41

oddeygn

il

omputer-f

Visualization of Curvature Monotonicity Regions
of 3D Bézier Curves in 2D and 3D

Norimasa Yoshida® & |, Takafumi Saito?

INihon University, yoshida.norimasa@nihon-u.ac.jp
2Tokyo University of Agriculture and Technology, txsaito@cc.tuat.ac.jp

Corresponding author: Norimasa Yoshida, yoshida.norimasa@nihon-uac.jp

Abstract. This paper presents a novel method for visualizing the curvature monotonicity
region of 3D Bézier curves in both 2D and 3D, a concept not previously explored. For
2D visualization, we extend existing techniques for 2D Bézier curves to 3D polynomial and
rational Bézier curves. The curvature monotonicity region is visualized on a constant-depth
plane through the control point of interest, enabling users to identify regions where curvature
varies monotonically. For 3D visualization, we propose a two-step algorithm to directly
visualize the curvature monotonicity region. We demonstrate several 2D and 3D examples,
including cases based on a sufficient condition, and present a curve design tool incorporating
2D curvature monotonicity visualization.

Keywords: 2D and 3D curvature monotonicity region, 3D Bézier curves, GPU
DOI: https://doi.org/10.14733/cadaps.2026.41-55

1 INTRODUCTION

Designing aesthetically pleasing surfaces, such as automobile exteriors, relies on fair curves. In [2], Farin defined
fair curves as those with curvature plots that exhibit minimal regions of monotonically varying curvature.
Numerous studies, including [17, 3, 21], have focused on generating 2D curves with monotonically varying
curvature. However, for 3D curves, relatively few works have addressed the problem, and no study has
explored visualizing the region around a control point where the curvature varies monotonically. By visualizing
this region, users can more easily generate 3D curves with monotonically varying curvature.

We propose methods to visualize the curvature monotonicity region of 3D polynomial and rational Bézier
curves in both 2D and 3D. The curvature monotonicity region refers to the area around a control point where
the curvature varies monotonically. We introduce two methods for visualizing this region: (1) a 2D visualization
that extends GPU-accelerated techniques for 2D Bézier curves [24, 9], and (2) a 3D visualization. Since the 3D
curvature monotonicity region is not an algebraic surface, existing visualization methods for algebraic surfaces
cannot be directly applied to our problem. The main contributions are summarized as follows.

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://orcid.org/000-0000-1234-5678
http://orcid.org/0000-0001-5831-596X
mainto:yoshida.norimasa@nihon-u.ac.jp
mainto:txsaito@cc.tuat.ac.jp
mailto:yoshida.norimasa@nihon-uac.jp
http://www.cad-journal.net

42

1. We propose a method to visualize the curvature monotonicity region of a 3D Bézier curve in 2D on a
constant-depth plane from the viewpoint. The visualization is real-time and GPU-accelerated. If a user
moves the control point within the region, the user can generate a curve with monotonically varying
curvature.

2. We propose a method to visualize the curvature monotonicity region of a 3D Bézier curve in 3D. The
3D curvature monotonicity region is not an algebraic surface. We introduce a two-step algorithm to
visualize the region using a GPU.

3. We introduce a 3D curve design tool that utilizes 2D curvature monotonicity visualization on a constant-
depth plane and present designed examples. Our tool allows users to identify the region around a control
point where the curvature varies monotonically.

The paper is organized as follows. Section 2 reviews related work on generating curves with monotonically
varying curvature, visualizing algebraic surfaces, and curvature monotonicity evaluation functions. In Section 3,
we propose methods for visualizing the curvature monotonicity regions of 3D Bézier curves in both 2D and 3D.
Several examples of these visualizations are presented, including one based on a sufficient condition. Section 4
introduces a curve design tool that utilizes our 2D curvature monotonicity visualization and showcases designed
examples. Finally, conclusions are presented in Section 5.

A demonstration video is available at

https://youtu.be/SMOxeClSdQU.

2 RELATED WORK

2.1 Freeform Curves with Monotonically Varying Curvature

Sapidis et al. [11] clarified the curvature monotonicity region of quadratic Bézier curves, while Frey et al.
[5] extended this to rational quadratic Bézier curves. Diets et al. used precomputed tables to generate cubic
curves with monotonically varying curvature [1]. Wang et al. proposed a shape control method for Bézier
and B-spline curves based on sufficient monotone curvature variation conditions [17]. Farin proposed class A
Bézier curves [3], where the control points are generated by repeatedly applying a matrix M to the first edge
of the control polygon. Yoshida et al. proposed a method for interactively generating class A Bézier curves
[20], similar to quadratic Bézier curves . Their method is primarily for typical curves. Romani et al. [8] proved
that if M has two real eigenvalues, the curve becomes class A. Yoshida et al. [21] proposed a method for
generating rational cubic Bézier curves with monotonically varying curvature by approximating log-aesthetic
curves.

