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Abstract. Visual Servoing (VS) is an approach that integrates vision systems, i.e., 
cameras, with robotic arms to provide flexibility to operations such as pick and place 
or machining that require good positioning accuracy. Also, VS can be used in flexible 

robotic manufacturing to automatically identify and change the required tool for a 
specific operation. This paper proposes a vision system based on low-cost depth 
cameras with an eye-in-hand configuration mounted on a KUKA KR210 R2700 prime 
with 6 degrees of freedom. The alignment of the real target to the nominal one is 
based on the iterative closest point algorithm. Two case studies have been developed 
to test the reliability of the system. First, tasks were picked and placed for a small 

block in different operating conditions. After, the vision system was used to guide 
the robot in grasping a tool changer. In both cases, the alignment tasks were 
executed, ensuring sufficient precision.  
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1 INTRODUCTION 

Nowadays, the ability of vision systems to automate robot operations such as pick and place or 
machining that require good positioning accuracy is a topic of strong interest both for scientific 
research and industry. Vision systems integrated with robotic arms [20] can be adopted to check 
the actual position of components and act accordingly [5]. For example, aircraft parts are analyzed 
for inspection purposes in [16]. Similarly, it is possible to control the movement of robots by 
calculating the distance of a given target in real time, thanks to the information received from 

cameras or 3D sensors. 

This approach is called Visual Servoing (VS), and it splits into two types, i.e., Image-Based Visual 
Servoing (IBVS) and Position-Based Visual Servoing (PBVS) [12]. Moreover, two types of 

configurations can be distinguished according to the camera location. A first configuration is called 
eye-in-hand, when the camera is attached to the robot. On the contrary, in the eye-to-hand 
configuration, the camera is fixed and externally observes the robot working space [3]. The VS is 
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crucial in automated drilling [31], welding [27], and assembly [22] to increase the positioning 
accuracy of the manufacturing processes. In this context, in [19], a light plane is used to detect 
deviations and calculate the tool position according to a given part. Also, the VS technique is often 
implemented in pick-and-place operations. Indeed, it is possible to identify strategies that use an 

initial transformation of approximation and then the Iterative Closest Point (ICP) algorithm [18] with 
a PBVS system. Note that a depth camera is required for this type of application. 

In flexible robotic manufacturing cells [26], where several operations are performed, the tool 
attached to the flange of the robot needs to be changed from time to time. For example, clamps, 
drillers, and other manufacturing tools are required in production lines [21] and should be 
interchanged as robot end effectors when needed. However, calibrating the robot with the exact 
position to find the tool is necessary. In the current industrial practice, the definition and the 

recording of the robot tool positions involve the manual coupling of the robot flange with the required 

tool recovered from a storage stand. This procedure is called teach by showing, and it is time-
consuming, especially for a 6 degree of freedom manipulator, leading to production downtime. 

Furthermore, this process must be repeated when cell reorganization occurs, resulting in 
additional downtime that corresponds to a reduction of productivity for the company. A vision system 
to get the correct tool position can be used along with a VS technique in the change procedure, thus 

reducing operator intervention and time inefficiency. For instance, the tool change procedure based 
on vision systems has been experimented with in some works in the literature [30]. However, these 
works only focus on the robot control architecture. 

In this context, this paper proposes developing a vision system based on low-cost depth cameras 
which are spreading in the market. In particular, an eye-in-hand configuration was selected to be 
applied to a 6-degree-of-freedom anthropomorphic robot, a KUKA KR210 R2700 prime. The 
alignment of the real target to the nominal one is based on the ICP algorithm [29]. First, pick and 

place tests were conducted to verify the behavior of a depth camera under different operation 

conditions, varying the brightness, the distance from the focal point, and the object orientation. The 
tests were conducted using a small block to evaluate the performance reachable with the developed 
application. Subsequently, this setup was tested on a more complex case study of industrial interest, 
that is grasping a tool changer. 

2 STATE OF THE ART 

This section discusses the topics of vision systems and pose estimation algorithms in depth. In 

particular, Section 2.1 describes the differences between the two types of VS, while Section 2.2 
introduces the algorithms that can be implemented for related applications. 

