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ABSTRACT 

 

This paper introduces an approach for speeding up the simulation on deformable objects with the 

boundary element method (BEM). According to the relationship between a matrix and its inverse, 

the inverse operation on an objective matrix can be completed by calculating the inverse of 

another matrix with smaller dimension. An update procedure on inverse calculation for three cases 

is analyzed to avoid directly computing the matrix inverse every time when the boundary condition 

changes. Besides, a fast matrix-matrix multiplication (MMM) method is conducted to further 

improve the computational speed.  
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1. INTRODUCTION 

Simulation on deformable bodies gains wide applications in these years. Various deformation approaches have been 

developed in literature [6], among which physically-based modeling technique is a very important one as it is based on 

realistic physical properties. As far as engineering precision is concerned, the finite element method (FEM) and the 

boundary element method (BEM) are two representatives. FEM is a very popular method in computational 

engineering [8, 13]. However, as it requires generating solid meshes from the volume data, the computation 

complexity is rather high. Comparatively, the boundary element method is more advantageous in this aspect. 

When simulating deformable objects, boundary element method is preferred because of its two superiorities: high 

accuracy and efficiency [16]. In the simulation of low-latency interactive simulation on linear elastic models, the 

boundary element method is a good choice since the stiffness matrix can be pre-computed. Also, BEM is well suited to 

be applied in tracking deformable objects by template matching algorithm [9], since it only requires the surface 

tessellation of a flexible object. For the research of virtual sculpting and volume modeling, boundary element method 

also exhibits its advantages as a good physically-based deformation technique [12]. Because of these remarkable 

virtues, we adopt BEM in our research to simulate static linear elastic deformation, which gives an accurate description 

on small deformations of objects.   

In our work, the unknown deformation is obtained based on the external displacement. Compared with the 

external force, the input displacement can be precisely measured with little difficulty, which makes the implementation 

much easier. During the simulation, in order to achieve real-time deformation, the key problem is the speed of 

calculating matrix inverse. A capacitance matrix algorithm (CMA) was proposed in [14]. As matrix dimension is the 

most influential factor which affects the computational time in our research, some transformation technique will be 

carried out to decrease the matrix dimensions in this paper. By constructing the relationship between a matrix and its 

inverse, the inverse operation on an objective matrix could be replaced by calculating the inverse of a matrix with 

smaller size. After that, the computation is further speeded up by applying a matrix inverse update procedure, with 

which only small rank perturbation is applied on the original matrix. Three cases of the changes on matrix dimension 

are considered. In this way, a series of algebraic operations on matrices replace the re-computation of inverse matrix. 

In addition, as calculating matrix products is also a time-consuming process when it is frequently carried out, Strassen-

Winograd (SW) [11] algorithm is incorporated to speed up the matrix-matrix multiplication process. Through these 

three acceleration techniques, our approach shows significant effects on the improvement of computing speed 
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Our paper is organized as follows. Section 2 gives a description on the deformation technique by the boundary 

element method. The local updating technique for computing inversed matrices is discussed in section 3. Section 4 

introduces a fast matrix multiplication method. Experimental results and analysis are finally given in section 5. 

 

2. THE DEFORMATION TECHNIQUE BY BOUNDARY ELEMENT METHOD 

The equilibrium condition of linear elastic objects with isotropic and homogeneous material properties can be given by 

the well-known Navier equation [1]. To solve the Navier equation, the finite element method and the boundary 

element method are two popular approaches. For the later approach, as the displacement and traction can be 

evaluated directly on the surface mesh of objects, it avoids generating solid mesh from the volume data and improves 

the computation efficiency. 

