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Abstract: Traditional methods may not fully integrate image and text description 

information when processing multimodal data, resulting in insufficient exploration 
of semantic relationships between modalities. This article combines image and text 
descriptions and applies them to zero-shot fine-grained image (FGI) recognition 
tasks to improve the zero-shot learning ability for new categories. This article 
selected the CUB-200-2011 dataset, Stanford-Dogs dataset, and Stanford-Cars 
dataset to provide text descriptions of images in the dataset and perform word 
segmentation on the text descriptions. It introduced CMSE-GAN (Cross-Modal 

Semantic Enhancement Generative Adversarial Network). It consisted of three 
parts: image feature filtering, cross-modal (CM) embedding, and CM generative 
adversarial networks (GAN). By introducing semantic and discriminative constraints 
to remove redundant information from visual features, this paper mapped semantic 
features. It filters image features to the same subspace and trains an adversarial 
network to generate features that are both visually realistic and contain rich 

semantic information. The experimental results showed that in traditional zero-shot 

learning, the recognition accuracy of CMSE-GAN on CUB-200-2011, Stanford-Dogs, 
and Stanford-Cars was 72.2%, 69.9%, and 67.8%, respectively. In generalized 
zero-shot learning, CMSE-GAN can still improve FGI recognition performance. The 
application of CMSE-GAN can effectively improve FGI recognition performance by 
combining image features and text descriptions. 
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1 INTRODUCTION 

As computer vision and natural language processing develop, multimodal data processing has 

become the hotspot in the field. Multimodal data usually consist of image and text descriptions, 
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complementing each other in expressing rich semantic information [1-2]. In image recognition (IR) 
tasks, to improve the performance of models, researchers have been exploring how to utilize the 
information between images and related text descriptions fully. However, in zero-shot FGI 
recognition tasks, i.e., recognizing those fine-grained categories that have not been seen in the 

training set, traditional methods face challenges [3-4]. Because the difference between fine-
grained categories is often very small, and it may be difficult to achieve sufficient differentiation by 
the image alone [5-6]. Meanwhile, the traditional methods can not integrate textual information 
and image features organically well when textual descriptions are present, resulting in a limited 
ability of the model to learn new categories with zero samples. 

Zero-shot fine-grained image recognition can overcome the dependence of traditional image 
recognition methods on a large amount of labeled data [7-8]. Zero-shot FGI recognition is aimed 

at solving the recognition difficulties on previously unseen fine-grained categories, improving the 

model’s zero-shot learning (ZSL) ability for new categories, and promoting the model’s better 
adaptation to multimodal scenarios in practical applications [9-10]. Yu Jun designed a hierarchical 
deep word embedding model by integrating sparse constraints and improved operators to solve 
the problem of predicting click features from visual features [11]. To solve the problem of fine-
grained vehicle classification, Li Xiaoxu added a regularization term to the cross entropy loss. He 

proposed a new dual cross entropy loss and demonstrated good performance on three general 
image classification tasks [12]. In order to improve the application effect of FGI recognition in 
multimedia tasks, Rodriguez and Pau used attention in neural networks to select the most 
informative regions in the image, thereby improving classification [13]. FGI recognition can 
improve the ability to distinguish subtle differences between similar objects, achieve more 
accurate classification and recognition, and provide strong support for precise target localization, 
variety identification, and other fields [14-15]. By using FGI recognition to improve sensitivity to 

subtle differences in objects, computer systems can more accurately distinguish different 

subcategories within the same category.  

CM IR can be utilized to improve the accuracy of search engines for smarter image retrieval 
and annotation [16-17]. CM IR fuses and comprehends information from different modalities to 
achieve more comprehensive and accurate IR and understanding. By combining visual, textual, 
sound, and other information, it can obtain deeper cognition, which helps better to understand 
scenes or objects [18-19]. CM IR helps improve recognition accuracy by simultaneously 

considering information from multiple modalities. When relying solely on image information may 
lead to ambiguity, combining text descriptions or audio information can provide stronger support 
and improve overall accuracy [20-21]. In order to improve the effectiveness of gait recognition, Li 
Guodong proposed a new multimodal gait recognition algorithm based on contour and posture 
features, which obtains set-level spatiotemporal features through time aggregation operations 
[22]. Daas Sara proposed a secure multimodal biometric recognition system based on deep 

learning (DL) methods, and the proposed fusion structure achieved an accuracy of 99.89% and an 

equal error rate of 0.05% [23]. These scholars, who combine information from multiple modalities, 
can provide a more comprehensive and diverse perspective and enhance understanding of image 
content, but they lack the application of CM analysis methods to zero-shot FGI recognition. 