2.1 Vision System for Industrial Applications 

Using a vision system to control the positioning of a manipulator, i.e., VS, presents two challenges. 
Firstly, it involves the identification of the target point for the robot, followed by implementing a 
control law to guide the robot from its current position to the desired position using the feedback 

information provided by the vision system. Performing VS control means including information from 
the vision system integrated with the robot into the control loop in low-level feedback. 

As introduced, it is possible to classify the VS control system into two groups. The first group is 
called IBVS, and the image is acquired by a camera that is compared with the image of the target. 
A positioning error is calculated to be provided as input to the control law to correct the imposed 
trajectory [2]. The structure of a generic IBVS-type controller is depicted in Figure 1. 

The benefit of IBVS-type controls is their ability to withstand potential calibration errors. 

Implementing these controls necessitates the computation of the image Jacobian. This matrix 
captures crucial information regarding the connection between the camera reference system, the 
object position, and the device velocity in space. Evaluating this matrix is not always straightforward. 

Moreover, image-based controls in the plane exhibit strong nonlinearity and coupling, which can lead 
to complications when the manipulator is close to singularity configurations [23]. 
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Figure 1: Structure of an IBVS-type controller, taken from [7]. sd: desired state; s: current state; e: 
error. 

 

On the contrary, PBVS control implements depth cameras to obtain the pose in 6 dimensions in the 

space of the target point. In this context, it is possible to calculate the transformation matrix that 
superposes the target reference system to the one obtained from the camera [6]. The structure of 
a generic PBVS-type controller is depicted in Figure 2. 

 

 

Figure 2: Structure of a PBVS-type controller, taken from [9]. pd: desired pose; pm: pose of the 

object; 𝑇𝑇
𝐹

k: image function; 𝑞𝑘
𝑑: reference input for a joint motion controller; 𝑞𝑘

𝑚: actual joint 

measurements; ek: tracking error; fm: feature vector of the image.  

 

Although IBVS systems are less prone to calibration errors, it is possible to define robot tasks with 
less effort with PBVS systems because there is no need to map position and relative velocity between 
the camera reference system and object position.  

As mentioned in Section 1, it is possible to identify two types of setups for the robot/camera 
configuration in the field of vision system controls. In the first type, the eye-in-hand configuration, 

the camera is mounted on the robot as an integral part, as depicted in Figure 3. 
In this configuration, it is mandatory to determine the transformation matrix 𝑇𝑒

𝑐 that defines the 

position of the camera reference system Oc concerning the robot end-effector frame Oe. 
Furthermore, it is important to consider the displacement of the target in the image as the 
manipulator moves. 

In the second type, i.e., the eye-to-hand configuration, the camera is stationary and observes 
the target externally, as shown in Figure 4.  

In this setup, the transformation matrix 𝑇𝑏
𝑐 which represents the relationship between the camera 

frame Oc and the robot base frame Ob remains constant and is calculated only once. On the other 

hand, the transformation 𝑋𝑏
𝑡 from Oc to the robot end-effector frame Oe requires computation at each 
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iteration by utilizing transformations between various frames. Also, the positioning of the camera 
needs to be carefully defined to prevent collisions with the robot. Then, some camera types, i.e., 
stereo cameras, have a limited field of view, requiring a specific distance from the object. These 
factors contribute to a significant decrease in the accuracy of target position estimation [17]. 

 

 

Figure 3: Eye-in-hand system, adapted from [3]. Ob: robot base frame; Oe: end-effector frame; Oc: 
camera frame; 𝑋𝑏

𝑒: pose of Oe with respect to Ob; 𝑋𝑐
𝑡: pose of the target relative to Oc; 𝑇𝑒

𝑐: 

transformation matrix between Oe and Oc; v: motion. 

 

 

Figure 4: Eye-to-hand system, adapted from [3]. Ob: robot base frame; Oe: end-effector frame; Oc: 
camera frame; 𝑋𝑏

𝑡: pose of the target with respect to Ob; 𝑋𝑐
𝑡: pose of the target relative to Oc; 𝑇𝑏

𝑐: 

transformation matrix between Ob and Oc; v: motion. 

 

For these reasons, an eye-in-hand configuration with PBVS was chosen, ensuring system flexibility 
and accuracy. The main pose estimation algorithms used in the VS are discussed in the next section. 

2.2 Algorithms for the Pose Estimation 

Different types of algorithms are employed to enable the recognition of an object's position within 
an environment and facilitate the movement of the manipulator toward that position. A major group 
is based on Artificial Intelligence [14,13], as depicted in Figure 5.  