Unlike most of the above approaches that theoretically investigate the curves with monotonically varying
curvature, Yoshida et al. introduced a real-time GPU-based visualization method for the curvature mono-
tonicity region of cubic or higher-degree Bézier curves [24]. In their approach, users can identify the region
of a control point where the curvature varies monotonically. Saito et al. further extended this approach to
rational Bézier curves by introducing curvature monotonicity evaluation functions based on the Bernstein basis
[9]. Yoshida et al. visualized the curvature monotonicity regions based on a sufficient condition provided in
[23]. The region can be represented as the intersection of implicit curves. They observed that the size of the
sufficient region is slightly smaller than that of the exact curvature monotonicity region in many cases, though
not always. They also noted that, in some situations, the implicit curves may form the exact boundary of the
curvature monotonicity region.

For 3D curves with monotonically varying curvature, there is less related work compared to 2D curves.
Yoshida et al. [19] proposed a method for interactively generating 3D class A Bézier curves by specifying two
endpoints and their tangents. Their method is primarily designed for typical 3D class A Bézier curves. In [18],
Yoshida et al. showed that 3D typical class A Bézier curves get closer to 3D logarithmic spirals as the degree

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

https://youtu.be/SM0xeClSdQU
http://www.cad-journal.net

43

increases. Tong et al. [15] proposed a sufficient condition for 3D typical curves. Wang et al. [16] presented
a class of 3D Bézier curves of arbitrary degree with monotone curvature by generalizing typical curves [6]
introduced by Minuer. No methods exist that visualize the curvature monotonicity region of a 3D Bézier curve
in either 2D or 3D. Visualizing the curvature monotonicity region of a 3D Bézier curve enables users to move
a control point while maintaining the curvature monotonicity.

2.2 \Visualization of Algebraic Surfaces

Our visualization of the 3D curvature monotonicity region is closely related to the visualization of algebraic
surfaces, although the region itself is not an algebraic surface. For visualizing algebraic surfaces, GPUs are
typically used to enable fast rendering. In [12], Seland et al. proposed a real-time method for visualizing
algebraic surfaces using the blossoming principle of trivariate Bernstein-Bézier functions over a tetrahedron.
In ray casting for algebraic surfaces, finding the intersection of a ray and an algebraic surface of degree d is
equivalent to finding the roots of a univariate polynomial of degree d. Reimers et al. represented the univariate
polynomial in Bernstein form to efficiently compute its roots [7]. Singh et al. proposed an adaptive marching
points algorithm and demonstrated ray tracing of algebraic surfaces up to order 50 at interactive frame rates
[13]. The 3D curvature monotonicity region that we aim to visualize is not an algebraic surface and cannot
be represented by a simple equation, such as those for a torus, superquadrics, or metaballs. Additionally, the
surface normal required for lighting cannot be computed straightforwardly, as is done for algebraic surfaces.
Therefore, a different method is needed to visualize the curvature monotonicity region in 3D.

2.3 Curvature Monotonicity Evaluation Function

This section reviews the curvature monotonicity evaluation functions of 3D Bézier curves introduced by Saito
et al. [9]. We use these functions to visualize the curvature monotonicity regions of 3D Bézier curves.

A 3D rational Bézier curve P(t) of degree n(> 3) with n + 1 control point vectors p; = [z; y; 2T
(0 <4 < n) and the weight w;(> 0) is

X Brw W(t)

where B7'(t) is a Bernstein polynomial of degree n. We assume n > 3 since if n = 2, the curve becomes
planar. We also assume that the curve is regular and the curvature is non-zero. If all the weights w; are 1,
the curve is a polynomial curve. For a 3D curve P(t), the derivative of the curvature with respect to the arc
length is [18]:

P(1)

dn ((m P)- (pAm) (P P) _3((pAp).(pAp)) (P P) o
ds (P -P)3P AP ’
where - and A are dot and cross products, and P, P and P are the first, second, and third derivative of P(t)
with respect to ¢. We write the numerator of Eq. (2) as

Lo(t) = ((P AP (P A 15)) (P-P)-3 ((P AP)- (P A P)) (P P). (3)

With the assumption that the curve is regular and the curvature is non-zero, the denominator of Eq. (2)
is always positive. Therefore, the curvature monotonicity can be evaluated by L,(¢). For rational curves,
L, (t) is a rational function and its denominator is always positive. Therefore, the curvature monotonicity is
evaluated by the numerator of L, (t), which we write as [,,(t). See Eq. (8). We refer to L, () or l,,(t) as the
curvature monotonicity evaluation function.

Saito et al. derived equations of L, (t) and [,,(t) in Bernstein basis [9]. We use these Bernstein basis
equations to visualize the curvature monotonicity regions of 3D curves. To represent L, (t) and [,(t) in

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

44

Figure 1: Q,, 1 of a cubic Bézier curve at ¢t = 0.5

Bernstein basis, we use internal division points and weights of de Casteljau’s algorithm [4]. For 0 < k <m <
n), k-th internal division point Q,, x(t) and weight W,,, 1 (t) at (n — m)-th step are:

n—m

Qui(t) = D Bl MwisiPris (4)
i=0
n—m

WmJg(t) = Z B?_mwk_ﬂ‘. (5)
i=0

If both m and k are single digit integers, the comma between them is omitted, as in Q. Fig. 1 shows internal
division points @, of a cubic polynomial Bézier curve at ¢ = 0.5. The advantage of the Q,, . expression is
that if an expression is related to derivatives up to the m-th order, the characteristics of the expression can be

derived by manipulating Q1,x. Q2. ..., and Q,, for curves of degree n. For example, the curvature of a
3
polynomial Bézier curve is Il“,ﬁ‘s referring to Eq. (6), and the curvature of a rational Bézier curve is %
_ |PAP|

referring to Eq. (8). For the proof, use k and refer to [9]. Saito et al. utilized these characteristics

