
819

A GPU Method and Error Analysis of Multi-Point Positioning of a Toroidal Tool
for 5-Axis Machining

Mukhmeet Singh1 , Sanjeev Bedi2 , Stephen Mann3

1University of Waterloo, mukmit.singh@gmail.com
2University of Waterloo, sbedi@uwaterloo.ca

3University of Waterloo, smann@uwaterloo.ca

Corresponding author: Stephen Mann, smann@uwaterloo.ca

Abstract. Advantage in five-axis machines is realised by placing a cutting tool’s surface
in close proximity to the part’s surface. This paper presents a procedural method that
utilizes the GPU to position a toroidal tool on a curved surface. The proposed method
is independent of the surface definition and has a fast computational speed. An accuracy
assessment of the method is also presented. The accuracy measure shows that recursive use
of a small GPU window can lead to faster computation of an accurate toolpath, and shows
that the discretization to pixels used in our GPU method only results in negligible gouging.
Furthermore, an example of using the accuracy measure to determine the discretization of
the tool and the part surface is also given.

Keywords: CNC Machining, 5-Axis Machining, Tool Positioning, GPU, Error Analysis
DOI: https://doi.org/10.14733/cadaps.2024.819-833

1 INTRODUCTION

Machining curved surfaces, in the die and mold industry, is often done using 5-axis machines. Where 3-axis
machines can move the tool or the work piece linearly in the x, y, and z directions, 5-axis machines have
two additional degree of freedom that allow the tool to rotate and tilt relative to the work piece [15]. These
additional degrees of freedom in 5-axis machines enables the machinist to position the tool to match the
tool’s shape to the surface being machined. Placing the cutting surface in proximity of the modeled surface
produces wider strips, allowing surface tolerance criteria established by the user to be met. The increased
width improves the material removal rate (MRR) and decreases the machining time during finish machining
[15].

The machining time and MRR also depend upon the type of tool used for machining. There are various
types of tools used for machining curved surfaces. The most common types are the ball nose end mill, flat
end mill, and toroidal cutter or bull-nosed end mill. A toroidal cutter has circular cutting inserts that emulate

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://orcid.org/0000-0001-5101-4312
http://orcid.org/0000-0002-6993-9502
http://orcid.org/0000-0001-8528-2921
mainto:mukmit.singh@gmail.com
mainto:sbedi@uwaterloo.ca
mainto:smann@uwaterloo.ca
mailto:smann@uwaterloo.ca
http://www.cad-journal.net

820

Figure 1: Geometry of toroidal cutter used for toolpath generation for 5 Axis machining.

the shape of the torus as the tool rotates about its axis. A toroidal cutter is defined by its, major and minor
radius, RO and Ri. Ri is the radius of the circular insert that revolves around the axis of revolution at a
distance of RO to form a tori. The circle that revolves around the axis of revolution emulates the physical
insert on actual tool and hence is called a pseudo insert. The line through the center of the pseudo insert
circle is the pseudo insert axis. A toroidal tool is shown in Figure 1.

The cutting tool is placed and moved over the surface (workpiece) to produce a gouge-free surface, i.e., it
should not overcut the workpiece. The movement of the tool over the work piece is guided by the footprint
of the toolpath. The footprint of the toolpath is the projection of tool positions on a convenient plane
perpendicular to the tool axis. The footprint follows a certain pattern. The zigzag, xy parallel and contours
footprints have commonly been used in literature. This paper uses the zigzag pattern that is defined by
parameters sidestep and forward step [6]. A zigzag footprint is shown in Figure 2.

The placement of the tool over the surface for 5-axis machining is challenging as it must be placed to avoid
gouging or overcutting. The tool and modeled surface involve geometry that results in complex simultaneous
transcendental equations that must be solved to get gouge-free placement. In Multipoint machining methods
(MPM) the toroidal tool touches the modeled surface (to be machined) at multiple points of contact. Po-
sitioning the tool to have multiple points of contact places the tool in closer proximity to the design surface
than a tool positioned with just a single point of contact. This allows for a larger side step and gives better
surface finish in shorter machining time.

