

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 761-769

761

An Accelerated BEM Approach for the Simulation of Deformable Objects

A. F. Zhou1, K. C. Hui2, Y. M. Tang3 and Charlie C. L. Wang4

1The Chinese University of Hong Kong, afzhou@acae.cuhk.edu.hk
2The Chinese University of Hong Kong, kchui@acae.cuhk.edu.hk

3The Chinese University of Hong Kong, ymtang@acae.cuhk.edu.hk
4The Chinese University of Hong Kong, cwang@acae.cuhk.edu.hk

ABSTRACT

This paper introduces an approach for speeding up the simulation on deformable objects with the

boundary element method (BEM). According to the relationship between a matrix and its inverse,

the inverse operation on an objective matrix can be completed by calculating the inverse of

another matrix with smaller dimension. An update procedure on inverse calculation for three cases

is analyzed to avoid directly computing the matrix inverse every time when the boundary condition

changes. Besides, a fast matrix-matrix multiplication (MMM) method is conducted to further

improve the computational speed.

Keywords: boundary element method, matrix inverse update, Strassen-Winograd algorithm

1. INTRODUCTION

Simulation on deformable bodies gains wide applications in these years. Various deformation approaches have been

developed in literature [6], among which physically-based modeling technique is a very important one as it is based on

realistic physical properties. As far as engineering precision is concerned, the finite element method (FEM) and the

boundary element method (BEM) are two representatives. FEM is a very popular method in computational

engineering [8, 13]. However, as it requires generating solid meshes from the volume data, the computation

complexity is rather high. Comparatively, the boundary element method is more advantageous in this aspect.

When simulating deformable objects, boundary element method is preferred because of its two superiorities: high

accuracy and efficiency [16]. In the simulation of low-latency interactive simulation on linear elastic models, the

boundary element method is a good choice since the stiffness matrix can be pre-computed. Also, BEM is well suited to

be applied in tracking deformable objects by template matching algorithm [9], since it only requires the surface

tessellation of a flexible object. For the research of virtual sculpting and volume modeling, boundary element method

also exhibits its advantages as a good physically-based deformation technique [12]. Because of these remarkable

virtues, we adopt BEM in our research to simulate static linear elastic deformation, which gives an accurate description

on small deformations of objects.

In our work, the unknown deformation is obtained based on the external displacement. Compared with the

external force, the input displacement can be precisely measured with little difficulty, which makes the implementation

much easier. During the simulation, in order to achieve real-time deformation, the key problem is the speed of

calculating matrix inverse. A capacitance matrix algorithm (CMA) was proposed in [14]. As matrix dimension is the

most influential factor which affects the computational time in our research, some transformation technique will be

carried out to decrease the matrix dimensions in this paper. By constructing the relationship between a matrix and its

inverse, the inverse operation on an objective matrix could be replaced by calculating the inverse of a matrix with

smaller size. After that, the computation is further speeded up by applying a matrix inverse update procedure, with

which only small rank perturbation is applied on the original matrix. Three cases of the changes on matrix dimension

are considered. In this way, a series of algebraic operations on matrices replace the re-computation of inverse matrix.

In addition, as calculating matrix products is also a time-consuming process when it is frequently carried out, Strassen-

Winograd (SW) [11] algorithm is incorporated to speed up the matrix-matrix multiplication process. Through these

three acceleration techniques, our approach shows significant effects on the improvement of computing speed

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 761-769

762

Our paper is organized as follows. Section 2 gives a description on the deformation technique by the boundary

element method. The local updating technique for computing inversed matrices is discussed in section 3. Section 4

introduces a fast matrix multiplication method. Experimental results and analysis are finally given in section 5.

2. THE DEFORMATION TECHNIQUE BY BOUNDARY ELEMENT METHOD

The equilibrium condition of linear elastic objects with isotropic and homogeneous material properties can be given by

the well-known Navier equation [1]. To solve the Navier equation, the finite element method and the boundary

element method are two popular approaches. For the later approach, as the displacement and traction can be

evaluated directly on the surface mesh of objects, it avoids generating solid mesh from the volume data and improves

the computation efficiency.