For an object with boundaryΓ , the Navier equation is transformed into a boundary integral equation, which can 

be expressed as (assume there is no body force)  

Γ=Γ+ ∫∫ ΓΓ
dutdtuuc pqqpqqrefpq
**

                                                                                                 (1) 

where refu is the displacement of a reference point on Γ , 
*

pqt  and 
*

pqu are  the fundamental solutions to the Navier 

equation. pqc  is the smoothness coefficient of the reference point. [ ]Tpzpypxp tttt = and 

[ ]Tpzpypxp uuuu = denote the tractions and displacements of a point on the surface Γ .  By approximating Γ  

with a set of node points, and applying each of the node points as reference point in Eqn.(1), a series of linear 

equations can be obtained. Expressing the linear equations in matrix form gives  
 

GtHu =                                                                                                 (2) 

where H  is a function of  
*

pqt  and pqc , G  is a function of 
*

pqu , u  and t denote the displacement and traction 

vectors at the node points of the object respectively. Further detailed information about the boundary element 

technique can be referred in [1].  

We know that, at the known external displacement nodes, the tractions are unknown. On the contrary, the 

displacement is unknown of a node where the traction is zero. The elements on an object can hence be classified into 

two groups: vertices with known displacement and vertices with unknown displacement. Partitioning the tractions and 

displacements according to these two attributes, and dividing K  into four sub-matrices accordingly, we may transform 

Eqn. (2) into 
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where HGK
1−=  is the stiffness matrix, which involves the effects of Poisson’s ratio and shear modulus , 

k
t  and 

u
t are the known and unknown force vectors, 

u
u  and 

k
u  are the corresponding unknown and known displacement 

vectors. Define kn  as the number of nodes with known displacements, un  as the number of nodes with unknown 

displacements, then 
u
u  is a vector with un components, 

k
u  is with kn  components. Since the nodes with unknown 

displacement are those with zero traction, 11K is a square matrix and the dimension is uu nn × .  

During the deformation, 
u
u is calculated based on a set of 

k
u  and a set of zero traction vectors 

k
t at the force nodes, 

Eqn. (3) gives 

ku
uKKu 12

1
11
−−=                (4) 

In order to achieve a fast simulation, K  is calculated in the pre-computation process. During every step of the 

simulation, the boundary constraints may change, which means the displacement of every element may alter between 

known and unknown. The dimension and elements of matrices 11K  and 12K  may also be changed. 11K  and 

12K are thus formed by selecting the corresponding values in matrix K  according to different boundary conditions. 

1
11
−

K  is then computed from 11K . If the number of unknown displacements is much larger than that of the known 
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displacements (i.e., ku nn >> ), the time spent on directly calculating 
1

11

−
K  will be very long. Aimed to solve this 

problem, a transformation is carried out. 

As we know, IKK =−1
 can be expressed in terms of their sub-matrices form, which is 
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Since 
1−

K has already been obtained in pre-computation, 11D , 12D , 21D and 22D  are determined in the same way 

of 11K  and 12K . Eliminating 12K  in Eqn.(5), we can get 

21
1

221211
1

11 DDDDK
−− −=                 (6) 

where the size of 22D is kk nn × . Thus, the unknown displacement can also be calculated by 

ku
uKDDDDu 121121

1
2212 )( −= −              (7) 

In most cases, un is much bigger than ku .In this way, we decrease the dimension of the matrix which needs to be 

inverted. For an mm×  matrix, the time complexity for evaluating its inverse is )( 3mO . Then, the time complexity for 

evaluating 
1

11
−

K  and 
1

22
−

D  are respectively )( 3
unO  and )( 3

knO . Therefore, when ku nn >> , using Eqn.(7) to 

compute 
u
u  greatly reduces the computing time. 

 

3. UPDATING THE INVERSE OF MATRICES 

From the expression about the unknown displacement, we may find out that it is unavoidable to calculate the inverse 

of matrices. As this operation is a very time-consuming process, many efforts have been devoted to enhance the 

computational efficiency [15].  Instead of re-calculating the inverse matrix by Gauss-Jordan method, we prefer to 

adopt some local update strategy to determine it from previous one. A very common way is introduced in [10]. By 

using some numerical techniques, it is possible to update the inverse of a matrix after a small rank perturbation based 

on the original inverse matrix.  According to the changes on the matrix dimension during the simulation, three cases 

may be shown, that is, matrix with invariable, increased and decreased dimensions. Different processing steps are 

taken in different cases. 