There are number of methods to find MPM toolpaths [4, 1, 2, 3, 5, 6]. All these methods involve numerical
methods and use the CPU to solve the non-linear transcendental-polynomial equations. These methods of
obtaining the solutions for positioning the tool over the surface are time-consuming [1]. In addition, the
solution results in multiple answers that satisfy the equations, but some of them gouge the surface (at other
points on the tool) and necessitate the use of a gouge checker to isolate the gouge-free solution.

Warkentin et al. [15] introduced the concept of multipoint machining (MPM) using an optimization
algorithm but the method was numerically sensitive and required a long time to converge to a solution. It was
clear that unless the method could be simplified it would have little appeal for use on the shop floor.

Over the years the authors have tried to simplify the tool positioning strategy. The methods are demon-
strated by machining a variety of surfaces to demonstrate robustness and reliability. However, these numerical
methods rely on tolerances (usually set by the user) and an initial guess at the solutions. In some cases, a
poor selection of tolerances or a poor choice of initial guess can lead to non-convergence in the numerical
search or poor solutions (exceeding a maximum number of iterations for convergence) [3]. Duvedi et al. give
an example where 60,000 initial guesses were required before a solution could be obtained [3]. In either case
the user must modify the tolerances and initial guesses to get a better solution. This requires understanding
numerical methods and tool positioning strategy, which are unrealistic expectations on the shop floor. In

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

821

addition, erroneous or missed tool positions may lead to damage of the part due to overcutting or worse.
Furthermore, the produced toolpaths may require the added step of verification in a simulation package, con-
suming more time and effort. Although overcutting can be mended with welding, thermal destressing and
machining, overcutting is expensive and can delay the project. Thus, it is best if a tool positioning method
avoids the use of numerical techniques that require providing tolerances and initial guesses.

Various approaches were taken to simplify and improve the method [4, 1, 2, 3, 5, 6, 7]. Voxels-based
models have been used in conjunction with the Graphics Processing Units (GPU) to generate 3-axis tool paths
[9, 13]. The methods can rapidly generate toolpaths for 3-axis machining. GPU’s have also been used to
reduce the error in flank milling [8]. In addition to flank milling on 5-axis machines, GPU’s have also been
used to assist in 5-axis surface machining [7]. Others have also used the speed of GPU’s to compute material
removed as the tool rotates and to estimate the cutting forces encountered by the tool [12].

In this paper we build on the work of Duvedi et al. [2], who presented a method that only used a version
of the ray firing based gouge checking to do both the drop and tilt steps in DTM. In their work they fired
the rays from the surface towards the tool, in a transformed coordinate system, where the tool was centred
at the origin and could only move along the Z-axis. In this configuration the rays intersect the toroidal tool
at zero, one or two points and these cases can be easily identified using close-form equations. The method is,
however, executed hundreds of times and could be time consuming.

The method proposed in this paper is based on a physical model and does not require the solution of
simultaneous equations or initial guesses. The new method emulates the tool dropping on a surface [4]. The
drop distance is calculated using a GPU based algorithm. The method presented here evolved from an earlier
work, where the earlier method was used for gouge checking (a minor role in tool positioning). This gouge-
checking method is modified to speed up its computational efficiency and to produce 3-axis tool positions.
In addition, the GPU-based tool drop method is repeatedly used with a rotation algorithm to obtain multiple
contacts between the tool and the design surface and produce gouge-free 5-axis tool positions.

Many of these tool positioning methods use a triangular approximation for surface and tool. These
approximations impact the tool position relative to the surface. The paper studies the impact approximation
can have and identifies limits to the approximations. These limits can be used as guides for setting the accuracy
of triangulation for curved surfaces.

2 GPU BACKGROUND

The Graphics processing unit (GPU) is a specialized hardware component used to accelerate graphics rendering.
The GPU is used to manipulate graphic elements and is more efficient than the CPU (Central Processing Unit)
in processing huge blocks of data in parallel.