In order to improve the performance of FGI recognition, this paper fully integrates image and 
text descriptions and applies CMSE-GAN to improve the generalization performance of the model. 
This article selects three types of image datasets, including birds, dogs, and cars. By providing 

textual descriptions of the images, this article provides additional semantic information for each 
image. Image data can be standardized, and text descriptions can be segmented. This article 
integrates features from different modalities through CM feature fusion and transforms image 
features and semantic features into a unified feature space through CM embedding modules.  
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2 FGI RECOGNITION METHODS 

2.1 Data Collection and Preprocessing 

The task of FGI recognition for fine classification in object categories with similar appearances 
involves distinguishing different subcategories within the same category [24-25]. Compared to 
traditional image classification tasks, FGI recognition is more challenging. Because the differences 
between object categories are usually very subtle, the model needs to have high resolution and 
discrimination ability. 

FGI recognition requires a large amount of annotated data, as well as handling the similarity 

and complexity between categories [26-27]. FGI recognition technology can help biologists classify 
and identify animals and plants more accurately, thereby promoting species conservation and 
ecological research. FGI recognition technology is of great significance for achieving the goals of 

intelligence and automation, providing more accurate and efficient solutions for various industries, 
and promoting technological progress and social development. 

Multiple image datasets are used to analyze the performance of FGI recognition. The image 
datasets used include the CUB-200-2011 dataset, Stanford-Dogs dataset, and Stanford-Cars 

dataset [28-29], as displayed in Figure 1. 

 

Stanford-Cars

Stanford-Dogs

CUB-200-2011

 
 

Figure 1: Collected image dataset. 
 

To analyze the subtle differences, this text provides a textual description of the collected images. 
For animal text descriptions, there are types and postures, while for car text descriptions, there 
are brands and colors, as displayed in Table 1. 

 

Image Text description Kind Posture 

 

A black-footed 
albatross is flying 

on the sea. 

Black-footed 
albatross 

Flying 

 

A laysan albatross 
is flying on the sea. 

Laysan albatross Flying 
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A Sooty albatross A 
Sooty albatross 

perches in the nest 
in the nest. 

Sooty albatross Perch 

 

A Bobolink stands. Bobolink Stands 

 
Table 1: Text datasets corresponding to CUB-200-2011. 

 

The corresponding text dataset for Stanford-Dogs is shown in Table 2. 

 

Image Text description Kind Posture 

 

A Japanese spaniel 
stands under a 

large tree. 
Japanese spaniel Stands 

 

A Maltese dog sits 
on the lawn. 

Maltese dog Sits 

 

A Pekinese lies on 
the ground. 

Pekinese lies 

 

A Papillon stands on 
the lawn. 

Papillon Stands 

 
Table 2: Text datasets corresponding to Stanford-Dogs. 

 

By textually describing the images, additional semantic information can be provided for each 
image, thus increasing the richness and diversity of the dataset. The textual dataset corresponding 

to Stanford-Cars is shown in Table 3. 

 

Image Text description Brand Colour 
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A white Audi car. Audi White 

 

A gray BMW car. BMW Grey 

 

A blue Audi car. Audi Blue 

 

A white Buick. Buick White 

 

A gray Audi car. Audi Grey 

 
Table 3: Textual datasets corresponding to Stanford-Cars. 

  

Text description gives an opportunity for CM learning, i.e., combining textual information with 

image information and using them together to train a model. Through CM learning, the correlation 
between images and text can be better exploited to improve the ability of the image recognition 
task. 

To ensure the quality and usability of the collected images, the images are subject to 
normalization and standardization. Image normalization is the scaling of the pixel values of an 
image to a fixed range, eliminating the brightness differences between different images and 

making it easier for the model to learn common features. 

The formula for image normalization is: 

min

max min

i i
G

i i
                                                (1) 

min i  and max i  represent the minimum and maximum pixel values, respectively. 

The standardized formula is: 

 
μ

σ

i
S                                                                 (2) 

In formula 2, μ  is the mean of the image pixels and σ  represents the standard deviation. 

