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Abstract. Traditional composite additive manufacturing (CAM) systems are 
challenging to manage because of the intricacy and variety of manufacturing 
processes, undermining product quality reliability. This research presents a life cycle 
management (LCM) framework for CAM to improve product quality. The framework 

being examined is a manufacturing system founded on a cloud-edge collaborative 
architecture comprising four modules: product design, product manufacturing, data 
traceability, and cloud management. Finite element analysis (FEA) is a computer 

analysis technique utilized in the product design phase to forecast the tensile 
characteristics of the product. A digital twin (DT) platform is employed during the 
product manufacturing phase to simulate manufacturing processes and validate the 
software process parameters. Using a physical platform for manufacturing is crucial 
for validating the hardware execution outcome. The Bayesian optimization long 
short-term memory (LSTM) algorithm is utilized in the product data tracing phase to 
monitor the production data of both the DT platform and the physical platform and 

detect potential software and hardware faults. A cloud-based management platform 
supervises the production process, enabling the traceability of product manufacturing 
data. For clarification, consider the example of continuous carbon fiber-reinforced 

nylon composite additive manufacturing. Experimental results indicate that the DT-
driven LCM framework can improve product quality. Concerning data traceability, the 
F1 score for software data identification is 92, while the F1 for hardware data 

identification is 98. 
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1 INTRODUCTION 

Composite material products produced through additive manufacturing (AM) have gained extensive 
utilization in the aerospace, defense, and automotive industries. Composite additive manufacturing 

(CAM) involves the molding of two different materials. The manufacturing process is complex and 

http://www.cad-journal.net/
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d


 

 

Computer-Aided Design & Applications, 23(1), 2026, 101-122 

© 2026 U-turn Press LLC, http://www.cad-journal.net 
 

102 

variable, requiring the guarantee of uniform product quality from the design stage to production. 
Researchers have utilized digital twin (DT) technology for AM's life cycle management (LCM) to 
resolve the challenges above. DT technology monitors AM processes, predicts performance, detects 
anomalies, optimizes process parameters, and forecasts production costs, thereby improving the 

overall AM process and aiding LCM [1]. Data-driven approaches are being incorporated into the AM 
life cycle, including machine learning, product-process co-design, and life cycle evaluation to 
facilitate AM LCM [2]. To improve the current LCM framework for AM, researchers have successfully 
incorporated machine learning and the principles of collaborative product and process design [3]. 

Although numerous DT-driven AM LCM systems have been proposed, they exhibit significant 
interconnectivity and complexity regarding extensibility. Concerning material handling, there is a 
scarcity of performance analysis of materials. DT technology is frequently employed within 

established frameworks to facilitate viewing physical manufacturing processes and offer feedback on 

the state of actual AM. Applying machine learning techniques to detect anomalous data presents 
considerable difficulties in swiftly determining the source of defective products. Moreover, testing 
frameworks make it difficult to distinguish between software flaws, such as process parameters and 
control logic, and hardware errors, such as physical actuators. 

The above framework divides the CAM life cycle into four distinct modules. Each module works 

autonomously, exchanges data, and supports future scalability. The design phase involves 
conducting finite element analysis (FEA) on materials. Simultaneously, the DT is detached from the 
actual production process. After loading verification, the DT is employed to simulate manufacturing, 
and the software process is transferred to the physical device for actual production. Using the edge 
layer for device status monitoring and anomaly detection can reduce raw data transmission, ensuring 
that only data rich in important information is transmitted. Data from two manufacturing processes 
is extracted, and the Bayesian optimization long short-term memory (LSTM) algorithm is employed 

to identify them individually. This procedure aims to identify potential sources of flaws in the 

production process and swiftly detect software and hardware malfunctions. The cloud-based 
management platform receives and stores product information and data, which will be uniformly 
stored in the cloud. Data will support external access. A distinctive identity is created throughout 
manufacturing, facilitating thorough production process tracking.  

This paper is structured as follows: Section 2 discusses related works. Section 3 constructs a 
framework for the life cycle of CAM. Section 4 uses continuous carbon fiber-reinforced nylon 

composite additive manufacturing as an example to verify the framework's validity. Section 5 
presents conclusions. 

2 RELATED WORKS 

2.1 Digital Twin for Composite Additive Manufacturing 

DTs are a technology that replicates physical environments in a virtual format. Creating a highly 
virtual and realistic twin model facilitates the representation of the actual system in the physical 
realm. Michael Grieves first presented the concept of DTs in 2003 during a discussion on product 
lifecycle management [4]. Digital Twins (DTs) are a digital information system that processes 
physical entities digitally and fully replicates all their physical attributes. Researchers at NASA define 
DTs as: "An integrated, multi-physics, multi-scale, probabilistic simulation of a complex product, 
utilizing the most accurate physical models, sensor updates, and other relevant data." [5]. The 

primary characteristics of DTs are their strong connectivity, bidirectional interaction, and data-driven 
essence between physical and virtual entities. Compared to conventional simulation, the twin model 
significantly enhances the reliability of virtual simulation. 

CAM is a technology that converts digital models into material accumulative structures. It is a 
byproduct of Industry 4.0, combined with DT technology. AM offers significant benefits compared to 
traditional subtractive methods, including the capacity for customized small-scale production, 

economical material usage, and expedited prototyping. Manufacturing hollow, intricate components 
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initially yields substantial cost reductions while improving strength. Secondly, AM is primarily a 
digital fabrication method. This approach drastically reduces the design-to-production cycle while 
preserving the current manufacturing workflow. Nonetheless, it is essential to acknowledge that AM 
currently possesses certain limits. Initially, traditional manufacturing settings were manually 

optimized and regularly changed, a labor-intensive procedure prone to inaccuracies. Secondly, the 
manufacturing process is not easily visualized, impeding users' capacity to intuitively comprehend 
the complexities of the process, especially with the production of equipment for composite materials. 
Thirdly, the collective efficacy of the equipment employed in AM is inadequate, primarily due to 
human and mechanical faults. 