[P
to demonstrate the degrees of curvature monotonicity evaluation functions for Béezier curves of degree n.
For a 3D polynomial curve of degree n(> 3),

Ly (t) = (Va-V3)(Vi- V1) = 3(Vz - V3) (V1 - Vo), (6)
where

Vi=n (Qu — Qo)
Vo =n(n—1) (Q2 — 2Q21 + Q2),
Vi =n(n—1) (Q20 A Q21 + Qa2 A Qoo + Q21 A Qa2),
Vi=n%(n—1)(n—2)
(1 =1)(Q31 — Q30) N (2Q31 — 3Q32 + Q33)
+ t (Q30—3Q31 +2Q32) N (Q33 — Q32)),

and the curvature monotonicity can be evaluated with the degree 6n — 11 function L, (t).
For a 3D rational Bézier curve of degree n(> 3),

L’rb(t) = (Ml/n(g))lla (7)

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

45

where

In(t) =n(((Vs A Vs) - V2)(Vs - Vi) + 3(Vr - Vo) (Vg - V), (8)
Vs =n (WioQ11 — W11Q10),

— Wio(Wa0Q22 — Wa2Q20))
+ bt (Wi (Wa0Q22 — Wa2Q20)
—2Wio(W21Q22 — W22Q21)),

and the curvature monotonicity can be evaluated with the degree 11n — 18 function 1,,(¢).
In 3D polynomial or rational curves, L, (t) or 1,,(t) can be represented as a polynomial of degree n. in

Bernstein form:
Ne

At) =D Bie(t)g;. (9)
J=0

For 3D polynomial curves, n, = 6n—11 and A(t) correspond to Eq. (6). For 3D rational curves, n, = 11n—18
and A(t) correspond to Eq. (8). Since both L, (¢) and [, (t) are represented in the form of A(t), we use A(t)
instead of L, (t) or 1,,(t).

The curvature monotonicity can be evaluated by checking if A\(¢) changes its sign or not within ¢ € [0, 1].
We refer to the condition described below as the exact curvature monotonicity condition, or simply the exact

condition.
A() <0 or A(t) >0 fort € [0,1] (10)

If A(t) <0, the curvature is monotonically decreasing. Conversely, if A(t) > 0, the curvature is monotonically
increasing. We refer to the following condition as the sufficient condition.

§<0(0<i<n) or &>0(0<i<n,) (11)

From the convex hull property, it is evident if the sufficient condition is satisfied, the exact condition is also
satisfied. Note that the exact condition may be satisfied even if £; have different signs. We visualize the
curvature monotonicity regions of 3D curves using the sufficient conditions or the exact conditions.

When computing &; in Eq. (9) by utilizing Eq. (6) or Eq. (8), Bernstein multiplications are required. These
multiplications include the dot product and the vector product of two vector-valued polynomials, as well as the
multiplication of a vector-valued polynomial by a scalar-valued polynomial, with all polynomials represented
in Bernstein form. When we perform Bernstein multiplications in the fragment shader, the scaled Bernstein
[10] is especially useful since the binomial coefficients are only necessary at the beginning and the end of
computing &;. An example Mathematica code for computing the curvature monotonicity evaluation function
for 2D polynomial Bézier curves is available in [22]. The code can be easily modified for 3D polynomial and
rational Bézier curves.

3 VISUALIZATION OF CURVATURE MONOTONICITY REGIONS

We visualize the curvature monotonicity regions of 3D polynomial or rational Bézier curves with cubic degree
or higher. Since quadratic Bézier curves are planar, they reduce to the work of [11, 5].

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

46

For 3D curves, the curvature monotonicity region exists in three-dimensional space. The curvature mono-
tonicity region for a control point py is the set of 3D points where the curvature varies monotonically. We
propose two methods for visualizing this region: (1) In the 2D visualization, the curvature monotonicity region
is visualized by showing its intersection with a constant-depth plane passing through the control point of
interest. (2) Directly rendering the curvature monotonicity region in 3D.

We implemented our algorithms using C++ and OpenGL. Our program supports polynomial and rational
Bézier curves of arbitrary degree, provided the fragment shader fits within the GPU memory. For both 2D and
3D visualizations, the degree-specific parts of the fragment shaders are dynamically modified in the application
program, and the shaders are then recompiled.

3.1 2D Visualization

Let py, be the control point for which we wish to visualize the curvature monotonicity region. Let T}, represent
the matrix that transforms a point, represented in homogeneous coordinates, from the world coordinates to the
screen coordinates. This matrix 7}, is the product of the viewing, projection, and viewport transformations. By
multiplying py, expressed in homogeneous coordinates, by T},, we can obtain the depth d of p;. We visualize
the curvature monotonicity region of pj as its intersection with a plane at depth d.