 

3.1 Matrix with Invariable Dimension 

During the deformation, there may be changes in the boundary conditions, but the total number of known 

displacements remains unchanged. Under this circumstance, the values of some rows and columns in matrix 22D  are 

altered, but the dimension remains unchanged. A fast procedure is applied to update the inverse of 22D  with 

invariable dimension. 

Assume both 0M  (original matrix) and M  (updated matrix) are invertible nn×  matrices.  Suppose only s  

columns of 0M  change, let sn×P  be the matrix consists of the replaced columns, and sn×Q  be the replacement, 

defining PQM −=δ , we have 

T
MEMM δ+= 0               (8) 

where E is the sn×  sub-matrix of a nn×  identity matrix [14]. 

Following the form of Woodbury formula [10], if both A and UVAI
1−−  are invertible matrices, there is 

[ ] 111111
)( −−−−−− −+=− VAUVAIUAAUVA            (9) 

Then applying the Woodbury formula on Eqn.(8), we can get 

( ) [ ] 1
0

11
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1
0

1
0

1
0

1 )(
−−−−−−− +−=+= MEMMEIMMMMEMM

TT δδδ                     (10) 

where )(
1

0 MMEI δ−+ T
is the matrix that needs to be directly inverted by Gauss-Jordan method and its dimension is 

ss×  ( ns << ). As the numerical values of
1

0
−

M have been recorded, and Mδ  and 
T
E can be easily obtained from 
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the change of boundary conditions, it is not difficult to calculate )(
1

0 MMEI δ−+ T
. 

1−
M can then be updated by 

Eqn.(10). 

 

3.2 Matrix with Increased Dimension 

When objects deform, it is quite often that the number of boundary constraints changes. For this case, there are two 

possibilities: constraints enlarge and constraints shrink. When the first situation occurs, the number of known 

displacement increases, thus bringing about a rise in the dimension of matrix 22D . Therefore, a study on how to 

update the inverse of a matrix with an increased size is necessary. 

When MM →0 , the size of matrix enlarges from nn×  to )()( snsn +×+ . In this case, a Schur complement is 

introduced to complete the inverse update process. Assume that 
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according to Duncan [5], 
1−

M  can be expressed as 
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where UVMDC
1

0
−−=  is an ss× matrix  called Schur complement. 

 

3.3 Matrix with Decreased Dimension 

Just as what we have mentioned in the previous section, there is another case that the boundary constraints may 

shrink, which means the number of known displacement decreases.  Thus, the third situation must be considered 

where the dimension of  22D  decreases. 

When MM →0 , the size of matrix reduces from nn×  to )()( snsn −×− . Let 
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On the other hand, as                                                                                                                                                  
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It is not difficult to have that                                                                                                                                                                            
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 Comparing the corresponding items in Eqn. (13) and (15), there is                                                                 

'''
'
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Again, comparing the upper-left quarter in Eqn. (13) and (15), we have                                     
1111' −−−− += VMUCMMM ,          (17) 

which can be easily deduced into 

'''' 11
VDUMM

−− −=                          (18) 

where 'D  is an ss×  matrix. 

