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Abstract.Traditional generative adversarial networks (GANs) exhibit excessive 
generalization ability when predicting abnormal samples, which may leads to 

unstable prediction results. To address this issue, a memory-based GAN is proposed 
for video anomaly detection tasks in real-world scenarios. Firstly, a memory module 
is introduced into the adversarial learning framework of the convolutional 

autoencoder-based prediction network and discriminator network to construct a 
memory adversarial network that enhances the model's prediction ability for normal 

video frames. Secondly, a global self-attention mechanism is embedded in the 
generator, which assigns greater weight to more important information and acquires 
global features at the same time. A new loss function based on feature compactness 

and separability is designed for the memory adversarial network to improve the 
reliability of the training process. Finally, an anomaly evaluation criteria based on 
memory loss is proposed to enhance the accuracy of anomaly detection. The fusion 

of PSNR values between future frames and predicted frames and distances between 
video frame features and memory features further enhances the anomaly detection 

performance of the model.  
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1 INTRODUCTION 

In recent years, public safety and stability have become a focus of public attention. Surveillance 
video, with its features of recordability and analyzability, has played a significant role in maintaining 

social order by providing valuable clues for law enforcement agencies, and has greatly promoted the 
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development of smart and safe cities [6],[13]. Consequently, intelligent video surveillance 
technology has emerged and rapidly become a research hot topic in both academic and industrial 
fields [18]. 

With the rapid development of artificial intelligence (AI) technology represented by various deep 
learning (DL) models, intelligent video surveillance systems based on AI have made significant 

breakthroughs in pedestrian [10] and vehicle detection [19], face recognition [4], and other fields. 
However, due to the low quality of cross-scene monitoring videos and the low intelligence level of  
computer vision algorithms, the degree of intelligence of surveillance systems has not yet reached 

the needs of practical applications [15]. Effective video anomaly detection technology can accurately 
detect abnormal behavior in monitored areas and promptly issue corresponding alerts, thus 

minimizing potential losses in terms of life and property due to unexpected events.It highlights the 
importance of video anomaly detection in online gaming environments and introduces the GAN-
based framework that incorporates memory and self-attention mechanisms. 

DL-based anomaly behavior detection can be classified into three categories: supervised 
learning, weakly supervised learning, and unsupervised learning. Supervised learning methods 
typically require a large number of labeled samples to train the model [1], while weakly supervised 

methods can use video-level annotations for learning, and unsupervised methods do not require any 
labeled data at all [7]. Due to the high cost of data labeling, which often requires extensive human 

involvement and professional knowledge, it is difficult to collect a large number of labeled samples 
in practice. In comparison, unlabeled samples are easier to obtain, making unsupervised anomaly 
behavior detection gradually becoming a research hotspot. Unsupervised methods typically use a 

certain metric to study the relationship between samples, and then classify and assign unlabeled 
samples accordingly. As a representative of unsupervised network structures in recent years, 
generative adversarial network (GAN) have received widespread attention in academia due to their 

powerful generative capabilities [14]. In the field of anomaly behavior detection, GANs are used to 
reconstruct or predict video frames, and then detect anomalies based on reconstruction errors, 

effectively alleviating the problems of underfitting and low detection accuracy caused by insufficient 
labeled data. 

In GAN-based video anomaly detection methods, the interested regions of the input video frames 

are first detected and features are extracted. Based on these behavior features, abnormal behaviors 
are detected and classified. The reconstruction-based approaches assume that the reconstruction 

network only works on normal samples and cannot reconstruct abnormal samples well, so the 
reconstruction error can be used to distinguish between normal and abnormal samples. Sabokrou et 
al. [16] Proposed to use the generator to reconstruct video frames while implicitly repairing abnormal 

regions, and the discriminator was used to judge the possibility of different regions in the video 
frames being abnormal. The intersection of the outputs of the two networks were deemed as the 
final anomaly detection result, and the network can locate abnormal behaviors.  Zaheer et al. [20] 

trained the adversarial network for anomaly detection by changing the basic function of the 
discriminator from distinguishing real and fake data to identifying the quality of reconstructed data. 