DT technology is being incorporated into the process to tackle the prevailing challenges in AM. 
Due to its digital and information-centric attributes, it can resolve the previously described issues. 

AM goods are linked to transdisciplinary, highly integrated, and digital manufacturing domains. 

Amalgamating many technological methods is essential for efficiently implementing product design 
and production processes. An analysis of DT technology vs conventional AM highlights significant 
benefits. DT technology can optimize process parameters and improve industrial visualization. This 
improvement is accomplished by obtaining and validating process parameters, diminishing the 
frequency of physical equipment malfunctions. 

2.2 Life Cycle Management of Composite Additive Manufacturing 

The product life cycle begins at the design phase and continues through production, usage, and the 
conclusion of its lifecycle. LCM has proven highly beneficial across multiple disciplines, with extensive 
application in biomedicine, railways, aircraft, and automobile production. Garrido et al. [6] suggested 
a framework for the automated creation of industrial DTs, incorporating automatically generated 

simulation models, machine tool control projects, and management tools to facilitate the whole life 
cycle of industrial DTs. Kong et al. [7] conducted a thorough life cycle assessment of ammonia co-

firing systems in their foundational study. This groundbreaking study was the inaugural examination 
of the life cycle of ammonia co-firing systems from the viewpoint of the complete industrial chain. 
The authors' methodology was thorough, encompassing all stages from fuel production and 
transportation to co-firing. 

AM is a digital technology that facilitates the customization of product fabrication. AM products 
consist of procedures, including material handling, fabrication, and elongation processes. The 
procedures above are intricate and variable, complicating the adoption of standardized management 
protocols. The product design, manufacturing, and testing environments operate with considerable 
independence, hindering rapid data interaction among them. This complicates the attainment of the 
requisite product quality. As a result, numerous experts have recently focused on the AM life cycle. 
Manco et al. [8] employed a process-based cost modeling methodology to assess capital and variable 

expenses, aiming to minimize the costs of additively made items while preserving quality. Cardeal 
et al. [9] created a process-based cost model to analyze the life cycle cost and viability of additively 

made spare components. Ma et al. [10] established a comprehensive full-dimensional sustainability 
life cycle evaluation framework to gain fundamental insights into the sustainability performance of 
additively manufactured items throughout their life cycle. 

The thorough LCM of composite additive-made items is outlined based on the ideas and 
methodology defined for LCM in AM. The LCM of composite additive-produced items includes three 

separate phases: design, manufacturing, and traceability. The stages are interrelated, with data 
from each stage influencing the others. Figure 1 illustrates the conceptual basis for this LCM strategy. 
A consolidated platform is created to oversee the specified processes, allowing for the traceability of 
product manufacturing data post-test completion. The amalgamation of cloud manufacturing 
technology and DT technology enables the cloud to surmount data obstacles. DTs can validate 
manufacturing parameters, forecast manufacturing processes, and establish a closed-loop lifecycle 

management system. Simultaneously, they substantially reduce the quality risks associated with 

human variables. 
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Lifecycle management in CAM is structured around three primary stages: design, manufacturing, 
and traceability. In the design stage, all composite AM processes require product modeling and 
slicing. FEA, while optional, can efficiently predict final product strength. In the manufacturing stage, 
DT models enable virtual verification via G-code and control programs and are applicable across 

various CAM processes. Physical manufacturing remains a required step for all CAM processes. 
During traceability, different CAM processes may encounter software anomalies or hardware 
malfunctions, potentially affecting final product quality. Therefore, anomaly data traceability is 
essential. 

Although the proposed lifecycle management framework for CAM is applicable to various CAM 
systems, challenges remain when scaling up to large-scale production. This is primarily because 
large-scale manufacturing typically relies on mature commercial control systems, most of which do 

not support direct data interaction with external platforms. This limitation significantly hinders the 

implementation of DT-based verification. As a result, DT verification is currently more feasible for 
small-scale, independently developed AM systems rather than for commercialized, closed-source 
platforms. Furthermore, during the traceability phase, the diversity of CAM equipment and processes 
must be taken into account. Effective traceability requires training specialized datasets tailored to 
the specific characteristics of composite materials and their manufacturing processes to meet the 

demands of anomaly tracking during production. 

 

 

 

Figure 1: Concept of life cycle design for additive manufacturing products. 
 

3 LIFE CYCLE FRAMEWORK FOR COMPOSITE ADDITIVE MANUFACTURING 

The production of composite material items requires the sequential layering of two materials in the 
AM process. The design and manufacturing procedures of these goods are complex and variable. 
Compared to traditional single-material AM techniques, composite material products are prevalent 

in high-end applications. These applications require high-quality requirements and the capability to 
trace the provenance of the created products and the associated manufacturing data. Figure 2 
illustrates the life cycle framework for AM of composite materials. This system integrates multiple 
technologies, including FEA, DTs, cloud data management, and identification. The framework 
comprises four distinct modules: product design, product manufacturing, data traceability, and cloud 
administration. The main functions of the product design module are the creation of the initial 
product model, the production of G-code via slicing, and the implementation of FEA. The product 

production module comprises DT manufacturing and physical manufacturing. DT manufacturing 

involves the integration of software process parameters and control logic. In contrast, physical 
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production requires incorporating validated process parameters and control logic and exporting 
manufacturing data. The data tracing process employs a Bayesian optimization LSTM algorithm, an 
advanced machine learning model, to systematically trace production data and detect probable 
software and hardware faults in manufacturing. The execution of cloud data management entails 

the amalgamation of edge computing and IoT technologies. A personal computer operates as an 
edge device, acquiring and storing industrial data before relaying it to the cloud for centralized 
administration. In the traditional AM life cycle frameworks, the FEA of materials is inadequate during 
the initial design phases. DTs are employed exclusively to enhance the visualization of physical 
production processes, consequently hindering the thorough simulation of the manufacturing process. 
The discovery of problems during data analysis presents a considerable barrier, as it is frequently 
impossible to determine whether these defects stem from software or hardware components.  