Implementing neural network-based algorithms for estimating target positions encounters 
difficulties when dealing with partial point clouds. When considering the acquisition of data from 
a single camera, the mapped environment in the point cloud is susceptible to occlusion-related 
issues, leading to incomplete environmental mapping. Furthermore, employing artificial intelligence 
methods entails the possibility of not successfully detecting the target object or, in the worst-case 
scenario, making an incorrect target identification, resulting in unpredictable system behavior. 

A second type of algorithm utilizes the ICP procedure [29,15]. These algorithms demonstrate 

greater reliability than those reliant on artificial intelligence, enhancing the precision and accuracy 
of the estimated pose. Nonetheless, ICP tends to find a local minimum, hindering algorithm 

convergence, particularly when an initial transformation that adequately approximates the position 
of the target cloud in its actual environment is not provided [11]. 
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Figure 5: Example of the use of neural networks for recognition and distance estimation of objects, 
taken from [28]. 

 

The conventional ICP algorithm involves an initial transformation typically specified by the user when 

calling the function within the code [1]. Subsequently, it employs the closest point algorithm, also 
known as the nearest neighbor, to define the nearest point of the target cloud for each point in the 
source cloud [8]. The transformation associated with the previously defined closest points is then 
executed. Finally, the executed transformation Mean Squared Error (MSE) is evaluated and 
compared with that of the previous transformation to determine the algorithm correct evolutionary 
direction. This process is repeated until the MSE converges or for a user-defined number of iterations. 
The working principle of an ICP algorithm is illustrated in Figure 6. 

In general, the alignment of the point cloud with the actual target can be performed with three 
different strategies, i.e., point-to-point, point-to-plane, and plane-to-plane. In particular, it is 
observed that strategies of the point-to-plane type perform better than the classical point-to-point 
approach on different datasets [24]. However, the first approximation to allow the point-to-plane 
algorithm to run properly must be defined accurately concerning the point-to-point to ensure 

convergence based on preliminary experiments. As a result, more setup time is required for the 

initial system. Additionally, hybrid applications combine neural networks for object recognition and 
the filtering of point clouds, followed by the application of the ICP algorithm to enhance position 
estimation accuracy [25]. In both scenarios, the objective is to align two-point clouds: one 
representing the target object and the other depicting the working environment. A traditional point-
to-point approach was chosen and employed in this work. 

 

 

Figure 6: Main steps of the ICP algorithms, taken from [8]. 
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3 APPROACH FOR A PICK AND PLACE OPERATION 

The following Figure 7 depicts the main phases of the proposed work. 

 

 
Figure 7: Main phases of the proposed approach. 

 
The first case study is related to the pick and place operation of a solid block (50x50x50 mm). The 
selected camera is the IntelRealSense D435i. First, the camera is calibrated thanks to specific 
experiments. Then, tests are carried out for tuning the implemented ICP algorithm in the complete 
system. Finally, the approach was implemented in a tool change operation in an industrial 

environment. In this case a different camera has been used, i.e., a ZED 2i depth camera, which is 
characterized by improved accuracy. 

3.1 Camera Calibration 

The first calibration involves adjusting the extrinsic and intrinsic parameters of the depth camera to 
minimize the difference between the measured distance value and the real distance. The considered 
extrinsic parameters are: 

1. RotationLeftRight: the rotation matrix between the reference system of the right camera and 
that of the left camera of the device; 

2. TranslationLeftRight: the translation between the reference system of the right camera to 

that of the left camera; 
3. RotationLeftRGB: the rotation matrix of the RGB module to the left camera; 
4. TranslationLeftRGB: the translation between the RGB module and the camera on the left.  

Then, the following intrinsic camera parameters have been identified:  

1. Focal point; 
2. Principal point; 

3. Distortion, described through Brown's model. 

The Depth Quality Tool provided by Intel for the IntelRealSense D435i camera was used to calibrate 
the camera. The selected parameters to evaluate the image acquisition are:  

1. Plane Fit RMS Error: the RMS error expressed as a percentage concerning the mean plane 
(plane fit) passing through the acquired points;  

2. Subpixel RMS Error: it represents the RMS error expressed in pixel units to the mean plane 

passing through the acquired points;  

3. Fill-Rate: the percentage of pixels with a depth value considered correct;  
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4. Z Accuracy: the percentage disparity between the distance of the plane fit and the actual 
distance (ground truth measured with a laser tracker). 