In the simplest GPU operation, the objects (typically triangles) are defined in an internal global reference
system representing the modelled world. As the modelling world is infinite, a cuboid, called the view volume, is
created that limits the represented world. The top face of the cuboid is called the near plane and the bottom
face is called the far plane. All objects or partial objects within the view volume are processed for visualization.
All objects outside the view volume are ignored. To view the space within the view volume an eye or observer
is defined. The view volume as seen from the eye position is displayed on the view plane; location of the view
plane is arbitrary but in this work, for simplicity, the view plane is placed at the near plane. There are two type
of images that can be created on the view-plane, perspective and orthographic. For this work an orthographic
view of the world as seen from the eye is created on the view-plane. The eye position and the normal to the
view plane determine a location and a direction.

Although not implemented this way on the GPU, in essence several uniformly spaced rays, around the
eye, are defined. These rays are perpendicular to the view-plane and originate in it. The originating points
represent the pixels of the view screen. The rays go into the view volume and intersect with the objects in it.
The parameters of the first point of intersection of the ray are stored in a buffer or map. The intersection of

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

822

all the rays creates a uniformly discretized depth map. The discretization maps to the pixels on the computer
screen. The GPU stores all the depth information in a buffer known as the z-buffer. The color and texture
are stored in their own buffers. For visualization color and texture are associated with the pixels. The view
displayed shows all the visible objects in color and with appropriate texture and other properties. With depth
test enabled, the GPU can compare the depth buffer (z-buffer) of two separate views. The GPU compares
two buffers using parallel computation and can generate a composite scene with appropriate fragments in
front of the other fragments. This composition is done automatically by the rendering engine. We used the
ability to store and compare z-buffers of the objects rendering with a GPU, using OpenGL, for gouge-free tool
positioning for machining curved surfaces.

3 GOUGE CHECKING

The method used for gouge checking is called by many names including z-map and mow-the-grass method
[11]. Vertical rays at the user-specified spacing (possibly uniform), parallel to the tool axis, are fired from a
plane below the surface being machined. The rays are trimmed where they intersect the surface. The tool is
positioned above the trimmed rays and the rays are checked for intersection with the tool. The intersections
identify gouges. In addition, the method with some modifications can also be used to study surface finish or
to estimate the height of scallops left in machining.

4 CONCEPT

The view volume in the GPU [10] and the z-map method share similarities, see Figure 2. In both cases rays
(simple linear equations) are fired from a base plane in a known direction. In both cases the rays are trimmed
against objects. Both methods allow for a precise estimation or visualization. The gouge-checking method is
like the orthographic projection method used by the GPU to display graphics on a computer screen. These
similarities between the two present an opportunity to use the GPU for gouge checking. This paper exploits
the similarity and uses the ability of the GPU to do fast computations to facilitate MPM tool positioning
strategies. Furthermore, the gouge-checking method is modified into a method for estimating tool drop
distance for generating gouge-free 3-axis tool positions. The paper further presents a method that builds
on the ability to rapidly calculate the tool drop distance using the GPU to generate a gouge-free 5-axis tool
position based on the Drop and Tilt method for Multi-Point Machining [4, 1, 2].

The method is independent of the kind of surface used to describe the part, as a surface must be triangulated
for use in OpenGL. As CAD packages provide tools for triangulation of many surfaces, this method works on
all those surfaces. For a demonstration of the concept, cubic Bézier surfaces are used in this work. A concave
sample surface is shown in Figure 3.

5 IMPLEMENTATION

In the MPM method [2], positioning the tool is done in two steps. In the first step, the first point of contact
is obtained by dropping a tool over the modeled surface from a certain height atop of the surface. The drop
distance for the calculation of the gouge-free tool position is computed using the GPU. The rendering requires
the definition of the view volume and the view window. Since the goal is accurate tool positioning, the view
direction is set along the tool axis and the view volume is set to enclose the tool. The view window is limited
only by the size of the computer screen and is commonly left to the user to define; in this paper, we give some
guidance on setting the size of the view window to achieve a desired error tolerance in the simulation.