 

 

 

Figure 2: Lifecycle framework for composite additive manufacturing. 

 

3.1 Product Design 

The product design process parallels the traditional AM method, primarily involving model design, 
model slicing, G-code generation, and FEA. The model design employs SOLIDWORKS for modeling, 
aiming to create a model of the printed product based on the dimensional specifications. The model 
slicing procedure employs proprietary composite material slicing software that accounts for the 

unique characteristics of two different materials, devises the laying path, and produces the requisite 
G-code file. The G code includes positional and velocity data for the XYZBC axes, absolute and relative 
movement parameters, and print head temperature details. This extensive array of parameters 
comprises the essential software process parameters. FEA utilizes Ansys simulation to forecast the 
tensile strength of the spline. The model integrates nylon and continuous carbon fiber configurations, 
with tensile strength metrics derived from simulations based on G-code data. 
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3.2 Product Manufacturing 

3.2.1 Digital twin manufacturing 

DT technology constitutes a system that correlates the physical world with the virtual realm via data 
interaction and integration, effectively representing the authentic characteristics of physical entities 
[11]. DT technology encompasses the representation of physical environments in virtual formats 
and the dynamics of data interaction within these spaces. Creating a highly consistent twin model 
facilitates the complete replication of manufacturing equipment in the physical environment, thus 
achieving an enhanced simulation of the physical manufacturing system. High-fidelity virtual models 

exhibit the physical world's geometry, physical properties, behavioral rules, and sensory data, 
enabling accurate simulation of physical entities' behavior [12]. The DT of CAM represents a virtual 
model synthesizing various disciplines, as demonstrated in Figure 3. 

 

 

 

Figure 3: Digital twin for composite additive manufacturing. 

 

CAM equipment involves multiple interconnected fields, such as mechanics, electrical systems, and 
computing technologies. Thus, the CAM equipment requires disassembly to evaluate the 

contributions of these various fields. The process is delineated as follows: 

1. Disassembly of the mechanical actuator is necessary to ascertain its function. A virtual model 
must be created to correspond with the physical entity, and this model must fully simulate the 
movement of the actuator. The virtual actuator's movement is facilitated by configuring kinematic, 
sliding, and hinge pairs. 

2. The control system is disassembled, and the software process parameters and control logic 
of the physical device are analyzed and reproduced in the virtual control system to ensure alignment 

with the physical control system. The virtual control system replicates manufacturing processes by 
integrating process parameters and control programs that align with the physical control system. It 
employs an interactive interface that mirrors the physical control system to oversee manufacturing 

and facilitate data transfer. Process parameters for various products can be adjusted as required. 
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3. To simulate the material extrusion by the BC axis in the physical manufacturing process, it is 
essential to establish a trajectory interface that replicates the extrusion process. The trajectory 
visualization interface utilizes C# WPF 3D visualization technology. The current extrusion amount, 
position, and speed data of the BC axis are used to visualize the trajectory of dual-head AM, thereby 

achieving the objective of simulation manufacturing. 

4. The Siemens S7 protocol enables the integration of the specified components, facilitating 
effective data exchange. The virtual controller, human-machine interface, trajectory visualization 
interface, and virtual actuator are integrated to create a comprehensive DT model. 

The mechanical actuator is designed using CAD modeling software and subsequently integrated into 
the DT model and visualization interface. Various actuator structures are established to attain the 
intended movement of the virtual actuator. The operational procedure involves the interactive 

interface parsing the G-code and transmitting the data to the virtual controller, which concurrently 

generates manufacturing instructions and simulates temperature variations of the dual-nozzle head. 
The virtual controller executes the manufacturing process, while the trajectory visualization interface 
manages the mechanical actuator's movement and displays the movement trajectory of the dual-
nozzle head. 

The manufacturing data of the DT is categorized into two segments: the first comprises data 

from the virtual controller about axis location, speed, and extrusion nozzle temperature, while the 
second pertains to the substrate and fiber distribution of the track, as illustrated in Table 1. The data 
extraction and recognition procedure employs C# WPF to create an interactive and visual trajectory 
interface. The Siemens S7 protocol acquires both data streams at 1-second intervals, logging results 
directly into preconfigured Excel templates. The virtual controller extracts data categories such as 
XYZBC axis position, velocity, and printhead temperature to verify control logic and process 
parameters.  

 

Data categories Nylon extrusion shaft Fiber extrusion shafts 

X-axis position mm -84.5 74.265 -155.72 -58.495 

X-axis speed mm/s 0.000178814 0.3492236 0 3.6076903 

Y-axis position mm -11.559 1.6 0.778 2.179 

Y-axis speed mm/s 71.501854 0 0 0 

Z-axis position mm 0 0 0.15 0.15 

Z-axis speed mm/s 0 0 0 0 

Extrusion-axis position mm 12.271 109.172 544.493 665.499 

Extrusion-axis speed mm/s 0.000178814 2.964437 0.10704994 0 

Extrusion temperature ℃ 239.79 240.64 260.12 259.19 

 

Table 1: Data extracted during digital twin manufacturing. 

3.2.2 Physical manufacturing 

The physical manufacturing process is carried out by inputting process parameters and control logic 
that align with the DTs. The manufacturing process aligns with that of the DT. The manufacturing 
process involves loading the G-code file into the interactive interface and parsing and transmitting 
the data to the physical controller. After receipt of process parameters and control logic, the print 
head is subjected to a preheating procedure. The temperature is regulated using verified PID 
parameters, ensuring adherence to specified temperature requirements during printing. The physical 

actuator commences the manufacturing process upon sending manufacturing instructions at the 
interface. 

The physical manufacturing process is carried out by inputting process parameters and control 
logic that align with the DTs. The manufacturing process aligns with that of the DT. The 

manufacturing process involves loading the G-code file into the interactive interface and parsing and 
transmitting the data to the physical controller. After receipt of process parameters and control logic, 
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the print head is subjected to a preheating procedure. The temperature is regulated using verified 
PID parameters, ensuring adherence to specified temperature requirements during printing. The 
physical actuator commences the manufacturing process upon sending manufacturing instructions 
at the interface. 