The whole network is continuously optimized through an adversarial feedback loop, and finally 
generates stable and high-quality data. Due to the indistinguishability of abnormal behaviors, 
Atghaei et al. [2] proposed to use transfer learning to enable the network to have effective 

spatiotemporal features and improve algorithm adaptability. Shin et al. [17] utilized the 
discriminator of GAN as a basic model and applies transfer learning to the anomaly classifier. Since 
GAN can generate data that does not exist in the dataset, the basic model can learn from data that 

is similar to real data, solving the problem of insufficient labeled data. The prediction-based anomaly 
detection methods follow the idea that normal events are predictable while abnormal events are not, 

and distinguishes between normal and abnormal behavior by comparing the test frames with the 
predicted ones. Compared to reconstruction-based method, it can break through the limitation of 
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reconstruction error and increase the difference between normal and abnormal frames. Liu et al. 
[12] used U-Net as the generator of GAN for prediction, and then estimated the corresponding optical 
flow. The model was optimized based on the difference between the predicted frame and the original 

frame, as well as adversarial loss. The cross-layer transfer characteristics of U-Net can effectively 
retain the basic structural characteristics of the input frame, making the network more focused on 

the difference between the output and input frames during training. Lee et al. [9] combined GAN 
and Long Short Term Memory (LSTM) networks, inputting the previous and next five frames of the 
given frame into the forward Convolutional LSTM (ConvLSTM) and backward ConvLSTM respectively 

to extract spatiotemporal features. Then, the in-between frame was generated based on the output 
of LSTM, and the mean square error between the predicted and real frames, as well as the weighted 

sum of discriminator output, were used as the anomaly score. To address the problems of scale 
variation and complex motion, feature aggregation network was combined to learn normal patterns 
at different scales, improving the robustness of detecting complex events [8]. To address the 

problem of insufficient motion feature extraction, Chen et al. [3] designed a loss function based on 
the target frame and bidirectional predicted frames, and proposed an abnormal assessment method 
based on sliding windows to force the network attention focusing on foreground targets of the 

predicted frame, effectively suppressing noise in the prediction error map, and improving the 
accuracy and robustness of the detection model. 

Video anomaly detection can be regarded as a one-class unsupervised learning problem. Due to 
the absence of abnormal samples, the generalization performance of the model on abnormal samples 
is difficult to estimate. If the model has too strong generalization ability, it cannot effectively detect 

abnormal samples; while if the generalization ability is too weak, it cannot identify new normal 
samples. To solve the above problems, this paper proposes a video anomaly detection model based 
on a memory-adversarial network by integrating memory modules with adversarial learning. The 

specific contributions are as follows: 

1) A memory-adversarial network architecture is proposed, which combines a memory module 

with a generative adversarial network, addresses the issue of over-generalization in video 
anomaly detection models. 

2) An abnormal behavior detection combining global self-attention and convolution operation 

is proposed, in order to solve the problem that the convolutional neural network (CNN) 
cannot learn the global interaction between different scenes. 

3) A multi-task loss function, comprising of prediction loss, feature reduction loss, and feature 
diversity loss, is designed to enhance the reliability and accuracy of anomaly detection 
training. 

2 GENERATIVE ADVERSARIAL NETWORK COMBINING MEMORY AND SELF-ATTENTION 
MECHANISMS 

In this paper, a novel memory-adversarial network architecture is proposed by incorporating a 

memory module into the GAN network based on the frame prediction methodology. The network 
mainly consists of a generator (prediction network) P, a discriminator network D, and a memory 

module M. The model is trained only on normal samples. At time t, a sequence of previous normal 

frames 1{ ,..., }t l t− −=X x x
 is fed into P, and the corresponding features tq

 are extracted by the 

encoder. The model retrieves a combined feature 
ˆ

tp
 based on similarity weighting from the memory 

module, which is concatenated with tq
 to obtain feature 

ˆ[ : ]t t t=f q p
, and the memory module is 
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updated. Finally, the concatenated feature tf
 is fed into the decoder to obtain the prediction result 