So, tests were conducted at different target distances to verify the behavior of the camera (Figure 
8). As a result, it is noted that the Z accuracy error tends to increase with the distance from the 

target. Then, a recalibration process (Tare Calibration [10]) was performed using a FARO Vantage 
E laser tracker using a known target, as shown in Figure 9a. The target is placed at a distance equal 
to 700mm, which is considered plausible for pick-and-place operations. The relative plans of the 
camera and target were reconstructed by acquiring significant points by the FARO laser tracker 
(Figure 9b). The Z accuracy error passes from more than 3% to below 0.5% thanks to the 
recalibration process. 

It is important to note that the High Accuracy preset for Object Scanning provided by Intel was 

used. The following parameters were then modified to improve the performance of the camera for 
the specific application: 

• Resolution: The resolution has been increased to 848x480, as recommended by the 
manufacturer. This resolution strikes the best balance between image quality and the 
minimum observable distance required for the device's correct operation. 

• Frame rate: The frame rate has been reduced from 30 to 6 to allow the device more time 

for computational processing per individual image acquisition. This change directly impacts 
the quality and accuracy of the generated data. 

• Infrared: The infrared functionality has been kept active. While this helps the sensor to 
visualize the working environment as mentioned earlier, activating the projector introduces 
additional noise into the generated point cloud. 

• Sensor Sampling Steps: The sampling steps of the sensor have been reduced from 0.001mm 
to 0.0001mm. Since the system can sample at 16 bits, this reduction results in a maximum 

measurable distance decrease from 16m to 6m.  

• Point Cloud Filtering: Filtering the point cloud generated at 4m reduces the software's 
computational workload, as further explained in the following. 

 

Figure 8: Images of the settings of the tool adopted to evaluate Camera Z accuracies at different 
distances. 
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3.2 Preliminary Accuracy Tests with the Camera 

An experimental campaign was developed to evaluate the camera performance, considering a cube 
as reference geometry. The camera was intentionally tilted approximately 20° downwards to 
enhance the performance of the matching algorithm. Specifically, the ICP algorithm requires 

overlapping the point cloud and the reference CAD model in different spatial directions. This ensures 
that there are no remaining degrees of freedom between the two point clouds, and the relative 
position of one for the other is uniquely determined. 

Thus, the cube was placed on graph paper at known positions, ensuring that at least three faces 
were visible from the camera, as depicted in Figure 10. The sampling points were strategically 
selected to cover as much of the camera's field of view within the nominal 700mm area of interest. 
Each sampled point was positioned 50mm from its adjacent point along the X and Y axes, as marked 

on the plan.  

 

Figure 9: a) Calibration setup; b) FARO Vantage E laser tracker. 

 

Figure 10: Experimental setup. 

In this context, a point-to-point ICP algorithm provided by the Open3D Python library was used and 
tested to superimpose the obtained point cloud with the actual 3D geometry. Also, the complete 
system that combines the ICP algorithm and the camera was tested, i.e. the repeatability and the 

approximation error. Considering the repeatability test, 100 acquisitions were conducted for each 
position, from which one initial transformation was selected for the subsequent 100 executions of 
the algorithm between the unique source cloud and the respective target clouds. 

Figure 11 illustrates that increasing the distance between the target and the camera leads to a 
deterioration in the system's repeatability. Specifically, it is evident that the maximum deviation 
from the average approximation value appears to increase in absolute terms in the initial two graphs. 

Additionally, the quality of the approximation reduces as the distance increases. The fitness 
decreases from 98% for the closest positions to 75% for the most distant ones, while the initial 
RMSE error of 1.5 mm grows to 2.5 mm in the latest runs. The standard deviation graph in Figure 

11 also confirms this trend. The reported Fitness value represents the percentage of points of the 
source cloud that are correctly coupled with the target cloud. This means that the fitness parameter 
is directly connected with the level of accuracy that is intended to be achieved and settable with the 

Cubic reference geometry

Camera Graph paper

Known position
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parameter named Approximation in the ICP algorithm. The Root Mean Square Error (RMSE) provides 
a measure of the mean squared distance from each point in the source to its closest point in the 
target. 