The CAM system comprises a 5-axis motion platform, as shown in Figure 4. The X, Y, and Z axes 
govern the nozzle's positioning, while the B and C axes facilitate the extrusion of nylon and 
continuous carbon fiber materials. The heating rod regulates the nozzle temperature, while the 
thermocouple provides real-time feedback. The stepper motor operates based on pulses received 
from the physical controller. In contrast, the stepper drive configuration is modified using the DIP 
switch, motor current, and load-displacement per revolution to ensure compatibility with the lead 
screw. The manufacturing process aligns with the DT model, utilizing a spaced filling method 

alternating between continuous fibers and nylon. 

 

 
 

Figure 4: Physical composite additive manufacturing equipment. 

 

Physical manufacturing data is collected using temperature and vibration sensors. The temperature 
sensor utilizes a thermocouple, with analog-to-digital conversion conducted by a temperature 
transmitter. The vibration sensor collects data on the motor's vibrations using the Bluetooth 
transmission protocol. Most failures occur within the BC axis during manufacturing, as shown in 

Table 2. Data is extracted utilizing the interval extraction method, with a specified extraction interval 
of 1 second. The extracted physical manufacturing data is used to detect hardware defects in the 
manufacturing process. 

 

Data categories Nylon extrusion shaft Fiber extrusion shafts 

X-axis vibration speed mm/s 1 1 1 0 

Y-axis vibration speed mm/s 2 0 1 1 

Z-axis vibration speed mm/s 1 0 0 0 

X-axis vibration displacement mm 11 1 2 0 

Y-axis vibration displacement mm 16 1 3 3 

Z-axis vibration displacement mm 1 2 2 2 

X-axis vibration frequency Hz 32 42 37 8 

Y-axis vibration frequency Hz 32 37 67 36 

Z-axis vibration frequency Hz 49 69 65 42 

Extrusion motor temperature ℃ 25.63 25.69 24.62 24.81 

Extrusion nozzle temperature ℃ 239.94 240.18 258.32 261.05 

 

Table 2: Data extracted during physical manufacturing. 
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3.3 Data Traceability 

The mathematical principle of LSTM, as shown in Equation (3.1), addresses the gradient vanishing 

and explosion problems of traditional recurrent neural networks (RNN) by introducing a gating 
mechanism and a cell state. This structure enables LSTM to effectively capture long-term 
dependencies by regulating information flow, retaining relevant patterns in long sequences, and 

discarding irrelevant data. We define the time step as t , the input as 
m

tX R , and the cell state as 

1
n

tC R , with 
( ), , , n m n

f i o CW W W W R  representing the parameter matrix and , , , n
f i o Cb b b b R  the bias 

term. The forget gate determines which information to discard from the cell state 1tC , and calculates 

the forgetting factor [0,1]ntf , where  denotes a sigmoid function that maps values to the range 

[0,1] . The input gate determines which new information is added to the cell state. It generates 

candidate information 
tC  using function tanh , which maps values to the range [ 1,1] , and 

simultaneously computes the input factor [0,1]nti . The cell state tC  is then updated by combining 

the previous memory 1tC  with the new candidate information 
tC . Old memories are partially 

retained through the forget gate tf , while new information is selectively added via the input gate ti . 

The output gate determines the current hidden state th , which is influenced by both the updated cell 

state and the current input. It computes the output factor [0,1]nto  and subsequently calculates the 

hidden state. 

 
1( [ , ] )t f t t ff W h X b  (3.1) 

 1( [ , ] )t i t t ii W h X b  

 1( [ , ] )t o t t oo W h X b  

 1( [ , ] )t C t t CC tanhW h X b  

 1t t t t tC f C i C  

 ( )t t th o tanh C  

LSTM's gating mechanism and cell state resolve traditional RNNs' gradient vanishing/explosion 
issues while enabling robust modeling of long-range dependencies [13]. This model can effectively 
regulate the flow of information, remember patterns in long sequences, and discard irrelevant data. 

The collection of hyperparameters of the LSTM is represented by dx X R , the dimension of the 

hidden layer is defined by h , the learning rate is represented by , the number of LSTM layers is 

represented by L , and the dropout ratio is represented by P . The objective function is the loss 

function ( )f x  on the validation set, and the optimal parameters *x  are sought. Bayesian 

optimization models the process using Gaussian processes ( )GP  and selects the next evaluation 

point using an acquisition function ( )f x . It is divided into the derivation of the a priori and a 

posteriori distributions of Gaussian processes, assuming that ( )f x  they obey a Gaussian process in 

Equation (3.2), where is the mean function ( )x  and covariance function '( , )K x x  in Equation (3.3). 

The posterior distribution is derived for a given set of observations 1: 1{ , }tt i i iD x y . Among them 

( ) ii iy f x  is noise 
2(0, )i nN . The joint distribution is in Equation (3.4), and the posterior 

distribution is (3.5). The acquisition function is expected to improve, and the improvement function 

is defined as min( ) ( ( ),0)I x max f f x  where the current optimal observation value minf  and the 
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expected improvement are in Equation (3.6). Under the Gaussian process, the closed-form solution 

is in Equation (3.7).  and  represent the cumulative distribution function and probability density 

function of the standard normal distribution, respectively, and  denote the exploration parameter. 