ˆ
tx
 for the t-th frame, and the calculation process is as follows: 

ˆ ( ; )t MP X =x
                                                                 (1) 

Where 
( )P 

 represents the mapping function corresponding to the prediction network of the 

generator; M  is the parameter of the memory module. Using the previous l frames to predict the 
current frame is beneficial for the prediction network to learn the timing pattern of normal video 

clips. The network architecture is shown in Fig. 1. 

Memory Module

Read

Update

Encoder Decoder

Input video frames

Prediction Network

Predicted frame

Ground-truth

Discriminator

Normal/

Abnormal

 

Figure 1: Proposed GAN framework. 

In video anomaly detection, the addition of the memory module will further increase the prediction 

difficulty of abnormal samples, increasing the performance difference of the prediction network on 
normal and abnormal samples, thus improving the ability of anomaly detection. In the discrimination 

stage, the predicted samples 
ˆ

tx
 are treated as negative samples, while the ground-truth video 

frames tx
 are treated as positive samples, and both are fed into the the discriminator network D 

for supervised training. The network trainings are completed by iterative adversarial learning 

between the prediction network P and the discriminator network D alternatively. In the testing stage, 
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the prediction error of  P and the recognition result of the D are used as the discrimination criteria 
to obtain an anomaly score. 

2.1 Generator Model 

The generator of the proposed video abnormal behavior detection framework is shown in Fig. 2. The 
model is an encoding-decoding structure, and a memory module is added in the middle to store 

iterative normal behavior features. The model is mainly composed of three modules: AutoEncoder, 
Bottleneck and Memory. 
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Figure 2: Structure of the Generator Model. 

The AutoEncoder module consists of Patch Embedding, self-attention (SA) Conv Block, Patch 
Merging, and Patch Expand. Patch Embedding converts the matrix form into a sequence form by 
dividing the image into a series of non-overlapping 4×4 patches, each patch having a feature size 

of 4×4×3. Subsequently, a convolutional layer is applied to increase the dimensionality of the 
features to C. The SA Conv Block comprises of  Layer Normalization (LN), Windows Multi-head Self-
Attention (W-MSA), Shift Window Multi-Head Self-Attention (SW-MSA) [5], Multilayer Perceptron 

(MLP), BN+ReLU, and Conv. The architecture of the SA Conv Block is illustrated in Fig. 3. 

 

LN
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LN MLP
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Figure 3: Structure of the SW-Conv model. 
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The SA Conv Block consists of attention mechanism and convolution. The first layer is a combination 
of attention mechanism and MLP, and input is passed through a regularization layer. The second 
layer is composed of convolution, BN normalization, and ReLu activation function. Each module is 

then connected using skip connections. The global attention in SA Conv Block comes from the 
attention mechanism, which is essentially a mechanism for reassigning weights to obtain important 

features from the data. By making the model learn these features in detail, detection performance 
can be improved. Based on this, a global attention mechanism is realized, which focuses the model 
attention on the interaction between local and global features, reducing dependence on external 

information and making it better at capturing internal correlations in the data or features. Compared 
to the attention mechanism, global attention adds the initial feature map in the feature map fusion, 

further enhancing the interaction between local and global feature maps. 