The window size impacts the time taken to compute the tool positions and the accuracy of the tool
position. The tool is rendered using Orthographic projection, and the resulting z-buffer is saved; a second
rendering with the same view direction and view volume is done for the surface, and again, the resulting
z-buffer is saved. These two z-buffers are compared with each other and the minimum difference in z-value

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

823

Figure 2: The tool, enclosed in a view volume, is dropped onto the surface beneath it. The camera is placed
above the view volume and the orthographic projection is used to speed up computations in a GPU.

Figure 3: Tool Drop used for computing tilt angle.

or depth value gives the drop distance with which the tool is moved towards the surface to touch it without
any gouging. This drop distance concept is fast to compute, and its accuracy can be determined based on
discretization and world modeling parameters. After an initial drop to obtain the first point of contact, the
center and axis of the pseudo insert at that point of contact are obtained.

The process is illustrated in Figure 3. Figure 3(a) shows the tool dropping on the surface to determine the
first point of contact at a height h. In Figure 3(b) the surface is rotated about the pseudo insert axis, and
the tool is dropped onto this rotated surface at a height h1. The surface is rotated iteratively until a rotation
angle, theta, is found where h1 = h. Rotating the surface by angle, θ, results in two points of contact as
shown in Figure 3(c). The surface rotation about the pseudo-insert ensures the toroidal tool axis stays aligned
with the vertical. The details are given in the Appendix. In this method tool drop with the z-buffer method
is used repeatedly to find both points of contact.

6 ERROR DUE TO PIXELIZATION

The speed of the GPU-based method depends on the number of pixels in the window. A larger number of pixels
results in a larger time taken by the algorithm. However, as the pixels in the window increase the accuracy

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

824

(a) (b)

Figure 4: An insert and the rays fired towards. The discretization results in an approximation that can be
evaluated.

of representation and the tool positioning also increases. The accuracy of tool positioning and the size of the
window are inversely related. The computation time for one tool position using a 625×625 window is 408
milliseconds and is about 10 times larger than the computation time for a 50×50 window. The relationship
between error and window size is studied in this paper.

In the z-buffer method described above, finely spaced rays are fired to determine the tool positions. The
discretization of the rays introduces some errors. To estimate this error, we approximate the circular insert of
the toroidal tool by linear segments connected to one another. The distance between two rays along x-axis is

∆x =
widthw

width

where widthw is the width of the viewport in the world coordinate system and width is the number of pixels
in the viewport width. The largest deviation between the circle and the approximating segment is along the
side of the torus Figure 4 shows the insert with a reference frame at the base of the insert or circle. Two
neighboring rays at xj and xj+1 are shown in the figure. The approximating line deviates from the circular
insert. From right triangles in Figure 4 we can show

δ =
a2 + δ2

2R

and as δ ≪ 1, we can drop δ2 and still obtain a tight bound on δ:

δ <
a2

2Ri
,

where a is half the length of the line joining the intersection of the ray with the insert circle. Knowing the
equation of the circle, the length of the line segment between the intersection of two neighboring rays that

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

825

are ∆x apart, represented by 2a, can be calculated. The ray that is fired at x = xj and at x = xj+1 intersect
the circle at yi and at yi+1. Based on Figure 4 the intersection of the two rays is given by

(Ri − yj)
2 = R2

i − x2
j

(Ri − yj−1)
2 = R2

i − (xj −∆x)
2

and
∆y = yj − yj+1 =

(
Ri −

√
R2

i − x2
j

)
−

(
Ri −

√
R2

i − (xj −∆x)2
)
. (1)

In this equation ∆x is constant. ∆y is small at the bottom of the circular insert and is the largest at the side
of the insert at x = Ri where it is given by

∆y =
√
2Ri∆x−∆x2.

Also, we have (2a)2 = (∆x2 +∆y2). Substituting these values in our approximation for δ, δ < a2

2Ri
, gives:

δ =
∆x2 +∆y2

8Ri
=

∆x2 +
((

Ri −
√
R2

i − x2
j

)
−
(
Ri −

√
R2

i − (xj −∆x)2
))2

8Ri
. (2)

And at x = Ri, it gives

δ =
2Ri∆x

8Ri
=

∆x

4
.