 '( ) ( ( ), ( , ))f x GP x K x x  (3.2) 

 

'
' 2

21

( )1
( , ) ( )

2

d
i i

f i
i

x x
K x x exp

l
 (3.3) 

 

2

1 1 1

[ ] (0,[ ])
( ) ( , )

n
T

t t t

f k l K
N

f x k x xK
 (3.4) 

 1 1 1( , ), [ ( , ),..., ( , )]Tij i j t t tk k x x K k x x k x x  

 2
1 1: 1 1( ) | ( ( ), ( ))t t t t t tf x D N x x  (3.5) 

 2 1( ) ( )T
t nx K k l y   

 2 2 1( ) ( , ) ( )T
t nx k x x K k I K   

 min

min( ) [ ( )] ( ) ( | )fEI x E I x f f p f D df  (3.6) 

 min( ) ( ( ) ) ( ) ( ) ( )t tEI x f x Z x Z  (3.7) 

 min ( )

( )
t

t

f x
Z

x
  

When new data is entered into the trained LSTM model, the predicted probability p  is the model's 

positive class probability. Anomaly scores are calculated using a confidence level 

( ,1 )confidence max p p , and thresholds are updated based on recent data distribution using a sliding 

window method. Maintain a fixed-size window, for example, with a confidence level of 5 samples 
5n . After entering new data, the current sample's score is added to the window, and the oldest 

data is removed. The position index ( 1) wk n p  must be calculated using the threshold calculation, 

which is the median of the window wp . This is often taken as 0.95 in industrial anomaly detection. 

The final threshold value is calculated using linear interpolation. Here's the interpolation formula 

1( )p i i iQ X f X X : the integer part of linear interpolation i k , the decimal part is f k i  

the window data i  after the update iX  and the final anomaly threshold 
wp

Q . If the score exceeds 

the threshold, there is a defect in the product's manufacturing. 

A Bayesian optimization LSTM technique is utilized to independently train and test the obtained 
dataset to detect probable software and hardware problems in the manufacturing process. The 
training and testing datasets comprise production data under both normal and abnormal settings. 
The data preparation phase employs normalization and outlier elimination to maintain training 
integrity. Due to the challenges associated with producing abnormal state data during production, 

the method of manually inducing faults is utilized to create such data. The input data comprises 
normal and abnormal production data gathered during the DT and physical manufacturing processes. 
In contrast, the output data is represented as 0 and 1, indicating the identification result as normal 
or abnormal. The data in the training set must be subjected to some processes, including mixing, 
shuffling, and partitioning. 80% of the data is designated for training, while the remaining 20% is 
allotted for evaluating the training outcomes. The amalgamation of production data with a DT 

enhances trajectory visualization, allowing software-induced faults to be detected in manufacturing. 
Defects encompass nylon and fiber fractures, absent components, and geometric irregularities. 

Identifying data, including motor vibration and temperature obtained during the production process, 
enables the diagnosis of hardware-related faults such as motor lockup, overheating, and overspeed 
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anomalies. The amalgamation of DTs, physical manufacturing, and a Bayesian optimization LSTM 
algorithm allows for separating software and hardware defect diagnosis, expediting the localization 
of defect sources. 

3.4 Cloud Management 

Cloud management encompasses storing and administering essential data generated during the 
three stages of AM of composite materials. Cloud management enables the thorough execution of 
the product's life cycle. Figure 5 depicts the hardware of the edge computing device. It consists of a 
switching power supply, an edge computing gateway, and a network switch. The edge computing 

gateway is connected to the network switch. The switch connects the personal computer and physical 
manufacturing apparatus to the edge above the computing gateway. The 4G technology employed 
by the edge computing gateway facilitates access to and configuration of the cloud platform. The PC 

functions as a data transmission system, overseeing all facets of production and employing the API 
to transmit critical industrial data. The cloud concurrently uses the MQTT protocol to manage the DT 
and actual manufacturing processes. The MQTT agent functions as a data conduit, aggregating 
information from multiple sources and storing it until retrieved by the subscriber [14-16]. Dimensions 

and finite element simulation data are produced during the product design phase. Both DT and 
physical manufacturing data are collected during the product manufacturing phase. The data tracing 
phase generates the outcomes of manufacturing data identification. The cloud can access edge 
computing devices to monitor the real-time DT and physical manufacturing processes. The PC obtains 
product-dimensional data using the SOLIDWORKS API and FEA data via the Ansys API and thereafter 
saves it in the specified file directory. The Siemens S7 protocol enables the acquisition and storage 
of data from DTs and physical industrial processes. The saved data is analyzed utilizing a Bayesian 

optimization LSTM algorithm, and the identification outcome is used to ascertain the qualification of 
the currently made product. The data management process retains the identification result data. 

Upon completion of the design, manufacturing, and identification stages, a distinctive identification 
number will be assigned to the product in production. This number will be used in the data tracing 
process. Simultaneously, technicians test the product's tensile strength to determine its precise value 
and then upload the result to the cloud management system. 

Our cloud-based system transmits data from edge devices and PCs to the cloud using 4G 
networks and the MQTT protocol. However, this architecture may be vulnerable to security threats 
such as man-in-the-middle attacks, eavesdropping, and data forgery. The MQTT protocol, while 
lightweight and efficient, lacks built-in encryption and robust authentication mechanisms, making it 
a potential target for attackers. To mitigate these risks and prevent data leakage during transmission, 
we have integrated a TLS/SSL encryption layer over the MQTT protocol to ensure data confidentiality 
and integrity. Additionally, we implement certificate-based mutual authentication between 

publishers and subscribers to block unauthorized device access and enhance system security. 

To further strengthen our communication framework, we enforce strict session timeout policies, 

regularly rotate security credentials, and monitor traffic patterns for anomalies using intrusion 
detection systems. These combined measures help protect against advanced persistent threats and 
ensure that only verified and authorized devices participate in the data transmission process, 
significantly reducing the risk of compromise across our networked manufacturing environment. 

As a centralized data repository, the cloud platform presents significant risks of unauthorized 

access, duplication, or data theft if adequate access control and encryption measures are not 
enforced. The stored data includes highly sensitive information such as dimensional design files, 
finite element simulation results, manufacturing process parameters, and product strength data. To 
mitigate these risks, we have implemented a role-based access control mechanism to precisely 
manage user permissions and ensure that each role can access only the data necessary for its 
function. Additionally, sensitive data, such as FEA results and process parameters, is protected using 

tiered encryption and dynamic key management via a Key Management Service, which is regularly 

updated to defend against emerging threats. 
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Figure 5: Hardware composition of edge computing devices. 
 