2.2 Discriminator Model 

The discriminator D is trained to distinguish between predicted video frames and ground-truth video 

frames to achieve adversarial learning with the prediction network. In the proposed framework, a 
CNN consisting of 5 convolutional layers and 1 fully connected layer is used as the basic architecture 
for the discriminator. The first 3 convolutional layers use 5x5 convolutional kernels, and the last 2 

convolutional layers use 3x3 convolutional kernels, with a stride of 2 for all. ReLU is used as the 
activation function, and the output channels of the 5 convolutional layers are 64, 128, 256, 512, and 

512, respectively. The architecture of the discriminator network is shown in Fig. 4. During training, 

the ground-truth video frame tx
 is used as the positive sample, and the predicted result 

ˆ
tx
 is used 

as the negative sample, and traditional binary supervised learning is conducted based on cross-

entropy loss. The final output of the discriminator is a scalar value between 0 and 1, which represents 
the discriminator's judgment of the authenticity of the input image. It is used for adversarial learning 

with the prediction network during the training phase and for identifying abnormal samples during 
the testing phase.  

Conv BN
Conv

  kernel
Sigmoid FL

Results

 

Figure 4: Structure of the Discriminator. 

2.3 Global Attention Mechanism 

In the proposed attention mechanism, the  attention of the model is focused on the interaction 
between local and global information, reducing reliance on external information and improving its 

ability to capture internal correlations within data or features. The global attention adds an initial 
feature map in the feature fusion process, further enhancing the interaction between local and global 

feature maps, and utilizes linear transformation instead of 1x1 convolutions for feature extraction 
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during transformation, disrupting the specific structural information obtained from feature maps. 
Figure 5 illustrates the schematic diagram of the attention mechanism. 
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Figure 5: Global Attention Mechanism 

First, the obtained features are transformed into three linear feature vectors Q, K, and V. Then, the 
feature maps are convolved to recover their initial shapes and obtain Qc, Kc, and Vc. The features 
Qc, Kc, and Vc are then fused sequentially and combined with the original features to obtain the 

global attention feature map: 

( ( )) , ( , , )i iF Z Linear i= X Q K V                                            (2) 

T

( ) ( )c c
cGSA X SoftMax

d
= +

Q K
V X                                          (3) 

The SW-Conv Block module is designed to preserve the dimensions and resolution of the input 
features so that it can be inserted into any part of the neural network. Since the computational 

complexity of global attention is higher than that of convolution under the same conditions, the 
model's computation should be minimized during sampling. This can be achieved by rearranging the 
features for upsampling and downsampling. Patch Merging downsamples the features, for example, 

from H/4×W/4×C to H/8×W/8×4C, while Patch Expand is the opposite, for example, from 
H/8×W/8×4C to H/4×W/4×C. Upsampling and downsampling using Patch Merging or Expand 

increases the dimension of the features, which significantly reduces the computation burdens 
compared to convolutional pooling and deconvolution. To avoid the phenomenon of network non-
convergence caused by an increase in model depth in the Bottleneck module, the proposed 

framework uses an SA Conv Block module as the bottleneck of the autoencoder to learn normal 
features. This allows for the learned features to be represented in a compressed manner. 

2.4 Memory Module 

In video anomaly detection, it is important to design neural networks that can learn normal sample 
features effectively while also directing attention to the Memory module as much as possible. This 
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enables the normal sample features learned at the bottleneck to be preserved.  Due to the large 
amount of normal sample features obtained during model training, it is necessary to reduce them to 
obtain a limited number of normal sample features. The Memory module includes two operations, 

read and update. The specific process of read operation is as follows: 

The encoder features tq
 of size H×W×C are divided along the channel dimension into H×W query 

items 

k
tq

, each 

k
tq

 with a size of 1×1×C, corresponding to a feature description of a certain spatial 

position. For each query item 

k
tq

, the cosine similarity 

,k n
tw

 with each feature np
 in the memory 

module is computed using the Softmax function: 

T
,

'
' 1

exp(( ) )

exp(( ) )

k
k n n t
t N

T k
n t

n =

=



p q
w

p q

                                                         (4) 

By using the similarity 

,k n
tw

 as weighting factor and computing the weighted sum of all features in 

the memory module, a  composite feature 
ˆ k

tp
 corresponding to 

k
tq

 can be obtained: 

,

1

ˆ
N

k k n
t t n

n

w
=

=p p                                                                       (5) 

After each query 

k
tq

 is matched with its corresponding 
ˆ k

tp
, all 

ˆ k
tp

 will form a feature tensor 
ˆ

tp
 

with the same size of tq
. Then, the feature tensor is concatenated with tq

 along the channel 

dimension, and the resulting feature tensor 
ˆ[ ; ]t t t=f q p

 is used as input to the decoding network 

to generate the prediction result 
ˆ

tx
. 