For an object with boundaryΓ , the Navier equation is transformed into a boundary integral equation, which can

be expressed as (assume there is no body force)

Γ=Γ+ ∫∫ ΓΓ
dutdtuuc pqqpqqrefpq
**

 (1)

where refu is the displacement of a reference point on Γ ,
*

pqt and
*

pqu are the fundamental solutions to the Navier

equation. pqc is the smoothness coefficient of the reference point. []Tpzpypxp tttt = and

[]Tpzpypxp uuuu = denote the tractions and displacements of a point on the surface Γ . By approximating Γ

with a set of node points, and applying each of the node points as reference point in Eqn.(1), a series of linear

equations can be obtained. Expressing the linear equations in matrix form gives

GtHu = (2)

where H is a function of
*

pqt and pqc , G is a function of
*

pqu , u and t denote the displacement and traction

vectors at the node points of the object respectively. Further detailed information about the boundary element

technique can be referred in [1].

We know that, at the known external displacement nodes, the tractions are unknown. On the contrary, the

displacement is unknown of a node where the traction is zero. The elements on an object can hence be classified into

two groups: vertices with known displacement and vertices with unknown displacement. Partitioning the tractions and

displacements according to these two attributes, and dividing K into four sub-matrices accordingly, we may transform

Eqn. (2) into




















=












=












k

u

k

u

u

k

u

u

KK

KK

u

u
K

t

t

2221

1211
 (3)

where HGK
1−= is the stiffness matrix, which involves the effects of Poisson’s ratio and shear modulus ,

k
t and

u
t are the known and unknown force vectors,

u
u and

k
u are the corresponding unknown and known displacement

vectors. Define kn as the number of nodes with known displacements, un as the number of nodes with unknown

displacements, then
u
u is a vector with un components,

k
u is with kn components. Since the nodes with unknown

displacement are those with zero traction, 11K is a square matrix and the dimension is uu nn × .

During the deformation,
u
u is calculated based on a set of

k
u and a set of zero traction vectors

k
t at the force nodes,

Eqn. (3) gives

ku
uKKu 12

1
11
−−= (4)

In order to achieve a fast simulation, K is calculated in the pre-computation process. During every step of the

simulation, the boundary constraints may change, which means the displacement of every element may alter between

known and unknown. The dimension and elements of matrices 11K and 12K may also be changed. 11K and

12K are thus formed by selecting the corresponding values in matrix K according to different boundary conditions.

1
11
−

K is then computed from 11K . If the number of unknown displacements is much larger than that of the known

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 761-769

763

displacements (i.e., ku nn >>), the time spent on directly calculating
1

11

−
K will be very long. Aimed to solve this

problem, a transformation is carried out.

As we know, IKK =−1
 can be expressed in terms of their sub-matrices form, which is









=

















I0

0I

DD

DD

KK

KK

2221

1211

2221

1211
 (5)

Since
1−

K has already been obtained in pre-computation, 11D , 12D , 21D and 22D are determined in the same way

of 11K and 12K . Eliminating 12K in Eqn.(5), we can get

21
1

221211
1

11 DDDDK
−− −= (6)

where the size of 22D is kk nn × . Thus, the unknown displacement can also be calculated by

ku
uKDDDDu 121121

1
2212)(−= − (7)

In most cases, un is much bigger than ku .In this way, we decrease the dimension of the matrix which needs to be

inverted. For an mm× matrix, the time complexity for evaluating its inverse is)(3mO . Then, the time complexity for

evaluating
1

11
−

K and
1

22
−

D are respectively)(3
unO and)(3

knO . Therefore, when ku nn >> , using Eqn.(7) to

compute
u
u greatly reduces the computing time.

3. UPDATING THE INVERSE OF MATRICES

From the expression about the unknown displacement, we may find out that it is unavoidable to calculate the inverse

of matrices. As this operation is a very time-consuming process, many efforts have been devoted to enhance the

computational efficiency [15]. Instead of re-calculating the inverse matrix by Gauss-Jordan method, we prefer to

adopt some local update strategy to determine it from previous one. A very common way is introduced in [10]. By

using some numerical techniques, it is possible to update the inverse of a matrix after a small rank perturbation based

on the original inverse matrix. According to the changes on the matrix dimension during the simulation, three cases

may be shown, that is, matrix with invariable, increased and decreased dimensions. Different processing steps are

taken in different cases.