To ensure data integrity and traceability, we employ blockchain technology to hash and store 
manufacturing data, thereby preventing tampering during transmission and storage and improving 
the reliability of traceability. Each product ID is linked to a corresponding data package stored in the 
cloud as an immutable record, enabling precise accountability and rapid auditing when quality issues 

arise. Furthermore, we have adopted real-time monitoring and anomaly detection tools to identify 

unusual access patterns or unauthorized activities. Although cloud-based management throughout 
the additive manufacturing lifecycle provides substantial benefits in convenience and intelligent 
functionality, it also introduces significant data security risks. These risks can be effectively mitigated 
through the implementation of comprehensive safeguards, including encrypted data transmission, 
device authentication, and access control, ensuring the confidentiality, integrity, and availability of 
manufacturing data. 

4 ADDITIVE MANUFACTURING EXPERIMENTS ON CONTINUOUS CARBON FIBER-REINFORCED 
NYLON COMPOSITES 

The proposed LCM framework for AM of composite materials employs DTs, deep learning, and LCM 
throughout product manufacturing [17]. This technology addresses several primary challenges: It 

utilizes DT technology to simulate composite materials' complete AM process, validate the process 
flow and parameters, and decrease the expenses of testing physical equipment. Secondly, it 
examines the challenges related to pinpointing the origin of defects in the manufacturing process. 

Abnormalities in manufactured products complicate the rapid identification of whether defects stem 
from software or hardware. Product design, manufacturing, and data identification processes operate 
independently, and there is an absence of a cohesive data management platform to track data 
throughout the manufacturing process. A specimen produced through AM techniques was employed 
for verification to address these challenges. The specimen consisted of a continuous carbon fiber-
reinforced nylon composite material. 

4.1 Product Design 

Experimental validation in carbon fiber-reinforced nylon CAM confirmed the framework's operational 
efficacy. In the product design process, SOLIDWORKS was employed to develop the preliminary 

model of the product, a standard cuboid spline measuring 150 millimeters in length, 13 millimeters 
in width, and 2 millimeters in height. The CAD software exports STL and G-code files to automate 
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toolpath generation and streamline layer-by-layer fabrication planning. A distribution model of 
continuous carbon fiber and nylon materials is constructed in Ansys based on the data in the G-code 
file to conduct an FEA experiment. Material properties require precise definitions for all constituent 
materials according to their standardized classifications. The material properties encompass the 

elastic constant, Poisson's ratio, density, and strength [18]. The continuous carbon fiber material 
possesses a density of 1.8 g/cm³, a Young's modulus of 100 GPa, a yield strength of 480 MPa, and 
a Poisson's ratio of 0.38. The density of nylon material is 1.14 g/cm³, its Young's modulus is 2.8 
GPa, the yield strength is 70 MPa, and the Poisson's ratio is 0.39. The following phases involve 
meshing and the incorporation of boundary conditions. Subsequently, the LS-DYNA (85) model 
performs an axial equivalent displacement stretch. The solution is then executed to obtain the 
anticipated tensile strength result. The FEA experiment data indicates that the model's tensile 

strength varies. The instant tensile fracture coincides with the model's maximum tensile strength of 

566 MPa. Figure 6 illustrates the FEA experiment. Figure 6 (a) delineates the procedure of the FEA 
experiment for tensile strength, whereas Figure 6 (b) compares the maximum tensile strength and 
the average tensile strength over time. 

 

 
 

Figure 6: Finite element analysis experiment: (a) Experiment, and (b) Maximum and average tensile 
strength. 

 

4.2 Product Manufacturing 

4.2.1 Digital twin manufacturing 

The experimental framework for DT manufacturing involves creating a DT model and transferring the 
control software from this model to the virtual controller. The Nettoplcsim software will map the 
virtual IP address to the physical IP address for the S7 protocol connection. The G-code file, produced 
during the product design process, is then uploaded into the interactive interface of the DT. The 

interactive interface interprets the G-code and transmits and receives data. Simultaneously, the 
visual trajectory interface is activated, and the DT production process is commenced by the 
manufacturing command situated at the interactive interface. 

The interactive interface facilitates the transmission and reception of data from the ongoing 

manufacturing process during the experiment. It offers instantaneous feedback on pertinent metrics, 
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including the ongoing manufacturing process status, motor position, motor speed, current G-code 
parameters, layer count, and manufacturing duration. Simultaneously, the relevant parameters of 
the motor and nozzle are conveyed to ensure software data traceability. The control program 
employs interpolation to govern the motor shaft and PID control to regulate the nozzle temperature. 

G-code instructions direct the manufacturing process. The visual trajectory interface calculates the 
extrusion volume of continuous carbon fiber and nylon, which is subsequently utilized to ascertain 
the corresponding trajectory length. In this interface, blue denotes the nylon trajectory, whereas 
red indicates the continuous carbon fiber trajectory. The visual interface subsequently exports the 
trajectory data for juxtaposition with the G-code data. 

Figure 7 illustrates the impact of DT production, while the visual trajectory interface elucidates 
its manufacturing process. Figure 7 (a) illustrates the infill trajectory and density of the first two 

layers of nylon AM, filled at an angle of 0 degrees. Figure 7 (b) depicts the application of continuous 

carbon fibers onto a nylon layer, including 14 fibers. Figure 7 (c) illustrates the fiber installation 
procedure from a lateral viewpoint, indicating a specified thickness along the Z-axis of geometric 
space. Figure 7 (d) represents the finished result, with the fibers encased in nylon. 
 

 
 

Figure 7: Digital twin manufacturing effect: (a) Nylon, (b) Continuous carbon fibers, (c) Lateral 
viewpoint, and (d) Final result. 
 

 

 
Figure 8: Comparison of G-code and digital twin product data: (a) G-code nylon data, (b) Digital twin 
nylon data, (c) G-code fiber data, and (d) Digital twin fiber data. 