Then, a study was conducted to analyze the trend of relative measurement errors between two 

targets based on their distance. The reference measurement with the highest degree of accuracy, 
representing the central and most advanced test plan position, served as the basis for comparison. 
Figure 12 depicts the results of comparing estimated distances and real distances. Absolute (i.e. 
displacement graph) and the relative error (i.e., percentage_displacement graph) are also reported. 
The measurement error increases as the distance between the two targets grows, particularly when 
one target is positioned farther from the optical sensor than the other. This observation aligns with 
the findings from previous tests, where less precise results for distant targets had a cascading impact 

on relative measurements involving other targets.  

 

 

Figure 11: Results obtained for the test on the repeatability of the overall camera-algorithm system. 
X and Y axes report the indices of the positions. The values in the Z axes are millimeters. 

 

 

Figure 12: Results obtained for the test on the relative error of the overall camera algorithm system. 

X and Y axes report the indices of the positions. The values in the Z axes are millimeters for the first 
three graphs, while in the last one, a percentage is reported. 
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The detected error in measurement results is relatively predictable and varies consistently, except 
under singular conditions possibly linked to an initial suboptimal transformation. While incorporating 
relative measurements enhances overall system performance, it necessitates specific calibration 

procedures and a comprehensive understanding of a target location reference within the working 
environment to ensure high reliability. However, replicating these conditions proves challenging in 
an industrial setting. Consequently, in developing subsequent applications, reliance will be placed 
on individual measurements captured by the camera rather than estimations of relative positions to 
known targets. 

3.3 Application to a Pick and Place Operation 

A support has been realized to mount the camera on the robot and ensure its proper localization. 

Additionally, the system has been designed to incorporate a support structure for the target utilized 
by the FARO laser tracker, i.e., Spherically Mounted Retroreflector (SMR), for accurate positioning 
reference. This allows for establishing a known distance between the reference system constructed 
during the calibration process on the SMR and that of the camera. The complete system is depicted 
in Figure 13.  

 

Figure 13: Complete system: robot, camera and SMR. 

 
After the characterization and calibration procedures described in the previous sections have been 
accomplished, the process starts with identifying the primary directions of the system reference 
coordinate system. This involves a procedure based on elementary rotations of single joints of the 
robot, tracking the movement of the SMR with the laser tracker and fitting circumference through 

the obtained trajectories (Figure 14). This procedure, described in detail in a previous work [4], 
allows the determination of the transformation linking the reference system of the laser tracker to 
the robot flange reference system. Leveraging the known dimensions of the camera support from 
its CAD model, it becomes possible to ascertain the transformation matrix of the eye of the camera 
both in the robot base reference system and in the laser tracker reference system. 

 

Figure 14: Assembly of the SMR for calibration and identification of the two planes for the axis 
calculation. 

The process is governed by a Python application that interacts with the devices, i.e. robots and the 
camera, and elaborates the acquired geometries. The process is not intended to be real-time: motion 
instructions are sent to the robot as soon as the acquisition of the point clouds and their elaboration 

is completed. It takes a few seconds, and the robot waits until the computation ends. 

The main tasks of the experiments were conducted as follows: 
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• Robot positioning: During this phase, a view of the RGB image and depth data are provided 
to the operator so that he can move the robot to a specific Cartesian position relative to its 
base. This ensures that the camera frames the target. 

• The aluminum cube was positioned on a support (Figure 15a). 

• Selection of the first transformation: the operator chooses an initial approximate 
transformation necessary for the correct functioning of the ICP algorithm. Such initial 
transformation is obtained manually by jogging the robot using the teach pendant to a 
position sufficiently close to the grasping one and saving the orientation matrix. 

• Robot approach: the first transformation is utilized to bring the robot to a starting position 
(Figure 15b top). This has been accomplished thanks to the Python application with streams 
commands to the robot controller activating its motion. Checks have been implemented to 

verify whether the point-to-point ICP algorithm can successfully align the point clouds. The 

algorithm stops if it undergoes five successive approaches without detecting an improvement 
in the result. This indicates poor precision in the initial transformation provided, prompting 
the application to request a more precise one with the new data obtained. 

 

Figure 15: a) Setup for positioning the target in the workspace; b) Top: first movement provided 

manually by the operator to make the target visible to the camera; Bottom: scanning result obtained 
from the Refinement operation. 