3.1 Matrix with Invariable Dimension

During the deformation, there may be changes in the boundary conditions, but the total number of known

displacements remains unchanged. Under this circumstance, the values of some rows and columns in matrix 22D are

altered, but the dimension remains unchanged. A fast procedure is applied to update the inverse of 22D with

invariable dimension.

Assume both 0M (original matrix) and M (updated matrix) are invertible nn× matrices. Suppose only s

columns of 0M change, let sn×P be the matrix consists of the replaced columns, and sn×Q be the replacement,

defining PQM −=δ , we have

T
MEMM δ+= 0 (8)

where E is the sn× sub-matrix of a nn× identity matrix [14].

Following the form of Woodbury formula [10], if both A and UVAI
1−− are invertible matrices, there is

[] 111111
)(−−−−−− −+=− VAUVAIUAAUVA (9)

Then applying the Woodbury formula on Eqn.(8), we can get

() [] 1
0

11
0

1
0

1
0

1
0

1)(
−−−−−−− +−=+= MEMMEIMMMMEMM

TT δδδ (10)

where)(
1

0 MMEI δ−+ T
is the matrix that needs to be directly inverted by Gauss-Jordan method and its dimension is

ss× (ns <<). As the numerical values of
1

0
−

M have been recorded, and Mδ and
T
E can be easily obtained from

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 761-769

764

the change of boundary conditions, it is not difficult to calculate)(
1

0 MMEI δ−+ T
.

1−
M can then be updated by

Eqn.(10).

3.2 Matrix with Increased Dimension

When objects deform, it is quite often that the number of boundary constraints changes. For this case, there are two

possibilities: constraints enlarge and constraints shrink. When the first situation occurs, the number of known

displacement increases, thus bringing about a rise in the dimension of matrix 22D . Therefore, a study on how to

update the inverse of a matrix with an increased size is necessary.

When MM →0 , the size of matrix enlarges from nn× to)()(snsn +×+ . In this case, a Schur complement is

introduced to complete the inverse update process. Assume that

() () 







= ×

+×+
DV

UM
M

nn
snsn

)(0 , (11)

according to Duncan [5],
1−

M can be expressed as













−

−+
=

−−−

−−−−−−
−

11
0

1

11
0

1
0

11
0

1
01

CVMC

UCMVMUCMM
M (12)

where UVMDC
1

0
−−= is an ss× matrix called Schur complement.

3.3 Matrix with Decreased Dimension

Just as what we have mentioned in the previous section, there is another case that the boundary constraints may

shrink, which means the number of known displacement decreases. Thus, the third situation must be considered

where the dimension of 22D decreases.

When MM →0 , the size of matrix reduces from nn× to)()(snsn −×− . Let









= −×−−

×
''

''
)(

)()(1
0

DV

UM
M

snsn
nn (13)

On the other hand, as

() ()








= −×−

DV

UM
M

snsn
0 (14)

It is not difficult to have that













−

−+
=








−−−

−−−−−−−

111

1111111

CVMC

UCMVMUCMM

DV

UM
 (15)

 Comparing the corresponding items in Eqn. (13) and (15), there is

'''
'

' 111

11

1







=⇒
=−

=− −−−
−−

−

VDUUCVMM
VVMC

UUCM
 (16)

Again, comparing the upper-left quarter in Eqn. (13) and (15), we have
1111' −−−− += VMUCMMM , (17)

which can be easily deduced into

'''' 11
VDUMM

−− −= (18)

where 'D is an ss× matrix.

For all the above three conditions,
1−

M can be calculated form
1

0
−

M and some perturbation matrices based on

0M . The size of the matrix needs to be inverted by traditional Gauss-Jordon way is reduced to s x s. Thus, the update

process can be completed quickly.