 

Figure 8 illustrates the comparison between the end product data and the G-code data, thereby 
validating the execution efficacy of the G-code data within the DT paradigm. Figure 8 (a) has the G-
code nylon data. The X-coordinate is 149.8 mm, the Y-coordinate is 1.95 mm, and the Z-coordinate 
is 12.8 mm. Figure 8 (b) presents the nylon data for DT production, with an X-axis coordinate of 
149.801 millimeters, a Y-axis coordinate of 1.949 millimeters, and a Z-axis coordinate of 12.801 

millimeters. Figure 8 (c) presents the G-code continuous carbon fiber data, indicating an absolute 

X-axis coordinate of 147.44 mm, a Y-axis coordinate of 1.5 mm, and a Z-axis coordinate of 9.8 mm. 
Figure 8 (d) presents the DT continuous carbon fiber data, indicating an X-axis coordinate of 147.439 
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mm, a Y-axis coordinate of 1.499 mm, and a Z-axis coordinate of 9.8 mm. The DT demonstrates 
significant accuracy with the G-code data, enabling the verification of software process parameters 
and control logic in a completely virtual setting. 

4.2.2 Physical manufacturing 

The physical manufacturing process relies on the established manufacturing platform, into which the 
validated control program is uploaded into the physical controller. The validated G-code file is 

subsequently uploaded into the human-machine interface, which interprets the G-code and manages 
data transmission and reception. Simultaneously, production directives are transmitted to the 
physical controller.  

The human-machine interface collaborates with the production process using the DT concept in 
the experiment. The XYZ three-axis mechanism in the physical device regulates the nozzle's spatial 

positioning, while the BC two-axis governs the volume of material extruded from the two nozzles. 
The B axis regulates the extrusion volume of the nylon material, while the C axis governs the 

extrusion volume of the continuous carbon fiber material. The imperative of severing continuous 
carbon fiber materials post-extrusion is critical, and a cylinder is utilized to control the cutting head. 
The nozzle temperature is controlled by a temperature regulator that employs a thermocouple for 
temperature measurement and a heating element to provide heat to the nozzle. Figure 9 illustrates 
the manufacturing process. Figure 9 (a) demonstrates the production process. Figure 9 (b) illustrates 
the continuous fiber that has been laid. Figure 9 (c) displays the placed nylon. Figure 9 (d) illustrates 

the completed manufactured product. 

Bluetooth sensors and temperature transmitters enable data acquisition. Bluetooth sensors are 
applied to collect vibration data from the XYZBC three-axis, while thermocouples and temperature 
transmitters are utilized to acquire temperature data from the motor and nozzle. The gathered data 
is subsequently recorded in a specified file using the time interval extraction method for hardware 

data traceability. 

 

 

 

Figure 9: Physical manufacturing experiment: (a) Physical process, (b) Continuous fiber placement, 
(c) Nylon placement, and (d) Complete manufactured product. 

 

4.3 Data Traceability 

The execution of data tracing is guided by a Bayesian optimization LSTM deep learning system, 
utilizing a dataset that includes standard and anomalous manufacturing data. The acquisition of 
exception data from non-conforming products supplements the gathering of manufacturing data 

from conforming items. The two data sets are subsequently combined and distinguished utilizing 
label values. Before the training phase, processing the gathered DT and physical production data to 
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remove outliers is essential. The data must first be standardized and then scrambled. Conventional 
machine learning methodology divides datasets into an 80% training subset and a 20% holdout 
testing subset for performance evaluation. It is essential to modify the dropout layer of the model 
to reduce the likelihood of overfitting [19]. In industrial production data recognition, the accuracy 

index is prone to distortion because of the small percentage of anomalous data. Thus, the F1 score 
is utilized to precisely represent the model's identification proficiency for the minority class. The ideal 
hyperparameter selection, aligned with the maximum F1 score, is attained by Bayesian optimization 
of LSTM to guarantee the effectiveness of the training procedure. 

4.3.1 Digital twin for manufacturing data traceability 

DT manufacturing data traceability consists of two components: the traceability of nylon sample 
data within the DT model and continuous carbon fiber sample data traceability. The challenges in 

generating abnormalities during manufacturing indicate that manual configuration of software 
process parameters leads to the production of abnormal data. The Z-axis position of the DT remains 
in the same plane throughout the nylon track laying process. The Z-axis speed remains constant at 
zero. The Z-axis speed will be omitted from the data processing. Table 3 demonstrates that the DT 

for manufacturing nylon and continuous carbon fiber data models utilizes different hyperparameters, 
leading to diverse test results. The data is trained and tested according to the specified 
hyperparameters, with the resulting model's accuracy, precision, recall, and F1 score reported.  

Figure 10 presents the confusion matrix alongside the correlation analysis heatmap for the LSTM 
classification model applied to DT nylon and fiber data. The confusion matrix serves as a statistical 
instrument for presenting the outcomes of a model evaluation. In contrast, the correlation analysis 
heat map depicts the associations between input features and output values [20]. The input is 

defined by the collected characteristic data, while the output consists of a label value of 0 or 1, 
representing the two states of normal and abnormal. 

 

DT manufacturing data model hyperparameters 

Hyperparameter category Nylon sample data Fiber sample data 
Hidden layer size 419 406 
Layers 1 1 

Dropout probability 0.351 0.417 
Learning rate 0.005788 0.000137 
Weight decay 1.32×10⁻⁶ 2.44×10⁻⁴ 
Batch size 64 32 
Bi-directionality No No 
Training wheels 50 50 

Training output results 

Accuracy 0.9302 0.9199 

Precision 0.8824 0.8634 
Recall 0.9930 0.9929 
F1 Score 0.9344 0.9236 

 

Table 3: Digital twin manufacturing data model training hyperparameters and results. 

 

If the same batch of products is produced again, gathering new manufacturing data and applying 
the trained model for identification is essential. The confidence level of the five distinct samples, as 

indicated by historical identification results, warrants consideration. The levels should be organized 
within a window, removing the initial element and appending the new data's confidence level at the 
window's end. The threshold is established by calculating the position index. If the confidence level 
of the latest data surpasses the existing threshold, it can be concluded that a software defect exists 

in the manufacturing process. The origin of the defect can be identified through a visualization 
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interface, allowing relevant personnel to locate the defect quickly. Defects commonly arise from 
nylon and fiber breaks, geometric shape irregularities, overflow boundaries, and absent components, 
as demonstrated in Figure 11. Manufacturing experience indicates a strong relationship between 
these defects and the software's process parameters and control logic. 