For word segmentation processing of text descriptions, the text descriptions can be cut into 
words, and word segmentation based on spaces can be selected [30-31]. Word segmentation can 
cut the text into smaller units, so that the model can better understand and process the semantic 
information in the text. The result after “A Maltese dog sits on the lawn” participle is [“A”, 
“Maltese”, “dog”, “sits”, “on”, “the”, “lawn”]. 
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By mapping each word to a high-dimensional vector space through Word2Vec, the semantic 

relationships between words can be preserved in the vector space. For each word iw , the 

embedding vector corresponding to each word is represented as iv , and the embedding 

representation of the description Text is: 

1

1
N

j

j

Embedding Text v
N

                                         (3) 

2.2 CM Feature Fusion 

CM feature fusion can integrate features from different modalities, thereby enriching feature 

representations. CM feature fusion helps to improve the model’s understanding and expression 
ability of data, making it more comprehensive in capturing the diversity and complexity of data. 

The CM semantic enhancement GAN introduced in this article consists of three processes, 
namely, image feature filtering, CM embedding, and CM GAN. The process of image feature 

filtering is shown in Figure 2. 

Convolutional neural network

Regressor

Classifier

 
Figure 2: Process of image feature filtering. 

 

The image features extracted through convolutional neural networks typically contain a large 
amount of label independent information. By introducing semantic and discriminative constraints, 
redundant information in visual features is removed while retaining key visual information. The 
classifier can be used as a discriminative constraint, and the regressor can be used as a semantic 
constraint. 

The classifier is trained by learning cross-loss entropy, and the formula for cross-loss entropy 

is: 

o ˆ, ˆ l gi i

i

L y y y y                                                (4) 

To obtain the optimal image features by simultaneously optimizing the loss of the classifier and 
regressor: 

1 2 3G G aG                                                           (5) 

In formula 5, 2G  and 3G  represent the loss contributions of the classifier and regressor, 

respectively. a  is a hyperparameter. 

Semantic features can be programmed to be projected into a latent space of the same 

dimension as the filtered image features. The dimensionality-reduced image features and the 
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mapped semantic features are fed into a shared linear layer for generating semantically enhanced 
CM features. The process of CM embedding is shown in Figure 3. 

 

Convolutional neural network

Regressor

Classifier

Semantic feature

Same dimension  
 

Figure 3: The process of CM embedding. 
 

The CM embedding module is an important component designed to transform image features and 
semantic features into a unified feature space. The semantic features are projected into a latent 
space that has the same dimensions as the filtered visual features. This projection process is to 

ensure that the semantic and visual features are in the same dimension in preparation for 
subsequent feature fusion and processing. Finally, classifiers and regressors are applied to ensure 
that CM features do not lose their original discriminative information during embedding and to 
improve the stability and generalization of the model. 

2.3 GAN Training 

A Generative Adversarial Network is a deep learning model that consists of two networks: the 
generator and the discriminator. These two networks compete and collaborate with each other to 
continuously improve each other's performance by means of an adversarial approach to generate 
realistic data [32-33]. The role of the generator is to receive random noise or other types of inputs 
and convert them into data samples similar to the real data [34-35]. 

By training GAN, the generated visual features contain both semantic information and maintain 

visual authenticity, thereby increasing the recognition performance of the classifier. The GAN is 
shown in Figure 4. 

Convolutional neural network

Regressor

Classifier

Semantic feature

Generator

Transmodal 

characteristics

Discriminator

Generating 

feature

 
 

Figure 4: GAN section. 

 

To maintain the stability of the GAN, generation and CM transformation were separated during the 
generation process. The generator is applied to generate features with the same dimensions, while 

the discriminator is responsible for distinguishing between generated and real CM features, driving 
the generator to generate more realistic features. 
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The generator of the GAN is responsible for generating image features from random noise. 
During the training process, the generator deceives the discriminator by generating realistic visual 
features, making it difficult for the discriminator to distinguish the differences between the 
generated features and the real data. Through this competitive and collaborative training 

approach, the generator gradually learns how to generate visually realistic features. 

The calculation formula for the Softmax function is as follows: 

1

i

j

z

i K z

j

e
z

e
                                                     (6) 

The Softmax function converts each element into a probability value between 0 and 1, and the 

sum of all probability values is 1. 

3 EXPERIMENTAL EVALUATION 

FGI recognition can subdivide objects into more specific categories. This can provide a more 
accurate understanding and description of the objects in the image, thus meeting the requirements 
for detailed classification in specific application scenarios. Traditional methods are limited to known 
categories, while zero-shot FGI recognition allows the model to recognize fine-grained categories 

that have not been previously seen, thereby expanding the recognition range. 