In the memory feature updating process, the matching features are defined as the feature ~np
 in 

the memory module that have the highest cosine similarity with their corresponding encoding 

features 

k
tq

. After providing corresponding memory features 
ˆ k

tp
 for all encoding features 

k
tq

, the 

memory features np
 are updated by using the matching encoding features 

k
tq

: 

,

,
( )

max( )

k n
kt

n tk n
k t

f +
w

p q
w

                                                          (6) 

2.5 Joint Loss Function 

To better predict anomalous behavior, two aspects of the loss function should be considered in the 
model training process. One is the overall network prediction loss function Lrec, the other one is the 
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loss function of the memory module.  Two aspects should be considered in Lm: feature reduction 
loss Lc and feature diversity loss Ld. 

The purpose of Lc is to perform aggregation and dimension reduction of similar normal features. 

However, this may cause all features in np
 to become more similar with each iteration, which 

contradicts the initial purpose of this loss function and does not reflect the diversity of normal 

features. Therefore, Ld is introduced to increase the differences between features in Pn, reduce their 
similarity, and thereby increase the diversity of normal patterns. The total loss function is calculated 
using the following formula: 

rec c dL L L L = + +                                                        (7) 

The prediction loss uses the L2 norm to penalize the difference between the predicted frame tx
 and 

the ground truth frame 
ˆ

tx
: 

2
ˆ|| ||

T

rec t t
t

L = − x x                                                      (8) 

The feature reduction loss Lc aims to make the input feature more similar to the most similar item 

in Pn. Therefore, L2 norm is used to penalize the difference between them. Pmax refers to the most 

similar feature in Pn, which is defined as the value of n when k is fixed and the value of 

,k n
tw

 is the 
maximum: 

max 2|| ||
T K

k
c t

t k

L = − q P

                                                  
 (9) 

The feature diversity loss Ld aims to encourage Pn to learn diverse normal features. To achieve this, 

an additional term Psecond is added to Lc to increase the differences between features. Psecond is 

the second largest value of 

,k n
tw

 for a fixed k. In addition, a margin is added to the formula. The 
calculation formula for Ld is as follows: 

max 2 sec 2|| || || ||
T K

k k
d t t ond

t k

L q P q P = − + − +                       (10) 

2.6 Anomaly Score 

In the proposed memory-adversarial network model, both the consistency between predicted and 
ground-truth video frames and the similarity between hidden features and memory features can 
serve as the basis for anomaly evaluation. The former is more sensitive to small-scale spatiotemporal 

features such as edges, textures, and local motion due to its same image resolution, while the latter 
is defined in the hidden feature space of the prediction network and is more sensitive to large-scale 

features such as overall contours, color distribution, and limb motion. Therefore, PSNR and Euclidean 

http://www.cad-journal.net/


100 

 

Computer-Aided Design & Applications, 21(S5), 2024, 91-105 
© 2024 CAD Solutions, LLC, http://www.cad-journal.net 

 

 

distance are used as quantitative evaluation indicators for anomaly detection, and a combined 
anomaly score St can be calculated as follows: 

ˆ(1 ( ( , ))) (1 ) ( ( , )t t t tS g PSNR g D q P = − + −x x
                                  (11) 

where g(⋅) is a normalization function, which ensures that the normalized PSNR and feature distance 

scores are in the range of [0,1]. Clearly, a larger St value indicates a higher degree of abnormality. 