 

 
 

Figure 10: Correlation heat map and confusion matrix of the digital twin manufacturing data model. 

 

 
 

Figure 11: Common software defects. 
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4.3.2 Physical manufacturing data traceability 

The methodology for tracing physical manufacturing data aligns with tracing DT data. The 
distinguishing factor relates to the source of the extracted data: DT manufacturing data originates 
from software, while physical manufacturing data comes from hardware. An analysis of the physical 
manufacturing process indicates that nylon and continuous carbon fiber extrusion motors and 
nozzles demonstrate a greater likelihood of abnormalities. An analysis of the defects associated with 

physical actuators is essential, as these defects can significantly affect the quality of the final product. 
Sensors enable sample data collection, while the generation of abnormal data is triggered by 
detecting physical actuator anomalies through sensor feedback loops and threshold-based 
diagnostics. Table 4 presents the hyperparameters and test results for physically manufacturing 
nylon and continuous carbon fiber data models. Figure 12 presents the changes in the training 
indicators of the physical manufacturing nylon and fiber data LSTM classification model, the 

confusion matrix, and the correlation analysis heat map. The confusion matrix is a statistical 

instrument that presents the outcomes of a machine learning model evaluation, offering insight into 
prediction accuracy and error types. The correlation analysis heat map visually represents the 
relationship between input features and output values, helping identify dominant influencing factors. 
The input comprises the gathered feature data, while the output consists of label values of 0 and 1, 
representing normal and abnormal states, respectively. 

 

 

 

Figure 12: Correlation heat map and confusion matrix of the physical manufacturing data model. 
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Physical manufacturing data model hyperparameters 

Hyperparameter category Nylon sample data Fiber sample data 
Hidden layer size 462 318 
Layers 4 2 
Dropout probability 0.210 0.012 
Learning rate 0.00193 0.00892 

Weight decay 5.52 × 10⁻⁵ 1.38× 10⁻⁵ 
Batch size 100 100 
Bi-directionality No No 
Training wheels 50 50 

Training output results 
Accuracy 0.9860 0.9874 

Precision 0.9787 0.9846 

Recall 0.9937 0.9907 
F1 Score 0.9862 0.9876 

 

Table 4: Training hyperparameters and results for the physical manufacturing data model. 

 

If the same batch of products is produced again, gathering new manufacturing data and applying 
the trained model for recognition is crucial. If the confidence level of the latest data surpasses the 

existing threshold, it can be concluded that a hardware defect exists in the manufacturing process. 
Consistent sensor calibration is crucial during model implementation to prevent data bias. The 
hardware actuator is associated with common defects such as extrusion motor overtemperature, 
abnormal vibration, and abnormal nozzle temperature. Figure 13 illustrates that, according to 

manufacturing experience, the origin of these defects is closely associated with the hardware 
actuator and motor. 

 

 

 

Figure 13: Common hardware defects. 

 

4.4 Cloud Management 

The processes are managed centrally by a cloud-based system. In the product design phase, the 
cloud-based management system obtains the designed product dimensions and the finite element 
method analysis results, subsequently storing the data in the designated file. The cloud facilitates 
centralized management of product design, manufacturing, and data traceability processes. It 

enables the monitoring of manufacturing data and its subsequent visualization. DT and physical 
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manufacturing are conducted via a cloud management system during the product manufacturing 
phase. The cloud management system employs edge computing devices to monitor subordinate 
computers and gather DT and physical manufacturing data in a specified file directory. In the data 
tracing phase, the cloud management system employs an edge computing device to retrieve the 

manufacturing data stored in the specified file. The system utilizes a Bayesian optimization LSTM 
algorithm to identify data and subsequently stores the identification results. The product is 
simultaneously subjected to tensile strength testing, with the resulting tensile strength value stored 
in the cloud. After completing this process, the product's unique identification number is generated. 
This number includes relevant information such as manufacturing time, pass/fail status, predicted 
tensile strength, and actual tensile strength. Figure 14 presents this information. Implementing a 
cloud management platform facilitates the oversight of the product life cycle in its entirety. The 

established cloud platform offers support for remote access. 

 

 

 

Figure 14: Cloud-based product lifecycle management system. 

 

5 CONCLUSIONS 

The adoption of CAM products has significantly increased in the aerospace and automotive sectors 
due to their unique benefits, such as high strength, low weight, rapid production processes, and cost 

efficiency. The traditional production technique is marked by complexity, limited quality control, and 
a lack of systematic verification of its relationship with the manufacturing process, hindering its 

widespread use. This paper proposes a DT-driven AM framework for composite materials to address 
the issues above. It assesses the framework's efficacy through a case study of AM of continuous 
carbon fiber-reinforced nylon composites. The experimental results demonstrate that the AM 
framework of the composite material can facilitate the realization of the entire LCM of the product, 
thereby ensuring its quality reliability. A comparison of the traditional manufacturing process with 
the introduction of DT technology for simulation manufacturing reveals the verification of process 

parameters and control logic of the software. A Bayesian optimization LSTM algorithm is introduced 
to trace DTs and physical manufacturing data, enabling the rapid identification of defects, i.e., 
distinguishing between software and hardware defects. A cloud-based management system is 
proposed to oversee the entire manufacturing process and ensure the traceability of product 
manufacturing data. 

Integrating cloud management and edge computing resources facilitates efficient data 
interaction and processing within the three main domains of design, manufacturing, and traceability, 
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thus improving the system's adaptability and migration capabilities. The proposed framework applies 
to the AM process of various composite products. The research findings suggest that a DT-driven 
LCM framework can improve manufacturing processes and provide innovative, practical solutions for 
the AM of composite materials. 
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