In order to improve the performance of zero shot FGI recognition, this paper adopts CM 
features to fuse image features with text descriptions. FGI recognition can be achieved by 
introducing CM semantic enhancement to generate adversarial networks. 

Traditional ZSL refers to supervised learning tasks where the model is not exposed to certain 

categories of sample data during the training phase, and needs to classify or recognize these 

unseen categories during the testing phase. 

The category accuracy with the highest confidence in the measurement average model output 
in the test set: 

1
m

m M

A acc
count M

                                           (7) 

In formula 7, macc  represents the accuracy of the category with the highest confidence. 

Generalized ZSL refers to supervised learning, where the model is not exposed to certain 
categories of sample data during the training phase. During the testing phase, it is necessary to 
classify or recognize these unseen categories, which can also be applied to other learning 

paradigms. 

The accuracy of visible categories on the test set is expressed as: 

1
h

h H

B acc
count H

                                             (8) 

Based on a comprehensive evaluation of A and B, it is concluded that: 

2 * *A B
C

A B
                                                        (9) 

The evaluation method of CM retrieval can be used to evaluate the performance of the model in 
terms of CM embedding. The accuracy of the model for IR is expressed as: 

 
TP

P
TP FP

                                                      (10) 
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The recall rate of IR is expressed as: 

TP
R

TP FN
                                                      (11) 

To comprehensively analyze the performance of CM semantic enhancement GAN, multiple 
embedded and generative methods are set up for comparison. 

The embedded methods set include DAP (Discriminative Attribute Prediction), CMT (Continuous 
Multimodal Transduction), SSE (Semantic Space Embedding), ALE (Attribute Label Embedding), 
EZSL (End-to-End Zero-shot Learning), SAE (Semantic Autoencoder), DEM (Discriminative 

Embedding Model). 

The set generative methods include f-CLSWGAN (f-Conditional Least Squares Generative 

Adversarial), cycle-WGAN (Cycle-Consistent Wasserstein GAN), SE-GZSL (Semantic Embedding for 
Generalized Zero-Shot Learning), LisGAN (Language-based Image Synthesis GAN), SABR 
(Semantic-Aware Background Removal), f-VAEGAN (f-VAE GAN). 

4 RESULTS AND DISCUSSION 

4.1 Traditional ZSL 

In traditional ZSL, the comparison results between the paper’s model and embedded methods are 
shown in Figure 5. 
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Figure 5: Comparison results with embedded methods (traditional ZSL). 

 

CMSE-GAN adopts a CM semantic enhancement method, which can effectively fuse information 
from different modalities, providing a more comprehensive and rich perspective. In contrast, 

traditional embedded methods may not fully utilize the correlation information between different 
modalities. The results on three datasets indicate that CMSE-GAN has higher recognition accuracy 
for FGI recognition using traditional ZSL. The recognition accuracy of CMSE-GAN on CUB-200-
2011, Stanford-Dogs, and Stanford-Cars is 72.2%, 69.9%, and 67.8%, respectively. CMSE-GAN 
can effectively improve its generalization ability for unseen categories during the learning process. 
By generating images corresponding to text descriptions, CMSE-GAN can provide more diverse 
training samples for new categories, thereby improving the recognition ability of unknown 

categories. 

In traditional ZSL, the comparison between the paper’s model and the generative method is 
shown in Figure 6. 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 22(S6), 2025, 264-277 

© 2025 U-turn Press LLC, http://www.cad-journal.net 
 

273 

C
M

SE
-G

A
N

f-
C

L
SW

G
A

N

cy
cl

e-
W

G
A

N

SE
-G

Z
SL

L
is
G

A
N

SA
B
R

f-
V

A
E
G

A
N

55

60

65

70

75

Model

R
e
c
o
g

n
it

io
n

 a
c
c
u

r
a
c
y
 (

%
)

CUB-200-2011

Stanford-Dogs

Stanford-Cars

 
Figure 6: Comparison with generative methods (traditional ZSL). 

 

The results in Figure 6 show that CMSE-GAN has higher recognition accuracy. CMSE-GAN adopts a 
CM semantic enhancement method, which can effectively fuse image and text description 
information, thereby more accurately capturing the semantic information of images. 