3 EXPERIMENTS AND DISCUSSIONS 

3.1 Datasets 

This paper validates the performance of proposed framework using two widely adopted anomaly 
detection datasets, including UCSD Ped2 [11] and ShanghaiTech Campus [21]. The UCSD Ped2 

dataset consists of 16 training videos and 12 testing videos, each containing 180 frames with image 
size of 240×360. The ShanghaiTech dataset has a larger scale, with a total of 437 videos shot in 13 
different scenes, including 330 normal videos and 107 abnormal videos. Each video contains varying 

numbers of frames ranging from tens to hundreds, and each video frame has a size of 480×856. 
Normal events involve pedestrians walking normally on the campus, while abnormal events include 

cars driving on pedestrian paths, violent fights, and robberies. 

3.2 Experiment Platform and Evaluation Metrics 

The entire experiment was conducted on a Win10 platform with NVIDIA GeForce RTX2060 and 

Intel(R) Core(TM) i5-10300H CPU @2.5 GHz, using the PyTorch 1.4 deep learning framework. Prior 
to the experiment, the resolution of the video frames was uniformly adjusted to 224×224, and the 

pixel values of each frame were normalized to the range of (-1,1). The Adam optimizer was used to 
optimize the training loss, with an initial learning rate of 1e-4. 

Two metrics were used to evaluate the performance of the model. The first metric is the receiver 

operating characteristic (ROC) curve based on frame-level analysis and the area under the curve 
(AUC) of the ROC curve. The ROC curve can demonstrate the performance of the classifier by plotting 
the true positive rate (TPR) and false positive rate (FPR) at different threshold settings. After 

calculating the above metrics, the ROC curve is plotted, with the FPR on the horizontal axis and the 
TPR on the vertical axis. The closer the ROC curve is to the upper left corner, the better the 

performance of the detector. The other metric is the false alarm rate (FA). Since FPR is also known 
as the false alarm rate, the FPR at a 50% threshold is used as FA. The main part of real-time 
monitoring videos is normal, so a robust model should also have a low false alarm rate on normal 

segments. 

3.3 Ablation Study 

To verify the effectiveness of the improvements of the proposed framework, several combinations 

of different modules were tested on the UCSD Ped2 and ShanghaiTech datasets. The results are 
illustrated in Table 1, where Model 1 means that only the prediction loss Lrec was used. It can be 

observed that adding the memory module and using the discriminator for anomaly detection can 
effectively improve detection performance on both datasets, and there is a certain complementarity 
between the two. That is, adding both the memory module and the discriminator can further improve 

the performance of anomaly detection. 
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Attention 
mechanism 

Memory 
module 

Joint loss 
function 

Discriminator 
PED2 ShanghaiTech 

AUC/% FA/% AUC/% FA/% 

× × × × 79.75 1.46 69.60 2.77 

√ × × × 85.54 0.75 76.53 2.30 
√ √ × × 94.25 0.43 82.15 1.85 

√ √ √ × 96.13 0.24 86.72 1.03 
√ √ √ √ 97.75 0.12 87.85 0.76 

 

Table 1: Results of the ablation study. 

A new loss function is proposed for memory-based GAN networks, which introduces two new losses, 
Lc and Ld, on the basis of the prediction loss Lrec. In order to verify the effectiveness of the proposed 
loss function in improving the model's anomaly detection performance, a series of ablation 

experiments were conducted on the ShanghaiTech dataset using different combinations of the two 
new losses, as shown in Fig. 6.  The results  showed that after introducing the two new losses of Lc 
and Ld, the TPR of the model increases from 81.31% to 85.85%, and the inclusion of any of these 

loss items can improve the performance. This suggested that the proposed multi-loss function 
improvement is reasonable, complementary, and effective.  
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Figure 6: Impact of different loss functions on TPR results. 