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 761-769

765

4. THE IMPLEMENTATION OF FAST MATRIX MULTIPLICATION ALGORITHM

In the previous section, we improve the efficiency of calculating the matrix inverse by applying some algebraic

operations on matrices, namely, addition, subtraction and multiplication, where the matrix-matrix multiplication is a

frequently involved operation. Normally, this is completed by one of the Basic Linear Algorithm Subroutines (BLAS)

[2]. When huge matrices are multiplied together, the time spending on calculating the products in the traditional way

will be extremely long. Aimed at this problem, some algorithms are designed to obtain a high performance Matrix-

Matrix Multiplication (MMM) [4, 17]. In our research, GEMMW [3] algorithm is adopted.

In general, the direct calculation of the products of two nn× matrices

∑
=

=
n

k

kjikij ba

1

)(AB (19)

requires)(3nO operations [7]. In contrast, Strassen-Winograd’s algorithm only costs)(
7log2nO operations, thus is

more asymptotically efficient. Strassen-Winograd’s algorithm is realized in the following way. Define A and B as

matrices of dimensions km× and nk × respectively (m , n and k are even numbers), A , B and ABC = can be

divided into four equally sized blocks

















=









2221

1211

2221

1211

2221

1211

BB

BB

AA

AA

CC

CC
 (20)

To calculate matrixC , instead of 8 multiplications and 4 additions on the sub-matrices of A and B in general

method, Strassen-Winograd’s algorithm recursively forms the products of two matrices in 7 matrix multiplications and

15 additions. Detail of the algorithm can be found in [11].

Based on this idea, Douglas developed a portable level 3 BLAS Winograd variant of Strassen’s matrix multiply

algorithm, which is called GEMMW. Unlike other methods which also adopt SW algorithm, GEMMW can be applied

on non-square matrices. And it does not restrict the matrix dimensions to
k2 (k is a natural number). Besides,

GEMMW implements Strassen-Winograd with a minimum of extra storage.

However, as we adopt C style data structure (matrix data are stored in row order) in the simulation, while GEMMW

is designed in Fortran style (matrix data are stored in column order), data transformation is required to modify the

standard GEMMW to be applicable in our application.

5. EXPERIMENTAL RESULTS

As stated in section 3, the matrix inverse is the most time-consuming step. Hence, the performance of the simulation

system is directly affected by the matrix size. Eqn.(7) can effectively reduce the dimension of matrix which needs to be

inverted, thus greatly shaving off the time cost on this process. The advantage of Eqn.(7) has been clearly elucidated in

[16] by experiments and analysis. In this section, we will put the emphasis on verifying the efficiency of the local

update procedure for inversed matrices and Strassen-Winograd algorithm in our applications. The experiments consist

of three parts. In the first part, the performance with and without applying the local inversing procedure is tested. The

difference between the computation time with and without applying SW algorithm is presented in the second part.

Finally, an example of the deformation on a footwear model by the boundary element method is demonstrated. All the

tests are performed on a PC with Pentium4 3.0 GHz CPU and 1G Bytes memory.

5.1 Comparing Performance with and without Applying Update Matrix Inverse Procedure

As we know, the simulation time is affected by the total amount of meshes on a geometric model to a large extent.

Even for the same object with the same mesh size, different boundary constraints, namely, different numbers of known

and unknown displacement elements, will cause different performance. Besides, for the update on the inverse matrix

under the three situations discussed in section 3, as the dimension of the matrix which needs to be inverted directly by

Gauss-Jordan method is ss× , the number of changed boundary constraints also has certain influence on the ultimate

simulation efficiency. Based on these factors, experiments are conducted to measure the performance of a surface

model whose total number of elements is 2100, with the amount of elements with known displacement varying form

300 to 700. For a given number of elements with known displacements, the computation time on matrix inverse by

the traditional Gauss-Jordan method is compared with our accelerated approach. In order to find out how the number

of changed boundary constraints affects the simulation performance, different cases are also tested when s =20, 40

and 60.