Similarly to [9, 24], we visualize the curvature monotonicity region by checking the curvature monotonicity
for each pixel in a screen window using a GPU. Algorithm 1 outlines the proposed method for visualizing the
curvature monotonicity region, implemented in a fragment shader using OpenGL.

Algorithm 1. Curvature monotonicity region of p;

Input:
The degree n of a Bézier curve and control points p; (and weights w;) (0 <i <n).
The index k, indicating that the curvature monotonicity region for the control point py, is to be visualized.
The matrix T}, that transforms a point, represented in homogeneous coordinates, from world coordinates
to screen coordinates.
Output:
The color of each pixel.

Steps:

1. Using the screen coordinates and depth d, perform the inverse transformation T;l to obtain the 3D
coordinates p) .

2. Replace p;, with pj, and check the curvature monotonicity using the algorithm in [24].
3. If the curvature is monotonically varying, color the pixel with the user-specified color.

Fig. 2 shows the curvature monotonicity regions of a cubic Bézier curve with py = [000]T, p; =[0.200]7,
p2 = [0.6 0.2 0.1]T, p3 = [0.8 1 0.2]. In the figure, the curvature monotonicity regions are visualized
simultaneously for all control points. To achieve this, Algorithm 1 is repeated for each control point within
the fragment shader. Note that the depth of each region differs depending on the control point.

In Fig. 2(a), the curve is polynomial, since all weights are 1. Note that the depth of each region,
corresponding to each control point, is different. In the upper left of the figure, the curvature plot is shown.
Fig. 2(b) and (c) show the same curve from different viewpoints. Since we visualize the curvature monotonicity
region as the intersection with a constant-depth plane, the shape of the region varies depending on the
viewpoint. In Fig. 2(d), with the same viewpoint A, w; is set to 0.75, and the curvature remains monotonically

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

47

p region pregion b region
t .
P, /
p,region !’l p,region)
G - p,region
p,region 7 | —
. “he | | s
P '\pl ‘ “—p,region p,region \pl region
p, region p,region
(a) viewpoint A (b) viewpoint B () viewpoint C
« p,region K 4 Pyregion
! : p,region
t ,r'l ’] t jf'
/ p,region
P, region 2) /f)
P, p,region 2
£ 3 LN ; i T \p region
) sion p,region .5 p,region P, region
p, region
(d) viewpoint A (w,=0.75) (e) viewpoint A (w,=0.75,w,=1.3) (f) p, of (e) moved

Figure 2: Curvature monotonicity region of cubic Bézier curves

decreasing. In Fig. 2(e), wy is set to 1.3, where it can be observed that the curvature is no longer monotonically
decreasing. In Fig. 2(f), p2 is moved within the sufficient region so that the curvature becomes monotonically
decreasing again.

3.2 3D Visualization

In this section, we introduce a method for visualizing the curvature monotonicity region in 3D. Our method
is closely related to Singh et al.’s ray marching method [13] for visualizing implicit surfaces. However, we
encounter the challenges of visualizing surfaces that cannot be represented by implicit surfaces. In [13],
adaptive ray sampling is performed by normalizing the highest coefficient of the top-order term. This approach
is not applicable in our case, as our surface cannot be represented as an implicit surface, making it impossible
to determine the coefficient of the top order term. In addition, in [13], the gradient is used to determine the
color of the pixel. However, computing the gradient on our surface is not straightforward. Therefore, we need
to adopt a different method for computing the normal of the surface.

Our algorithm for visualizing the 3D curvature monotonicity region consists of the following two steps.
The first step (Algorithm 2) uses the ray marching method to find the 3D coordinates where the curvature
monotonicity changes and records these coordinates in an OpenGL frame buffer object. The alpha channel
is used to indicate whether the surface of the region is intersected from the outside or inside. If the alpha
channel is set to 1, it indicates that the curvature changes from non-monotonically varying to monotonically
varying, meaning the ray intersects the surface from the outside. If the alpha channel is set to 0, it indicates
the ray intersects from the inside. If the alpha channel is -1, it means the ray does not intersect the surface.

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

48

Algorithm 2. Step 1: Ray marching

Input:

The degree n of a Bézier curve, along with its control points p; (and weights w; for a rational curve),
where 0 < i < n.

The index k, indicating that the curvature monotonicity region for the control point py, is to be visualized.

The matrix T, that transforms a point, represented in homogeneous coordinates, from world coordinates
to screen coordinates.

The ray marching step rm.Step.

The coordinates of the viewpoint p,,.

The information of the bounding box (or sphere).

Output:

OpenGL frame buffer object: Each pixel is represented as (7,0, g,a), where b and g correspond to the
coordinates of z,y and z of the point where the ray intersects the surface, indicating that the curvature
monotonicity changes at that point. If a = —1, the ray does not intersect the surface. If a = 1, the ray
intersects the surface from the outside, indicating a transition from non-monotonically varying curvature to
monotonically varying curvature. If a = 0, the ray intersects the surface from the inside.

Steps:

1. Using the screen coordinates and depth d, perform the inverse transformation 7! to obtain the 3D
coordinates p).. Construct a ray from the viewpoint p, to pj.