The selection of weighting coefficients for the discriminator: since the anomaly detection criterion 

uses the L2 distance in the feature space between input video frames and normal frames (where the 
memory module records the features of normal video frames) and the weighted sum of video frame 

prediction errors, the weighting coefficient   will have a significant impact on the detection results. 
Therefore, this paper conducted parameter optimization experiments on two datasets to test the 

performance of the model in detecting anomalies with different values of λ between 0 and 1, in order 
to find the optimal balance factor λ. The AUC scores of the model on two datasets with different 
values of λ are shown in Fig. 7. The experimental results showed that the proposed model achieves 

the best performance on all the datasets when λ=0.6. 
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Figure 7: AUC scores with different λ. 

3.4 Comparison Experiment 

In order to verify the performance of the proposed memory-adversarial network model, we 
compared the performance of the proposed method with optimal model obtained from the ablation 

experiments  with other anomaly detection methods on the UCSD Ped2 and ShanghaiTech datasets. 
The results are shown in Table 2. 

Methods 
Ped2 ShanghaiTech 

AUC/% FA/% AUC/% FA/% 

[11] 81.74 1.23 71.55 3.22 

[12] 83.52 1.05 75.15 3.04 
[14] 86.75 0.77 77.63 2.99 
[15] 88.15 0.62 78.45 2.71 

[17] 91.08 0.47 81.03 1.99 
[13] 95.30 0.33 85.19 1.58 
[18] 97.01 0.24 86.34 1.35 

Proposed method 97.75 0.12 87.85 0.76 

 

Table 2: Comparison results. 

It can be seen from Table 2 that compared with the existing unsupervised anomaly detection 

algorithms, on the UCSD Ped2 dataset, the proposed method achieved the best performance of 
97.75% AUC on the 87.85% AUC on the ShanghaiTech dataset.  The method in [11] used 

reconstruction-based detection. Due to the powerful generation ability of GAN and the abnormal 
events only occupy a small part of the image pixels in the frame, there is no guarantee that there 
will be a large reconstruction error for the abnormal frame when performing frame reconstruction. 

The method in [12] introduced a multi-level feature detection method to detect abnormal objects at 
different semantic feature levels in the video, but its network structure was complex and redundant, 
and the amount of calculation is large, so it is difficult to achieve real-time detection. Although these 

reconstruction-based methods can handle abnormal samples, they may also identify new normal 
samples as abnormal samples. The method in [18] adopted the two-way prediction technique which 

can effectively extract spatio-temporal features, so it achieved higher detection accuracy than the 
one-way prediction, but this model can only detect anomalies after the abnormal behavior occurs, 
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and it is difficult to perform real time detection. The proposed method combined the memory 
mechanism and the attention mechanism, and achieved the best performance and stability on both 
datasets, which fully verifies the superiority of the proposed model in video anomaly detection tasks. 

The abnormality score curves on representative test videos from two datasets in this study are 
shown in Fig.8. The solid curve in the figure represents the results with the proposed method, and 

the dashed curve represents the results with the method in [18]. It can be observed from the figure 
that when an abnormal event occurred, the abnormality score given by the proposed model 
increased significantly and quickly dropped to normal level after the abnormal event leaves the 

monitoring area. The results demonstrate that the proposed model can effectively detect abnormal 
events in surveillance video data and has accurate and robust detection performance for different 

types of abnormal events in different scenarios.  Moreover, the different scenarios in the two datasets 
prove that our model not only ensures high abnormal detection accuracy, but also adapts to different 
scenarios in practical applications, showing strong practicality. 
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(a) Ped2 dataset                                                 (b)ShanghaiTech dataset 

Figure 8: Examples of anomaly detection results. 

4 CONCLUSION 

In this paper, a novel memory-adversarial network model for video anomaly detection is proposed, 

and the loss function as well as the anomaly scoring method are presented. Through ablation and 
comparison experiments on two public anomaly detection datasets, we validated the effectiveness 
and superior performance of the proposed framework. The experimental results demonstrated that 

the combination of memory module and adversarial network improves the model's ability to learn 
deep features, thereby enhancing the model's generalization ability to normal samples and 
discrimination ability to abnormal samples. This conclusion provides a novel and feasible approach 

for researching abnormal detection in surveillance videos. 
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