Although δ is strictly less than ∆x
4 , note that along the side of the insert this is a tight bound since in the

above equations we have dropped δ2 which is small compared to ∆x
4 .

The approximation introduced by linearization is approximately a quarter of the spacing between two rays
in the worst case. Having more rays can improve the accuracy but having an accuracy better than the typical
CNC machine unnecessarily increases the computation time. The accuracy of a CNC machine typically found
in industry is about 0.01 mm. For our tool, RO = 6.7 mm and Ri = 6 mm. The width and height of the view
volume is taken to be 25 mm≈ 2(RO + Ri). To obtain an accuracy of δ < 0.01 mm, implies that ∆x = 0.4
mm. So for a view window of 25 mm we need 250.04=625 pixels; i.e., we need a view window with width and
height of 625, thus meeting the accuracy requirements of industrial CNC machines.

7 MULTI-LEVEL RENDERING

The chosen window size is large enough to produce accurate tool positions that are within user-specified
tolerance, but the computation time is slower than an equivalent CPU implementation [14]. The speed issue
of the GPU method is due to slow transfer rates from the GPU to the CPU. To tackle this problem, a
Multi-Level Rendering approach is used.

In the Multi-level rendering approach, the torus is rendered in two stages with lower window resolutions.
In the first stage, the orthographic projection is kept the same, as explained in the previous section, except the
window size is reduced. Since the width and height of the view volume is 25mm, a discretization of 50×50
results in a spacing of ∆x′ = 0.5 mm between two pixels. The above procedure is followed to obtain the drop
distance and associated pixel position. Next, the discretization is locally refined around this approximate point
of contact to improve the accuracy of the point of contact.

The approximate contact point is surrounded by other points in the grid; however, the algorithm ensures
that the drop distance at these points is higher than at the approximate contact point. As the curvature
of the torus is greater than the curvature of the surface, the lowest value lies in the region surrounded by
the neighboring pixels. So, both the torus and the surface are rendered again with a zoomed view of the

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

826

GPU CPU

Tool Positions 650×650 SL 50×50 ML 650×650 SL 50×50 ML

760 616(s) 8.5(s) 304(s) 14(s)

Table 1: Time comparison for single and multi-level GPU method.

surrounding area that focuses on a 3×3 area around the contact point. In this second stage of rendering, the
camera is moved to the estimated point of contact, but the view vector is retained. The ‘ToolDropMethod’
is re-applied for the newly rendered sections of torus and surface.

The zoomed-in view focuses on a (3×3) grid, whose parameters are obtained by redefining the orthographic
projection with new viewport widthw and heightw for a second level of rendering. These values are

widthw = heightw = 2×∆x′.

With a view port of 50×50 pixels the spacing between rays is ∆x′′ = widthw

width = 2×∆x′

50 = 2×0.5
50 = 0.02 mm.

A spacing of 0.02 mm for the rays gives an accuracy of 0.005 mm which is better than what can be
machined on a typical CNC machine. This multi-level accuracy is equal to a single-level accuracy obtained
from a view widow of 1250×1250. With the multi-level method, we reduce the view window size, but this
two-stage process requires the drop distance to be calculated twice. The details are given in the Appendix.

Table 1 gives a comparison of times for single-level (SL) and multi-level (ML) versions of both CPU and
GPU versions of the method. The comparison uses a concave surface that was used in previous work [15] [16]
[17]. The proposed algorithm was used to generate a tool path for machining this concave surface. The tool
positions generated by the proposed algorithm are numerically equal to those generated by earlier methods.
We refer the reader to the earlier papers for machining example and accuracy analysis of the machined part.

Although the single-level version of the CPU method is faster than the single-level version of the GPU
method, the multi-level version of the GPU method is faster than the multi-level version of the CPU method.
The additional performance gains of the GPU method can be attributed to transferring less data from the
GPU back to the CPU.