2. Intersect the ray against the bounding box (or sphere) and compute the nearest and farthest intersections
rs, Te. If the ray does not intersect, set the alpha channel of an OpenGL frame buffer object to -1 and
terminate.

3. Set r =71, and 1, = (re — r5)/rmStep.

4. Replace the coordinates of p; with (1 —7)p, + rp,, compute &; using (6) for polynomial curves or Eq.
(8) for rational curves, and check if the curvature is monotonically varying.

5. If the curvature is monotonically varying, set ¢, = 1. Otherwise, set ¢, = 0.

6. Set r =71+ 1.

7. while r < r. do

7.1 Replace the coordinates of p; with (1 —7)p, + 7p,, compute &; using (6) or Eq. (8), and check
if the curvature is monotonically varying. If the curvature is monotonically varying set ¢, = 1.
Otherwise, set c. = 0.

7.2 If ¢5 # c., perform the following steps: Set r,, = r — 0.5r, and record (1 — r)py + rmPp in
an OpenGL frame buffer object. The value of ¢, is also recorded in the alpha channel to indicate
whether the ray intersects from the outside or inside. Exit the while loop.

73 Setr=r+r.

8. If r > r., the ray does not intersect the surface. Set the alpha channel to -1.

In our actual implementation of Algorithm 2, we apply the following refinement process. Suppose an
intersection is found in Step 7.2, meaning the intersection point lies between r — r, and r. To refine the
intersection point, we update the parameters as follows: set r, =r, ry, =7, — 1, 7 = 75, and rmStep = 10.
Then we repeat Steps 4 to 7.

In the second step (Algorithm 3), triangles are constructed using the coordinates of nearby pixels in the
frame buffer object, and the averaged normal is computed. The pixel color is then determined based on this
normal. Both Algorithm 2 and Algorithm 3 are executed in the fragment shader of the GPU.

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

49

Algorithm 3. Step 2: Shading using surface normals

Input:

OpenGL framebuffer object: the output of Algorithm 2.

Shading parameters required for determining the pixel color using the normal.
Output:

The color of each pixel.

Steps:

1. If the alpha channel is -1, terminate processing.

2. Retrieve the 3D coordinates of the target pixel from the frame buffer object.

3. Identify neighboring pixels whose alpha channels are not -1 and retrieve the 3D coordinates.

4. Construct up to 8 triangles. If no triangle is constructed, terminate processing. Otherwise, compute the
averaged normal.

5. Determine the pixel color based on the computed normal. If the ray intersects from the inside (i.e., if
the alpha channel is 0), apply a darker shade.

Figs. 3(a)-(d) show the 3D curvature monotonicity regions for each control point of a polynomial cubic
Bézier curve with py = [0 0 0]T, p; = [0.2 0 0T, p2 = [0.6 0.2 0.1]T, and p3 = [0.8 1 0.2]. A zebra-
like shading pattern based on z-coodinates is applied to enhance the perceptibility of the region’s shape.
Additionaly, the depth test is disabled when rendering the axes, control polygon, and curve to ensure their
visibility at all times. Fig. 3(e)-(f) illustrates the 2D curvature monotonicity regions of pg, p1, p2, and ps.
The 2D curvature monotonicity region is the intersection between the constant-depth plane of the control
point of interest and the 3D region. Fig. 3(i) represents the curvature plot. In Figs. 3 (j) and (k), w; is set
to 0.7, making the curve rational. The corresponding curvature plot is shown in Fig. 3(l). In Figs. 3 (m)
and (n), ps is repositioned as indicated. Since we moved ps within its 2D curvature monotonicity region, the
curvature is still monotonically varying, as verified in Fig. 3(0).

Fig. 4 shows the 3D and 2D curvature monotonicity regions of a polynomial quintic Bézier curve with
po=[000]T, p; =[0.100]%, ps =[0.250.10]T, p3 = [0.35 0.4 0], ps = [0.17 0.9 0], and p5 = [0.35 1.2 0].
While the curve itself lies in a 2D plane, its curvature monotonicity regions are 3D since the control points
can be positioned in three-dimensional space. In Fig. 4(k), the visualization of the 3D region for ps is shown
from an internal viewpoint, hence dark shading is applied. Fig. 4(m) provides an alternative perspective of
the same 3D region. Fig.4(o) displays the curvature plot of the quintic Bézier curve.

Table 1 presents an example of the computation time (in seconds) required to visualize the 3D curvature
monotonicity region of each control point for cubic, rational cubic, quartic, rational quartic, and quintic Bézier
curves. Due to GPU resource limitations, the 3D region of the rational quintic Bézier curve could not be
generated. The computation time was measured using a Ryzen 9 5950X CPU with 64 GB of memory and an
Nvidia GeForce RTX 4080 GPU with 16 GB of memory. Each computation was performed three times, and
the average time was recorded. For the quintic Bézier curve, the control points are the same as in Fig. 4. For
the cubic and quartic Bézier curve, only the first three or four control points were used. The rational cubic
Bézier curve was obtained by setting w; to 1.1, while for the rational quartic Bézier curve, w; was set to 1.05.
The ray marching step was set to 300, the bounding box size to £1 (or 2 for ps), and the window size to
1507 x 1462 pixels. The computation time varies depending on factors such as the size of the 3D region, the
degree of the curve, the ray marching step, the bounding box size, and whether the curve is polynomial or
rational.