For all the above three conditions, 
1−

M  can be calculated form 
1

0
−

M  and some perturbation matrices based on 

0M . The size of the matrix needs to be inverted by traditional Gauss-Jordon way is reduced to s x s. Thus, the update 

process can be completed quickly.  
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4. THE IMPLEMENTATION OF FAST MATRIX MULTIPLICATION ALGORITHM 

In the previous section, we improve the efficiency of calculating the matrix inverse by applying some algebraic 

operations on matrices, namely, addition, subtraction and multiplication, where the matrix-matrix multiplication is a 

frequently involved operation. Normally, this is completed by one of the Basic Linear Algorithm Subroutines (BLAS) 

[2]. When huge matrices are multiplied together, the time spending on calculating the products in the traditional way 

will be extremely long. Aimed at this problem, some algorithms are designed to obtain a high performance Matrix-

Matrix Multiplication (MMM) [4, 17]. In our research, GEMMW [3] algorithm is adopted.  

In general, the direct calculation of the products of two nn×  matrices  

∑
=

=
n

k

kjikij ba

1

)(AB                       (19) 

requires )( 3nO operations [7].  In contrast, Strassen-Winograd’s algorithm only costs )(
7log2nO operations, thus is 

more asymptotically efficient. Strassen-Winograd’s algorithm is realized in the following way. Define A and B as 

matrices of dimensions km× and nk ×  respectively (m , n and k are even numbers), A , B  and ABC = can be 

divided into four equally sized blocks 
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To calculate matrixC , instead of 8 multiplications and 4 additions on the sub-matrices of A and B  in general 

method, Strassen-Winograd’s algorithm recursively forms the products of two matrices in 7 matrix multiplications and 

15 additions. Detail of the algorithm can be found in [11]. 

Based on this idea, Douglas developed a portable level 3 BLAS Winograd variant of Strassen’s matrix multiply 

algorithm, which is called GEMMW. Unlike other methods which also adopt SW algorithm, GEMMW can be applied 

on non-square matrices. And it does not restrict the matrix dimensions to 
k2  (k is a natural number). Besides, 

GEMMW implements Strassen-Winograd with a minimum of extra storage. 

However, as we adopt C style data structure (matrix data are stored in row order) in the simulation, while GEMMW 

is designed in Fortran style (matrix data are stored in column order), data transformation is required to modify the 

standard GEMMW to be applicable in our application. 

 

5. EXPERIMENTAL RESULTS 

As stated in section 3, the matrix inverse is the most time-consuming step. Hence, the performance of the simulation 

system is directly affected by the matrix size. Eqn.(7) can effectively reduce the dimension of matrix which needs to be 

inverted, thus greatly shaving off the time cost on this process. The advantage of Eqn.(7) has been clearly elucidated in 

[16] by experiments and analysis. In this section, we will put the emphasis on verifying the efficiency of the local 

update procedure for inversed matrices and Strassen-Winograd algorithm in our applications. The experiments consist 

of three parts. In the first part, the performance with and without applying the local inversing procedure is tested. The 

difference between the computation time with and without applying SW algorithm is presented in the second part. 

Finally, an example of the deformation on a footwear model by the boundary element method is demonstrated. All the 

tests are performed on a PC with Pentium4 3.0 GHz CPU and 1G Bytes memory. 

 

5.1 Comparing Performance with and without Applying Update Matrix Inverse Procedure 

As we know, the simulation time is affected by the total amount of meshes on a geometric model to a large extent. 

Even for the same object with the same mesh size, different boundary constraints, namely, different numbers of known 

and unknown displacement elements, will cause different performance. Besides, for the update on the inverse matrix 

under the three situations discussed in section 3, as the dimension of the matrix which needs to be inverted directly by 

Gauss-Jordan method is ss× , the number of changed boundary constraints also has certain influence on the ultimate 

simulation efficiency. Based on these factors, experiments are conducted to measure the performance of a surface 

model whose total number of elements is 2100, with the amount of elements with known displacement varying form 

300 to 700.  For a given number of elements with known displacements, the computation time on matrix inverse by 

the traditional Gauss-Jordan method is compared with our accelerated approach.  In order to find out how the number 

of changed boundary constraints affects the simulation performance, different cases are also tested when s =20, 40 

and 60. 
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(a) invariable dimension 

Re-computation v.s.Update Inverse(Increased Size)
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(b) increased dimension 

Re-computation v.s.Update Inverse(Decreased Size)
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(c) decreased dimension 

Fig. 1. Computation time with/without matrix inverse update method. 