• Subsequently, the application requests ten acquisitions from the camera and executes the 
ICP algorithm to mediate the results obtained by the algorithm, enabling a better estimation 
of the target pose (Figure 15b bottom) 

• Grasping: the robot is moved to position the gripper fingers appropriately for closing and 
grasping the cube, thereby completing the requested operation (Figure 16). 

 

Figure 16: Phases of pick and place operations. From left to right: Gripper reorientation; Translations 
to reach the cube; Pick of the target (bottom). 

4 APPLICATION TO A TOOL CHANGER 

This section presents an industrial application. The considered robotic system was equipped with a 

tool changer composed of a master part that is mounted on the robot flange (Figure 14 left) and a 
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slave part that is fixed on the tool to be grasped (Figure 17). Such a solution allows more than one 
slave applied to different tools to be picked by the same master counterpart so that the robot can 
change the tool according to the required operation. In this context, a different camera was 
implemented (ZED 2i depth camera). This choice is motivated by better performances requested by 

the tested industrial application context. The ZED 2i camera, which recently appeared on the market, 
guarantees better characteristics than the previously adopted one. Thus, a new identification of 
optimal camera parameters was needed to ensure proper acquisition. A similar procedure to Sections 
3.1 and 3.2 has been done to identify the camera reference for the robot flange. Then, experimental 
tests were performed to verify the system's reliability. 

4.1 Preliminary Tests 

ZED Depth Viewer is the software provided by the manufacturer to set up and tune the camera. The 

available parameters were analyzed to determine the optimal values for acquiring quality point 
clouds. The parameters in the Camera section were maintained at their default values, as altering 
them did not consistently yield improved results. Different resolutions, ranging from HD2K to VGA, 
were considered. HD2K resolution, allowing for 15 FPS image acquisition, was deemed sufficient for 
the application, and it was therefore selected. 

Furthermore, the parameters in the Processing section were assessed. These parameters 

significantly impact the camera's performance, particularly its depth accuracy. The ULTRA and 
NEURAL depth modes were identified as the best for generating point clouds. ULTRA exhibited 
superior depth accuracy, especially at close distances, while NEURAL performed better for objects 
at greater distances. The NEURAL mode provided a more accurate depth estimate for objects 
positioned farther away, whereas the ULTRA mode excelled at shorter distances. Adjusting the Depth 
Min and Depth Max parameters allowed for filtering unwanted objects near and far from the camera, 
respectively, based on their depth. 

 

Figure 17: Left: acquisition test of the tool changer slave; Right: acquisition example carried out in 
NEURAL mode at almost 1 m distance along Z. 

 

Then, an investigation was carried out to determine the influence of the depth stabilization parameter 
on acquisition quality. The depth stabilization is a filtering feature provided by the camera 
manufacturer. It is based on time-depended averaging, and it is expressed by a number ranging 
from 0 to 100. The ICP algorithm was utilized to assess the validity of each acquisition by observing 
the alignment results. This involved running the ICP algorithm with varying depth stabilization 
parameters for each point cloud while keeping all other parameters constant. 

 

Depth stabilization Fitness RMSE Fitness/RMSE 

100 0.364 2.740 0.133 
99 0.355 2.840 0.125 
98 0.377 2.780 0.136 

97 0.393 2.800 0.140 
96 0.360 2.700 0.133 
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95 0.370 2.700 0.137 
94 0.364 2.810 0.130 
93 0.365 2.710 0.135 
92 0.377 2.730 0.138 

91 0.366 2.690 0.136 
90 0.365 2.810 0.130 
89 0.346 2.730 0.127 
88 0.369 2.730 0.135 
87 0.363 2.800 0.130 
86 0.357 2.790 0.128 
85 0.370 2.790 0.133 

84 0.368 2.700 0.136 

83 0.360 2.790 0.129 
82 0.362 2.740 0.132 
81 0.369 2.770 0.133 

Table 1: Fitness of point clouds matching varying the depth stabilization parameter. 

 
The source cloud used for the experiment was obtained from a high-density mesh model of the tool 
changer derived from its CAD model. In each execution, the acquired point cloud from the camera 
served as the target cloud, with the depth stabilization parameter being varied. The initial 
transformation was perturbed to simulate different approaching conditions imposing random 

rotations to the source point cloud. The executed tests have shown that the depth stabilization 
parameter does not yield significant variations if it is set within the range of 80 to 100, as depicted 
in Table 1. 