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

(d) 3D region for p,

(€) 2D region for p, (f) 3D region for p, (9) 3D region for p, (h) 3D region for p,

.-'lfrl \

/ (i) curvature plot of the curvein (a)

(j) 3D regionfor p, (w,=0.7) (k) 2D region for p, (w,=0.7) g
t

(1) curvature plot of the curvein (j)

) !
2 | - t

(o) curvature plot of the curvein (m)

(m) 3D region for p, (p, moved) (n) 2D region for p, (p, moved)

Figure 3: 3D and 2D curvature monotonicity regions of a cubic Bézier curve and its curvature plot

50

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

51

p5"\ e T, s, T
B, y y \ e
1 by I 1) 4 j%
i p2 ¥ u" i i
s Py r P P

(a) 3D region for p, (b) 3D region for p, (c) 3D region for p, (d) 3D region for p, (€) 3D regionfor p,

- Y

(f) 2D regionfor 0, (@) 2D regionfor P, (h) 2D regionfor p, (i) 2D region for p, (j) 2D region for p,

K) 3D region for 1Y 2D region for (m) 3D region for P, (n) 2D region for], (o) curvature plot
(k) €g Ps 0 €9 P (dlifferent view)s (different view)5

Figure 4: 3D and 2D curvature monotonicity regions of a quintic Bézier curve and its curvature plot
Table 1: Computation time in seconds for the 3D visualization of each control point.

Py | P, | Py | P3| Py | Py
cubic 0.18/0.24|0.06| 0.2
rational cubic |0.29(0.26|0.69|0.42
quartic 0.24|0.26|0.24|0.340.77
rational quartic| 0.5 |1.241.55|2.05|3.46
quintic 0.4 10.39/0.54/0.76|1.47|1.03

3.3 \Visualization of Sufficient Regions

Our program can also visualize the sufficient regions both in 2D and 3D. The sufficient region is the region
that satisfies Eq. (11). Each ¢; is the function of xj, yx, and zx, which correspond to the coordinates of
the control point pj. In other words, the sufficient region is the area where all £; values are either negative
or positive. In a 2D visualization, &; appears as an algebraic curve, whereas in a 3D visualization, it forms
an algebraic surface. The 2D visualization of the sufficient region is similar to that of 2D curves as in [23],
except that the region is visualized on a constant-depth plane. Fig. 5(a) shows the 2D sufficient region of py
for the same cubic Bézier curve as in Fig. 3(a). In Fig. 5(a), the sufficient region (white region) along with
&; is shown. Within this region, all £; values are negative.

For the 3D visualization of a sufficient region, we use a single-step algorithm similar to Algorithm 2.
However, unlike Algorithm 2, we identify a point where all §; (or a specific £;) become either positive or
negative, and the approximate normal is computed using divided differences. Fig. 5(b) shows the 3D sufficient
region of py of the same cubic Bézier curve as in Fig. 3(a). Figs. 5(c)-(j) illustrate each ¢; individually. The

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

52

g, &, E”‘_‘ & -'_.J .- # Il,."ll
Vi l' §7)
= k,N éo ! i -,&Je
ey .4"’ II.
g 111 i
0L |
.5 & '._I] 3

7 N A
A '|

1

E.:]_II by

(a) 2D region of p, (b) 3D region of p,

/4 a0 AC

© & ()&, &, 0 & @&, (h) & (ORA 0 &

Figure 5: 2D and 3D sufficient regions of a cubic Bézier curve and implicit surfaces that bounds the 3D region

3D sufficient region is the intersection of all £;, where all i, values are either positive or negative.

As described in [23], if a portion of &, or &, forms the boundary of the sufficient region, it also becomes
part of the boundary of the exact region. In Fig. 5(a), & forms most of the boundary of the sufficient region;
it also forms the boundary of the exact region. See Fig. 3(e). Similarly, in Fig. 5(b), & forms most of the
visible boundary of the sufficient region; it also forms the boundary of the exact region. See Fig. 3(a).

4 APPLICATIONS

As an application of our approach, we developed a 3D curve design tool. The tool is similar to the curve tool
in Adobe lllustrator and the one described in [24], but it differs in that it supports the design of 3D curves
and can visualize the curvature monotonicity region in 2D. In our tool, users can identify the region on a
constant-depth plane where a control point maintains monotonically varying curvature. When a manipulation
point, such as P; in Fig. 6, is moved, it remains within a constant depth plane. If P; is moved, P,_; and P;;
also move while maintaining their relative positions. When P; stays within its purple region, the curvature
monotonicity of the two segments connected to P; is guaranteed. Similarly, if P,_; or P, 1 moves within
its respective orange or green region, the curvature monotonicity of the corresponding curve segment is also
preserved.

Fig. 7(a) shows an arrow created using our curve design tool. Due to an optical illusion, the arrow tends
to appear rightward-facing [14]. Each curve segment is designed so that its curvature varies monotonically,
while the connection points are intentionally G°. Since displaying the curvature comb for all segments would
make the visualization complex, only the curvature combs of four segments are shown in Fig. 7(b). Figs.
7(c)-(f) show rendered images of the arrow after it has been converted into a solid object. In these images,
the arrow is rotated 180 degrees clockwise. Despite originally pointing to the right, it still appears to do so
after the rotation.