 

Fig. 1(a). shows the computation time when there is no dimensional change, but only numerical values changes with 

the matrix. From the figure, it can be found out that when the update process on matrix inverse is applied, the speed is 

greatly improved comparing to the conventional method (i.e., re-computing). What’s more, we can also see that the 

less is the number of changed boundary constraints, the faster is the update process completed. This conclusion is also 
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applicable for other two cases, just as what can be concluded from Fig. 1(b). and Fig. 1(c)., where the matrix 

dimension is increased and decreased respectively. 

Comparing the above three figures, we may also conclude that under the equivalent simulation condition, when the 

matrix size is reduced, the time required to implement the update procedure is much smaller than that under the other 

two situations. 
 

5.2 Comparing Performance with and without Applying SW Algorithm 

Fig. 2. shows the effect when SW algorithm is used.  This experiment is completed on a cube model with 1000 

elements. When the percentage of the elements with known displacement varies form 10% to 40%, which means the 

number of unknown displacements increases from 600 to 900, there is a decreasing trend in the computation time of 

both general matrix-matrix multiplication and Strassen-Winagrad algorithm. With the aid of Strassen-Winagrad 

algorithm, about half of the time required for the conventional method is saved.  From the same figure, we may also 

find out that the slope of the red curve is not as steep as that of the blue one. When the number of unknown varies 

form 600 to 900, the computation time by the general MMM method changes from more than 5 seconds from less than 

2 seconds, while the time by the SW algorithm alters from about 2 seconds to nearly 1 second. This means that the 

efficiency of SW algorithm is not so sensitive to the variety of the matrix size, and thus it is more stable. However, when 

the dimension of matrix is smaller than certain value [3], the SW algorithm may lose its superiority to general MMM 

method. Just as what can be seen from the following figure, when the percentage of the number of known 

displacement elements to the total element number becomes lower, there is a tendency that the two curves will 

converge.  
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Fig. 2. Computation time with/without Straesen-Winograd algorithm. 

 

Combining the results of the above two experiments, it can be concluded that, by adopting the local update procedure 

to compute inverse matrix and the SW method to compute matrix multiplication, we can improve the computational 

speed greatly. This proves that the accelerated approach introduced in this paper is efficient in improving the 

simulation performance. 

 

5.3 The Simulation of a Footwear Model by the Boundary Element Method 

The accelerated boundary element method is implemented to simulate the deformation of some elastic models. The 

following figure is the application on a footwear model in different stages. Fig. 3(a). shows the original state of the 

sports shoe. Before the deformation, most areas of the sole bottom are in contacting with the ground. With the front 

portion of the sole bottom being supported by the floor, and external forces applied on the supposed contact region 

between the shoe and foot, the latter part of the footwear model gradually deviate from the ground. During the whole 

process, the contacting area between the shoe and the floor is reduced, while the touching points between the shoe 

and the foot is enlarged. The general deformation conforms to our intuition. Fig.3(b). and Fig. 3(c). show two stages 

during the deformation. 
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(a) footwear model before deformation  

 
(b) footwear model during the deformation at stage 1 

 
(c) footwear model during the deformation at stage 2 

Fig. 3. The deformation of footwear model at different stages. 

 

 

6. CONCLUSION 
In this paper, an accelerated method which enhances the simulation efficiency on deformable bodies by BEM is 

presented. This improvement is led by reducing the dimension of matrices need to be inverted and applying some 

numerical techniques about matrix operations. Experiments and analysis prove that our method can obtain an obvious 

speedup on the computational time. Besides, the simulation performance is more stable by using this accelerated 

approach. A deformation example on a footwear model demonstrates that the deformation technique is applicable in 

general. 
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