Similarly, a sensitivity analysis was conducted to evaluate the influence of the texture confidence 
parameter on the quality of acquisitions. Such parameter varies from 0 to 100 and sets a level to 
discard points from uniform regions of the acquired image, which lead to poor depth estimation. The 

ICP algorithm was run with multiple point clouds, keeping all other parameters and acquisition 
positions constant while varying only the texture confidence. The findings from this experiment 
indicated that the optimal texture confidence value is 100, as reported in Table 2. 

 

Texture confidence Fitness RMSE Fitness/RMSE 

100 0.394 2.570 0.153 
97 0.320 2.870 0.111 
94 0.318 2.890 0.110 
91 0.369 2.660 0.139 

88 0.290 2.960 0.098 
85 0.285 2.990 0.095 

82 0.276 3.010 0.092 
79 0.274 3.060 0.090 
76 0.311 2.790 0.111 
73 0.250 3.120 0.080 
70 0.220 3.180 0.069 
67 0.270 2.930 0.092 
64 0.210 3.200 0.066 

Table 2: Fitness of point clouds matching varying the texture confidence parameter. 

 
Further tests restricted to the range from 98 to 100 of the texture confidence parameter confirmed 

that the optimal value for the specific test is 100, as shown in Figure 18. 
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Figure 18: Texture confidence parameter assessment. Left: texture confidence equal to 100; Right: 
texture confidence equal to 97. 

 
Finally, a sensitivity analysis was also conducted to determine an appropriate confidence value. The 
confidence parameter sets a level to remove points from the borders of objects in the acquisition, 
i.e. the regions with significant depth change. This thorough analysis underlines the significance of 

depth stabilization and texture confidence parameters in influencing the quality of acquisitions, with 
the study offering valuable insights into their optimal values for high-quality results. As can be noted 
from Table 3, the best value of confidence turned out to be 100.  

 

Confidence Fitness RMSE Fitness/RMSE 

100 0.410 2.570 0.160 
97 0.348 2.790 0.125 
94 0.366 2.640 0.139 

91 0.296 2.870 0.103 
88 0.364 2.640 0.138 
85 0.290 2.870 0.101 

82 0.295 2.870 0.103 
79 0.292 2.900 0.101 

Table 3: Fitness/RMSE ratio as the confidence parameter varies. 

4.2 Process to Grasp the Tool Changer 

The final experimental tests are conducted to assess the complete system composed of the camera 
mounted on the robot in grasping a tool changer. In an industrial setting, the robot cell geometry is 
commonly predetermined and defined by a virtual model, i.e., its CAD model. The knowledge of this 
model, in particular the location of the robot and of the tool changer let the initial transform for the 

acquisition of the scene to be determined. Subsequently, the ICP algorithm is employed to correct 
the transformation according to the discrepancies between the physical environment and the virtual 

CAD model. 

4.2.1 Experimental setup 

A suitable support structure was designed to hold the camera and the SMRs. The support is designed 
to accommodate three spherical SMRs for the FARO laser tracker, as depicted in Figure 19. 

Given the objective of the devised algorithm of aligning the camera with the slave tool changer, 
it is necessary to combine this acquisition with a fixed transformation that brings the camera 

reference system to the robot flange to obtain a combined transformation that aligns the master 
tool changer with the slave one, as shown in Figure 20. 

To this aim, the three SMRs enable the accurate measurement of both the orientation of the 

camera and the robot flange. Specifically, a plane is defined by the three points obtained by housing 
an SMR in each of the seats located with precision using the laser tracker. Furthermore, it is possible 
to identify a plane lying on the robot flnger as mentioned in a previous section. 
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Figure 19: KUKA robot equipped with the camera and the SMR seats. 

 

 

Figure 20: Tool changer application. Red vector: alignment transformation that is achieved by ICP. 

Blue vector: desired transformation. Green vector: fixed transformation to be combined with the red 
one. 

4.2.2 Development of the software application 

A Python application has been developed to control the system which comprises three main phases: 

• Acquisition of Point Cloud: The first part involves capturing a point cloud of the slave tool 
changer using the depth camera. The acquisition process utilizes parameters optimized 
through experiments conducted in Section 4.1. 