4.2 Generalized ZSL 

Generalized ZSL extends the scope of traditional ZSL. In generalized ZSL, the model can be 
exposed to not only some categories of sample data during the training phase but also some 
auxiliary information, such as attribute vectors or semantic embeddings. The comparison results 

between CMSE-GAN and embedded methods in generalized ZSL are shown in Table 4. 

 

Model 
CUB-200-2011 Stanford-Dogs Stanford-Cars 

A (%) B (%) C (%) A (%) B (%) C (%) A (%) B (%) C (%) 

CMSE-
GAN 

54.2 80.4 64.8 56.8 57.8 57.3 44.9 43.3 44.1 

DAP 0.0 86.6 0.0 1.5 66.8 2.9 4.8 24.2 8.0 
CMT 0.4 85.6 0.8 2.4 67.9 4.6 6.6 40.2 11.3 
SSE 10.2 82.2 18.1 3.8 72.3 7.2 16.8 30.2 21.6 
ALE 13.6 84.5 23.4 23.4 64.3 34.3 22.2 34.6 27.0 
EZSL 6.5 78.9 12.0 11.2 64.5 19.1 15.6 33.8 21.3 
SAE 10.9 76.5 19.1 12.4 72.3 21.2 8.6 44.2 14.4 
DEM 32.1 78.6 45.6 11.1 75.3 19.3 22.2 41.2 28.9 

 

Table 4: Comparison results with embedded methods (generalized ZSL). 
 

This article uses the indicators in formulas 7, 8, and 9 to evaluate and CMSE-GAN still has higher 
IR performance in the three datasets. CMSE-GAN can effectively integrate information from 
different modalities, improving its generalization ability for unseen categories by comprehensively 
integrating image and text descriptions. The comparison results between CMSE-GAN and 
generative methods are shown in Table 5. 

 

Model 
CUB-200-2011 Stanford-Dogs Stanford-Cars 

A (%) B (%) C (%) A (%) B (%) C (%) A (%) B (%) C (%) 

CMSE-
GAN 

66.5 78.3 71.9 56.8 66.8 61.4 62.2 52.6 57.0 
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f-
CLSWGAN 

60.2 64.2 62.1 43.8 58.2 50.0 44.6 48.6 46.5 

cycle-
WGAN 

34.6 56.8 43.0 52.4 63.2 57.3 42.4 38.9 40.6 

SE-GZSL 48.9 53.1 50.9 42.2 54.4 47.5 45.2 50.8 47.8 
LisGAN 46.8 52.9 49.7 54.6 64.2 59.0 46.2 44.1 45.1 
SABR 59.2 54.3 56.6 53.5 63.3 58.0 50.1 42.1 45.8 

f-VAEGAN 52.6 77.8 62.8 52.1 58.9 55.3 43.8 43.9 43.8 

 
Table 5: Comparison results with generative methods (generalized ZSL). 

 

CMSE-GAN can effectively integrate multimodal features of image and text descriptions, fully 

utilizing two different forms of information. Through this fusion, the model can have a more 

comprehensive understanding of the target object and improve its recognition ability for unseen 
categories. 

4.3 CM Retrieval 

The performance of CMSE-GAN in CM retrieval is shown in Figure 7. 
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Figure 7: Performance of CM retrieval. 

 

CMSE-GAN can effectively integrate information from different modalities, thereby enabling a more 
comprehensive understanding and representation of data. It provides richer and more 
comprehensive descriptions by combining multiple forms of information. In CM retrieval, the 

accuracy of CMSE-GAN on CUB-200-2011, Stanford-Dogs, and Stanford-Cars datasets was 82.2%, 
76.5%, and 76.4%, respectively. 

5 CONCLUSIONS 

This paper cited a CM semantically augmented generative adversarial network for a fine-grained IR 
task. The ZSL capability for new categories is enhanced by effectively fusing image and text 
description information. Features with visual realism and rich semantic information are produced 
by adversarial training, thus improving fine-grained IR. Through experimental evaluation on the 
CUB-200-2011, Stanford-Dogs, and Stanford-Cars datasets, the results demonstrated that CMSE-

GAN can effectively enhance fine-grained IR and is able to maintain high performance under both 
traditional ZSL and generalized ZSL. In some complex scenarios, the fusion of CM information may 
bring in a certain amount of noise and uncertainty, resulting in a degradation of model 

performance. The method of CM information fusion is further refined to improve the robustness of 
the model to noise and uncertainty in order to meet the challenges in complex scenarios. 
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