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 761-769

766

Re-computation v.s.Update Inverse(Invariable Size)

0

1

2

3

4

5

300 350 400 450 500 550 600 650 700
number of elements w ith know n displacements

c
o
m
p
u
ta
tio
n
 t
im
e
(s
)

num_changed=20 num_changed=40 num_changed=60 re-computaion

(a) invariable dimension

Re-computation v.s.Update Inverse(Increased Size)

0

1

2

3

4

5

300 350 400 450 500 550 600 650 700
number of elements w ith know n displacements

c
o
m
p
u
ta
tio
n
 t
im
e
(s
)

num_changed=20 num_changed=40 num_changed=60 re-computaion

(b) increased dimension

Re-computation v.s.Update Inverse(Decreased Size)

0

1

2

3

4

5

300 350 400 450 500 550 600 650 700
number of elements w ith know n displacements

c
o
m
p
u
ta
tio
n
 t
im
e
(s
)

num_changed=20 num_changed=40 num_changed=60 re-computaion

(c) decreased dimension

Fig. 1. Computation time with/without matrix inverse update method.

Fig. 1(a). shows the computation time when there is no dimensional change, but only numerical values changes with

the matrix. From the figure, it can be found out that when the update process on matrix inverse is applied, the speed is

greatly improved comparing to the conventional method (i.e., re-computing). What’s more, we can also see that the

less is the number of changed boundary constraints, the faster is the update process completed. This conclusion is also

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 761-769

767

applicable for other two cases, just as what can be concluded from Fig. 1(b). and Fig. 1(c)., where the matrix

dimension is increased and decreased respectively.

Comparing the above three figures, we may also conclude that under the equivalent simulation condition, when the

matrix size is reduced, the time required to implement the update procedure is much smaller than that under the other

two situations.

5.2 Comparing Performance with and without Applying SW Algorithm

Fig. 2. shows the effect when SW algorithm is used. This experiment is completed on a cube model with 1000

elements. When the percentage of the elements with known displacement varies form 10% to 40%, which means the

number of unknown displacements increases from 600 to 900, there is a decreasing trend in the computation time of

both general matrix-matrix multiplication and Strassen-Winagrad algorithm. With the aid of Strassen-Winagrad

algorithm, about half of the time required for the conventional method is saved. From the same figure, we may also

find out that the slope of the red curve is not as steep as that of the blue one. When the number of unknown varies

form 600 to 900, the computation time by the general MMM method changes from more than 5 seconds from less than

2 seconds, while the time by the SW algorithm alters from about 2 seconds to nearly 1 second. This means that the

efficiency of SW algorithm is not so sensitive to the variety of the matrix size, and thus it is more stable. However, when

the dimension of matrix is smaller than certain value [3], the SW algorithm may lose its superiority to general MMM

method. Just as what can be seen from the following figure, when the percentage of the number of known

displacement elements to the total element number becomes lower, there is a tendency that the two curves will

converge.

Performance of General MMM Method v.s. SW Algorithm

0

1

2

3

4

5

6

10 15 20 25 30 35 40

number of known displacement elements / total element number (%)

c
o
m
p
u
ta
ti
o
n
 t
im
e
(s
)

General MMM Method SW Algorithm

Fig. 2. Computation time with/without Straesen-Winograd algorithm.

Combining the results of the above two experiments, it can be concluded that, by adopting the local update procedure

to compute inverse matrix and the SW method to compute matrix multiplication, we can improve the computational

speed greatly. This proves that the accelerated approach introduced in this paper is efficient in improving the

simulation performance.

5.3 The Simulation of a Footwear Model by the Boundary Element Method

The accelerated boundary element method is implemented to simulate the deformation of some elastic models. The

following figure is the application on a footwear model in different stages. Fig. 3(a). shows the original state of the

sports shoe. Before the deformation, most areas of the sole bottom are in contacting with the ground. With the front

portion of the sole bottom being supported by the floor, and external forces applied on the supposed contact region

between the shoe and foot, the latter part of the footwear model gradually deviate from the ground. During the whole

process, the contacting area between the shoe and the floor is reduced, while the touching points between the shoe

and the foot is enlarged. The general deformation conforms to our intuition. Fig.3(b). and Fig. 3(c). show two stages

during the deformation.