• Filtering of Irrelevant Objects: The second part focuses on filtering out irrelevant objects 
from the previously acquired point cloud, leaving only the tool changer slave to enhance the 

results in the subsequent processing. 

• ICP Alignment: The ICP algorithm is used to align the source point cloud with the point cloud 
acquired using the ZED 2i stereo camera. 

As a first step, the camera acquires a point cloud of the slave tool changer. Regarding the filtering 
stage, points too far from the tool changer bounding box are discarded, removing details that are 
not useful for the application. To this aim, the bounding box of the tool changer is computed out of 

the nominal CAD model relying on limited deviations in the positioning of the tool changer from its 
nominal position. Therefore, the process is automatic and relies on the knowledge of the approximate 
position of the tool changer from the CAD model of the cell. 

4.2.3 Results of the two-stage ICP alignment 

Given the noise in the depth camera acquisition and its limited accuracy, a specific strategy to 

increase the performance of the ICP algorithm has been developed. In particular, a two-step 
approach has been devised: the output transformation from the first run is utilized as the initial input 

transformation in the second run. In the first run, a high approximation value is employed, enabling 
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the two clouds to come into closer proximity than would not be possible with a lower value. In the 
second step a lower approximation value is used that enables a more precise result than a single 
ICP phase. 

Tests have been executed varying the number of iterations in the first stage as well in the 

second. In Table 4, some results are reported for the tool changer application experimented in the 
laboratory. The combination of 25 iterations for the first step and 80 for the second one yields an 
optimal result with minimal calculation times, thus representing a recommendable compromise. 

 

N° of Iteration 
(first ICP) 

N° of Iteration 
(second ICP) 

Fitness RMSE Fitness/RMSE 

4000 400 0.494 2.520 0.196 

2000 400 0.494 2.520 0.196 
2000 0 0.401 2.900 0.138 
10000 0 0.401 2.900 0.138 
100 10 0.439 2.810 0.156 
100 80 0.494 2.520 0.196 

100 25 0.470 2.700 0.174 
30 30 0.480 2.650 0.181 
25 40 0.491 2.640 0.186 
25 50 0.500 2.580 0.194 
25 80 0.495 2.510 0.197 
0 200 0.288 2.840 0.101 
0 1000 0.440 2.770 0.159 

 

Table 4: Results of the two-step ICP. 

 

 

Figure 21: Acquired point cloud aligned with the CAD extracted one. 

The first phase approximates, while the second phase refines the transformation. The experiment 
indicates that performing the ICP in two phases with two appropriately selected approximation values 
is more effective, rather than conducting it in a single phase. Even though reached results are not 
always the best, a good approximation is reached with a limited total number of iterations. An 
example of final point clouds alignment is depicted in Figure 21. 

5 CONCLUSIONS AND FUTURE WORKS 

The goal of the presented work was the assessment of low-cost depth vision camera to compensate 
positioning errors in pick-and-place operations with industrial anthropomorphic robots. As a first 

step, an Intel RealSense D435i depth camera was selected for an initial problem exploration. 
Afterward, the procedure was applied to an industrial scenario involving coupling the two halves of 
a tool changer and using a ZED 2i depth camera. In this second case, a two-step ICP process has 
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been devised. Both the cameras are easily available for less than 500 euros. The activity with the 
two different cameras allowed a better assessment of the compatibility of the highly smoothed point 
clouds resulting from the acquisitions with the requirements of the specific application context. 

Despite the low accuracy of the scans of the adopted cameras, the results in robot positioning 

are promising, even if a considerable level of error remains. In both experiments, the alignment 
tasks were executed, ensuring a sufficient degree of precision. As reported in Table 4, the alignment 
is achieved with a fitness lower than 0.5 mm and this value is compatible with the typical mechanical 
allowance of a tool changer coupling. 

In future work, substituting the cameras with more advanced 3D scanning systems can 
considerably improve accuracy. In addition, the ICP algorithm can be further tuned to reach a higher 
reliability level and avoid falling into local minima solutions, leading to wrong orientations and 

potential collision. In particular, the initial alignment could be solved by applying methods for the 

estimation of object poses using affine invariant 3D descriptors. Finally, further applications would 
ensure a more extended validation of the proposed system. 
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