Fig. 8(a) shows an umbrella frame created using our tool. The curvature of each curve segment is designed

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

53

S L
(a) an arrow (b) curvture comb (c) viewpoint A
(d) viewpoint B (e) viewpoint C (f) viewpoint D

Figure 7: An arrow that tends to face rightward

to vary monotonically. In Fig. 8(b), the curvature combs of two segments are shown. Since the connection
point of the two segments is G°, the curvature combs overlap.

5 CONCLUSIONS

In this paper, we proposed a method for visualizing the curvature monotonicity regions of 3D polynomial
and rational Bézier curves in both 2D and 3D. Prior to this work, the visualization of curvature monotonicity
regions for 3D Bézier curves had not been explored. In our approach, we provide a novel method to visualize
these regions, enabling better understanding and design of 3D curves. In the 2D visualization of the curvature
monotonicity region, the region is displayed on the constant-depth plane of the control point of interest. The
2D visualization is real-time, as long as the degree of the curve is not high. Using the 2D visualization tool, we
developed a curve design tool for 3D curves, allowing users to identify the region of a control point where the
curvature varies monotonically. For the 3D visualization of the curvature monotonicity region, we proposed
a two-step algorithm. The 3D visualization is almost interactive for 3D cubic Bézier curves; however, the
computation time increases as the degree of the curve increases or when the curve becomes rational.

Future work includes a more detailed analysis of the curvature monotonicity region and improvements
to the efficiency of 3D visualization. Currently, there is no direct application for visualizing the curvature

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

54

(a) umbrella frame (b) curvature combs of two segments

Figure 8: Umbrella frame

monotonicity region in 3D. Exploring potential applications will be another focus of future research.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant Number 24K07280. The 3D curve design tool, the 3D
arrow in Fig. 7, and the umbrella frame in Fig. 8 were created by Hikaru Yasuda. We also thank the reviewers
for their valuable comments and suggestions.

Norimasa Yoshida https://orcid.org/0000-0001-8889-0949
Takafumi Saito https://orcid.org/0000-0001-5831-596X

REFERENCES

[1]

[2]
[3]

[4]
[5]
[6]

[7]
(8]
[9]

[10]

Dietz, B., D. A.and Piper: Interpolation with cubic spirals. Computer Aided Geometric Design, 21(2),
165-180, 2004. http://doi.org/10.1016/j.cagd.2003.09.002.

Farin, G.: Curves and Surfaces for CAGD. Academic Press, 2001.

Farin, G.: Class A Bézier curves. Computer Aided Geometric Design, 23(7), 573-581, 2006. http:
//doi.org/10.1016/j.cagd.2006.03.004.

Floater, M.S.: Derivatives of rational Bézier curves. Computer Aided Geometric Design, 9(3), 161-174,
1992. http://doi.org/10.1016/0167-8396(92)90014-G.

Frey, W.H.; Field, D.A.: Designing Bézier conic segments with monotone curvature. Computer Aided
Geometric Design, 17(6), 457-483, 2000. http://doi.org/10.1016/S0167-8396(00)00011-X.
Mineur, Y.; Lichah, T.; Castelain, J.M.; Giaume, H.: A shape controlled fitting method for Bézier
curves. Computer Aided Geometric Design, 15(9), 879-891, 1998. http://doi.org/10.1016/
S0167-8396 (98)00025-9.

Reimers, M.; Seland, J.: Ray casting algebraic surfaces using the frustum form. Computer Graphics
Forum(Eurographics), 27(2), 361-370. http://doi.org/10.1111/j.1467-8659.2008.01133.x.
Romani, L.; Viscardi, A.: Planar class A Bézier curves: The case of real eigenvalues. Computer Aided
Geometric Design, 89, 2021. http://doi.org/10.1016/j.cagd.2021.102021.

Saito, T.; Yoshida, N.: Curvature monotonicity evaluation functions on rational Bézier curves. Computers
& Graphics, 114, 219-229, 2023. http://doi.org/10.1016/j.cag.2023.05.019.

Sanchez-Reys, J.: Algebraic manipulation in the Bernstein form made simple via convolutions. Computer-
Aided Design, 10(10), 959-967, 2003. http://doi.org/10.1016/S0010-4485(03)00021-6.

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

https://orcid.org/0000-0001-8889-0949
https://orcid.org/0000-0001-5831-596X
http://doi.org/10.1016/j.cagd.2003.09.002
http://doi.org/10.1016/j.cagd.2006.03.004
http://doi.org/10.1016/j.cagd.2006.03.004
http://doi.org/10.1016/0167-8396(92)90014-G
http://doi.org/10.1016/S0167-8396(00)00011-X
http://doi.org/10.1016/S0167-8396(98)00025-9
http://doi.org/10.1016/S0167-8396(98)00025-9
http://doi.org/10.1111/j.1467-8659.2008.01133.x
http://doi.org/10.1016/j.cagd.2021.102021
http://doi.org/10.1016/j.cag.2023.05.019
http://doi.org/10.1016/S0010-4485(03)00021-6
http://www.cad-journal.net

[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

55

Sapidis, N.S.; Frey, W.H.: Controlling the curvature of quadratic Bézier curve. Computer Aided Geometric
Design, 9(2), 85-91, 1992. http://doi.org/10.1016/0167-8396(92)90008-D.