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 761-769

768

(a) footwear model before deformation

(b) footwear model during the deformation at stage 1

(c) footwear model during the deformation at stage 2

Fig. 3. The deformation of footwear model at different stages.

6. CONCLUSION
In this paper, an accelerated method which enhances the simulation efficiency on deformable bodies by BEM is

presented. This improvement is led by reducing the dimension of matrices need to be inverted and applying some

numerical techniques about matrix operations. Experiments and analysis prove that our method can obtain an obvious

speedup on the computational time. Besides, the simulation performance is more stable by using this accelerated

approach. A deformation example on a footwear model demonstrates that the deformation technique is applicable in

general.

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 761-769

769

7. ACKNOWLEDGMENTS

The work described in this paper was partially supported by a grant from the Research Grants Council of the Hong

Kong Special Administrative Region. (Project no. CUHK4197/04E)

8. REFERENCES

[1] Brebbia, C. A. and Dominguez, I., Boundary Elements: An Introductory Course (Second Edition),

Computational Mechanics Publications, c1992.

[2] Dongarra, J. J., DuCroz, J., Hanson, R. and Duff, I., A set of level 3 basic linear

algebra subprograms, ACM Trans. on Math. Soft., Vol. 16, No.1, 1990, pp 1-17.

[3] Douglas, C.C., Heroux, M., Slishman, G. and Smith, R.M., GEMMW: a portable level 3 BLAS Winograd variant

of Strassen’s matrix-matrix multiply algorithm, Journal of Computational Physics, Vol. 110, No. 1, 1994, pp 1-

10.

[4] Dumitrescu, B., Roch, J. L., and Trystram, D., Fast matrix multiplications algorithms on MIMD architectures,

Parallel Algorithms and Applications, Vol. 4, No. 2, 1994, pp 53–70.

[5] Duncan, W. J., Some devices for the solution of large sets of simultaneous linear equations, Philos, Mag. Ser. 7,

35, 1944, pp 660-670.

[6] Gibson, S. F. and Mirtich, B., A survey of deformable models in computer graphics, Technical Report TR-97-

19, Mitsubishi Electric Research Laboratories, Cambridge, MA, November 1997.

[7] Golub, G. H. and Van Loan, C. F., Matrix Computation, Johns Hopkins University Press, Baltimore and

London, third edition, 1996.

[8] Gourret, J. P. , Thalmann, N. M. and Thalmann D., Simulation of object and human skin deformation in a

grasping task, Computer Graphics, Vol. 23, No. 3, 1989, pp 21-29.

[9] Greminger, M. and Nelson, B., Deformable object tracking using the boundary element methd, IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR2003), Madison, WI, June, 2003.

[10] Hager, W. W., Updating the inverse of a Matrix. In SIAM Review, Vol. 31, No. 2, 1989, pp 221-239.

[11] Higham, N. J., Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1996.

[12] Hui, K. C. and Leung, H.C., Virtual sculpting and deformable volume modeling, Proceedings of Information

Visualisation, London, England, 2002, pp 664-669.

[13] Hui, K. C. and Wong, N. N., Hands on a virtually elastic object, The Visual Computer, Vol. 18, No. 3, 2003, pp

150-163.

[14] James, D. L. and Pai, D. K., ArtDefo: accurate real time deformable objects, Computer Graphic, Vol. 33, no.

Annual Conference Series, 1999, pp 65-72.

[15] Sankowski, P., Dynamic transitive closure via dynamic matrix inverse (extended abstract), 45th Annual IEEE

Symposium on Foundations of Computer Science (FOCS'04), 2004, pp. 509-517.

[16] Tang, Y. M., Zhou, A. F. and Hui, K. C., Comparison between FEM and BEM for real-time simulation,

Computer-Aided Design & Applications, Vol. 2, No. 1-4, 2005, pp 421-430.

[17] Wunderlich, R. E., Püschel, M. and Hoe, J. C., Accelerating blocked matrix-matrix multiplication using a

software-managed memory hierarchy with DMA, Proc. High Performance Embedded Computing (HPEC),

2005.

