blue polygon), in (b), the red triangles can be
considered as the triangles belonging to the original mesh; the two pink triangles are outside the projected polygon and
can be ignored, and (c) is the fused patch. Finally, we remap these vertexes into 3D space to recover 3D information,
and then the points in ' ' ' 'o x y z can be transformed into oxyz by using Eqn. (9). Finally, we can blend the

reconstructed surface patch and the hole, and accomplish the hole-filling. In this procedure, there are lots of
computations to check whether a point is inside or outside a polygon, called point inclusion test algorithm.

1 'P M P (9)

3.3.1 Point Inclusion Test for Planar Polygon
Point inclusion test is a classic problem in computational geometry [19],[20]. A polygon is a simple closed curve by a
finite collection of line segments. Traditionally, we can use the ray-polygon intersection algorithm to check a point is
inside or outside of a polygon according to the number of the intersection points are odd or even. If an even number of
intersections reveals that the point is outside the polygon, and vice versa. In our implementation, we use point in-out of
polygon test method where introduces the monotonic and correlative edges to reduce the cross product operation and
offer an efficient point inclusion test approach.

Fig. 6: The mesh model with a hole and
reconstructed surface patch.

Fig. 5: The vertices on the hole boundary
and the neighborhood vertices rings.
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(a) (b) (c) (d)

Fig. 9: Fusion of surface patch and the hole in 2D.
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Fig. 8: The reconstructed patch, the mesh
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where n is the number of correlative edges. The value of s could be
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In equation (11), if s is equal to 0,
0

p is out of polygonP ; if s is equal to 2,
0

p is in polygon P ; if s is equal to other

values,
0

p is on the boundary ofP .

3.3.2 Blending of Surface Patch and Hole
In subsection 3.3, we project the original boundary of a hole and the reconstructed surface patch onto one of the
coordinate planes, which converts the problem of point inclusion test from 3D to 2D. Then we check every point of 2D
polygon through the above stated algorithm of point inclusion test. There are three relations between the projected
hole and the triangles of the projected mesh, shown in Fig. 11. If three vertexes of a triangle are inside or one of the
vertexes are on the polygon, this triangle belongs to the hole-patch we require to fill in the hole (Fig. 11. (a) and the
red triangles in Fig. 9. (a)). If all the vertexes of the triangle are out, this triangle can be eliminated (Fig. 11. (b) and the
pink triangles in Fig. 9. (b)). If one or two points of a triangle are in and the others are out, this triangle can be
considered as on the boundary of the hole (Fig. 11. (c) and the white triangles in Fig. 9. (a)(b)).

(a) (b) (c) (d)

Fig. 11: Three simple relationships between a polygon and a triangle.

To accomplish the blending operation, we only deal with the boundary triangles. For example, in Fig. 11 (c).,
1 2

PP is
an edge of the projected hole, and the intersection points with the boundary triangle are

1
V and

2
V , also see the red

segments in Fig. 9 (c). Then using the vertexes of the projected hole and the boundary polygon of the inner triangles,
we can create the topology of the projected surface patch and the projected holes, demonstrated in Fig. 9. (c).
However, as one edge of the projected hole could be broken into one or two segments, it is very complex to find the
connectivity between the vertexes of the inner triangles’ boundary polygon, the vertexes of the projected hole and the
intersection points. In practice, we just utilize the vertexes of the projected hole and the boundary triangles to
polygonize the area between of them, illustrated in Fig. 9. (c). When accomplished the above steps, we remap the 2D
information into 3D space to stitch the hole patch with the hole boundary of the original mesh.

4. EXPERIMENTAL RESULTS
Based on the aforementioned hole-filling method, we perform lots of experiments to validate the proposed algorithm.
From Fig. 12 to Fig. 14, (a) is the mesh with holes, (b) is the repaired result, (c) is the error map between the original
mesh and the filled mesh, and (d) is the error analysis between the original mesh and the mesh repaired by one
commercial software package. Tab. 2 gives the running time of our hole-filling algorithm, which includes the number of
the mesh triangles, the timings of hole-checking, implicit surface reconstruction, surface patch triangulation, and surface
blending. The experiments are carried out in the hardware configuration of PIV 2.8GHz and 256RAM. In order to
show the accuracy of our scheme, we compute the distance error between the repaired mesh and the original mesh
using 3D Comparison of the commercial software package.
Tab. 3 indicates the errors analysis between two meshes. In Tab. 3 Max_pos dist. means maximal positive distance;
Min_pos dist. is minimal positive distance; Min_neg dist. stands for minimal negative distance; Max_neg dist. is

V2

V1

P1

P2
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maximal negative distance; Standard dev. Means standard deviation. Tab. 2 shows that the error is relatively small. In
our experiments, we utilized the commercial software to fill in the holes of meshes, and then the error distances are
computed between the corresponding two meshes.