Seland, J.S.; Dokken, T.: Real-time algebraic surface visualization in Geometric Modelling, Numerical
Simulation, and Optimization: Applied Mathematics at SINTEF. 163-183, 2007. http://doi.org/10.
1007/978-3-540-68783-2_6.

Singh, J.M.; Narayanan, P.J.: Real-time ray tracing of implicit surfaces on the GPU. IEEE Transaction
on Visualization and Computer Graphics, 16(2), 2010. http://doi.org/10.1109/TVCG.2009.41.
Sugihara, K.: Family tree of impossible objects created by optical illusion. In Proceedings of the Bridges
between Mathematics and the Arts, 329-336, 2020.

Tong, W.; Chen, M.: A sufficient condition for 3D typical curves. Computer Aided Geometric Design,
87, 2021. http://doi.org/10.1016/j.cagd.2021.101991.

Wang, A.; He, C.; Zheng, J.; Zhao, G.: 3D class A Bézier curves with monotone curvature. Computer
Aided Design, 159, 2023. http://doi.org/10.1016/j.cad.2023.103501.

Wang, Y.; Zhao, B.; Zhang, L.; Xu, J.; Wang, K.; Wang, S.: Designing fair curves using monotone
curvature pieces. Computer Aided Geometric Design, 21(5), 515-527, 2004. http://doi.org/10.
1016/j.cagd.2004.04.001.

Yoshida, N.; Fukuda, N.; Saito, T.: Logarithmic curvature and torsion graphs. In in Mathematical
Methods for Curves and Surfaces 2008, LNCS 5862, 434-443, 2010. http://doi.org/10.1007/
978-3-642-11620-9_28.

Yoshida, N.; Fukuda, R.; Saito, T.: Interactive generation of 3D class A Bézier curve segments.
Computer-Aided Design and Application, 7(2), 163-172, 2010. http://doi.org/10.3722/cadaps.
2010.163-172.

Yoshida, N.; Hiraiwa, T.; Saito, T.: Interactive control of planar class A Bézier curves using logarithmic
curvature graphs. Computer-Aided Design and Applications, 5(1-4), 121-130, 2008. http://doi.org/
10.3722/cadaps.2008.121-130.

Yoshida, N.; Saito, T.. Quasi-aesthetic curves in rational cubic Bézier forms. Computer-Aided Design
and Applications, 4(1-4), 477-486, 2007. http://doi.org/10.1080/16864360.2007 .10738567.
Yoshida, N.; Saito, T.: Curvature monotonicity evaluation function for 2D polynomial Bézier curves. the
Notebook Archive, 2024. https://notebookarchive.org/2024-06-1xe1041.

Yoshida, N.; Saito, T.: Curvature monotonicity regions of 2D polynomial and rational Bézier curves
as the intersection of implicit regions. Computer-Aided Design and Applications, 2(1), 68-80, 2025.
http://doi.org/10.14733/cadaps.2025.68-80.

Yoshida, N.; Sakurai, S.; Yasuda, H.; Inoue, T.; Saito, T.: Visualization of the curvature monotonicity
regions of polynomial curves and its application to curve design. Computer-Aided Design and Applications,
21(12), 75-87, 2024. http://doi.org/10.14733/cadaps.2024.75-87.

Computer-Aided Design & Applications, 23(1), 2026, 41-55
© 2026 U-turn Press LLC, http://www.cad-journal.net

http://doi.org/10.1016/0167-8396(92)90008-D
http://doi.org/10.1007/978-3-540-68783-2_6
http://doi.org/10.1007/978-3-540-68783-2_6
http://doi.org/10.1109/TVCG.2009.41
http://doi.org/10.1016/j.cagd.2021.101991
http://doi.org/10.1016/j.cad.2023.103501
http://doi.org/10.1016/j.cagd.2004.04.001
http://doi.org/10.1016/j.cagd.2004.04.001
http://doi.org/10.1007/978-3-642-11620-9_28
http://doi.org/10.1007/978-3-642-11620-9_28
http://doi.org/10.3722/cadaps.2010.163-172
http://doi.org/10.3722/cadaps.2010.163-172
http://doi.org/10.3722/cadaps.2008.121-130
http://doi.org/10.3722/cadaps.2008.121-130
http://doi.org/10.1080/16864360.2007.10738567
https://notebookarchive.org/2024-06-1xe104l
http://doi.org/10.14733/cadaps.2025.68-80
http://doi.org/10.14733/cadaps.2024.75-87
http://www.cad-journal.net

	INTRODUCTION
	RELATED WORK
	Freeform Curves with Monotonically Varying Curvature
	Visualization of Algebraic Surfaces
	Curvature Monotonicity Evaluation Function

	VISUALIZATION OF CURVATURE MONOTONICITY REGIONS
	2D Visualization
	3D Visualization
	Visualization of Sufficient Regions

	APPLICATIONS
	CONCLUSIONS