(a) (b)

(c) (d)

Fig. 12: Hole-filling example I—Teapot. (a) The mesh with a hole; (b) The repaired mesh; (c) The error map between
the original mesh and the repaired mesh; (d) The error map between the original mesh and the mesh repaired by
commercial software.

(a) (b)

(c) (d)

Fig. 13: Hole-filling example II—Foot. (a) The mesh with a hole; (b) The repaired mesh; (c) The error map between the
original mesh and the repaired mesh, (d) The error map between the original mesh and the mesh repaired by
commercial software.
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(a) (b)

(c) (d)

Fig. 14: Hole-filling example III—Teeth. (a) The mesh with a hole; (b) The repaired mesh; (c) The error map between
the original mesh and the repaired mesh; (d) The error map between the original mesh and the mesh repaired by
commercial software.

(a) (b)

Fig. 15: Error comparison between our algorithm and the commercial software; (a) is the maximal positive distance
error comparison; (b) is the standard deviation comparison.

The errors are given in Tab. 4, and it shows that the errors are greater than ours. Furthermore, we draw a bar chart of
the errors produced by our algorithm and by the commercial software, see Fig. 15. Fig. 15(a). shows the maximal
positive distance errors of our scheme and the commercial software; Fig. 15(b) stands for the standard deviation. From
these figures, it is clear that our scheme outweighs the hole-filling algorithm of the commercial software in terms of
accuracy. We also use the mean curvature of mesh to demonstrate the deviations of the repaired mesh and the original
mesh. Fig. 16 illustrates the mean curvature maps of the original mesh and the repaired mesh. The curvature
deviations are in the ellipsoid area where the curvature distribution is almost same with that of the original mesh, which
indicates the error is small.

5. CONCLUSIONS
In this paper, we propose a hole-filling algorithm to repair meshes with undesired holes. We employ the interpolation
property of RBFs to construct an implicit surface patch. Then, the triangulated surface patch is blended with the hole
mesh, which includes the following steps: identification of holes, selection of interpolation centers, reconstruction of the
implicit surface patch, blending of the implicit surface patch with the original mesh. In particular, in the blending
operation, we convert the point inclusion test from 3D into 2D by projecting the surface patch onto a coordinate plane,
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which mitigate the computational complexity. Experimental results validate the efficiency since it operates only in the
vicinity of holes and the numerical comparisons with commercial software indicate the accuracy of our method.

(a) (b)

Fig. 16: Mean curvature comparison, the mean curvature distribution is almost same in the ellipsoid area. (a) Mean
curvature distribution of the original mesh; (b) Mean curvature of the filled mesh.

Model Number of
Triangle

Hole checking
(sec.)

Implicit
surface (sec.)

Polygonization
(sec.)

Blending
(sec.)

Ttotal
(sec.)

Teapot 3029 0.27 0.16 0.05 0.47 0.95

Cylinder 3188 0.14 3.34 0.09 3.59 7.13

Foot 50718 1.09 27.22 0.22 30.18 58.71

Teeth 56312 24.06 34.45 2.8 61.34 122.65

Santa 150509 45.39 83.88 105.83 235.63 470.73

Tab. 2: Running time of the hole-filling algorithm.

Model Max_pos
dist. (mm)

Min_pos dist.
(mm)

Min_neg dist.
(mm)

Max_net dist.
(mm)

Standard
dev. (mm)

Teapot 0.1927 0.0096 -0.0096 -0.1927 0.01505

Cylinder 0.0097 0.0005 -0.0005 -0.0097 0.00165

Foot 0.2803 0.0386 -0.0386 -0.2803 0.01274

Teeth 0.0002 1e-5 -1e-5 -0.0002 1e-5

Santa 0.0001 1e-5 -1e-5 -0.0001 3e-6

Tab. 3: Error analysis between the repaired mesh and the original mesh.

Model Max_pos
dist. (mm)

Min_pos dist.
(mm)

Min_neg dist.
(mm)

Max_net dist.
(mm)

Standard
dev. (mm)

Teapot 0.2628 0.0131 -0.0131 -0.2628 0.02754

Cylinder 0.0269 0.0013 -0.0013 -0.0269 0.00333

Foot 0.3697 0.0386 -0.0386 -0.3697 0.02549

Teeth 0.0002 1e-5 -1e-5 -0.000 1e-5

Santa 6e-5 0 0 -6e-5 2e-6

Tab. 4: Errors between the meshes filled by the commercial software and the original mesh.
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However, there is also a limitation of the algorithm. That is the projected implicit surface patch should not contain any
folds in the direction of the projection. It means that the reconstructed surface patch is monotony in the projection
direction. To find more general method to deal with holes of arbitrary shapes is our future work.
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