8 DISCUSSION

In this work the tool and the part surface are approximated by planar facets. The triangulation simplifies
the mathematical formulation but requires it to be executed many times. Accuracy requires fine triangulation
and computational efficiency favours coarse triangulation. This is an ideal optimization problem in which
user-acceptable error can be used to determine triangular accuracy. Facet approximation introduces errors in
the tool position. The work in the previous section bounds the error due to the planar approximation of the
toroidal tool. The impact of the error due to approximation of the torus is further discussed here. For this
discussion, we use as an example the tool we used for machining in earlier papers. This tool, with Ri = 6
mm and RO = 6.7 mm, is illustrated in Figure 1; these values of Ri and RO are also used in the plots of δ in
Figure 6.

Equation (2) bounds the error δ as being strictly less than ∆x
4 . However, this is a worst-case error occurring

when the point of contact is at the edge of the tool (at the point labeled 6.0 in Figure 5, for example). When
the point of contact is at other locations on the tool, the error will be less. In Figure 6(a), to illustrate the
error, xj and ∆x are plotted as continuous values. As xj moves away from the center, the value of δ increases,
with the error remaining below 0.01 until the point of contact is very close (more than 95% of the way from
the center to the edge) to the edge of the tool. To better illustrate the error in the region not as close to the
edge, in Figure 6(b) we have restricted the plot of the error to xj < 5.5.

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

827

6.7 mm

5.0

5.5

6.0

6 mm

0.0

Figure 5: The key points between the tool bottom and tool side on a toroidal tool.

Experience shows that in MPM, the contact points lie close to the bottom of the tool, and the tool tilt is
limited to within 20 degrees of the normal and often much less: for the surfaces machined in [15], the maximum
angle was 6.5 degrees. The error in a 20-degree region around the normal is smaller than the accuracy of a
typical CNC machine used in industry and thus cannot be measured. The GPU-based method can be used
to ensure ∆X ≪ 0.1, and the ensuing linear approximation will introduce errors that are smaller than those
introduced by a typical CNC machine. Thus, the method presented here can be reliably used to machine parts
if the first contact point does not lie on the side of the insert. This condition is not very restrictive when
machining surfaces but must be kept in mind when creating a general solution to tool path planning.

Regardless, even using the ∆x
4 bound for the error, a pixel size of 0.04 mm (as used in our earlier example)

is required to accurately position the tool on the surface. What our bound on the error shows is that using a
pixel size this small will result in gouging of less than 0.01 mm, and thus the amount of gouging due to the
pixelization in the process is well below machining tolerances. Additionally, in the next section, we use this
∆x
4 on the error to provide guidelines on how finely to tessellate the tool and the design surface.

9 DISCRETIZATION OF THE TOOL AND DESIGN SURFACE

In OpenGL, the torus representing the tool and the surface are both discretized into triangles before rendering.
The triangulation of the tool and the surface introduce an error, εt and εs respectively. The impact of these
approximations is studied next.

The surface finish on the machined part depends on the discretization of the tool and surface. The surface
finish, in the most conservative case, is given by ϵuser = δtool+ δsurf and is plotted in Figure 8. The contours
show all possible values of δXtool and ∆XSurf . The desired surface finish can be controlled by the number
of triangles in the triangulation.

Figure 7 is modeled by dividing the circular circumference of the sphere into π
√

R
2δSphere

equal segments
of arc length 2a. The sphere is divided into a same number of segments in parallel planes. The corresponding
points are connected to create trapezoidal faces that are divided into two triangles each. The upper estimate
of the total number of triangular faces is given by 2π

√
R/(2δSphere)π/4

√
R/(2δSphere) = (π2R)/(4δSphere).

The number of tool positions is proportional to the number of triangles in the surface and thus proportional
to the computational time required for building the toolpath. The number of triangles in the tool surface impact
the time taken to compute one tool position. Thus, ideally minimum number of triangles should be used to
model the surface and the tool.

The number of triangles can be chosen to minimize the computation time for the tool path. The tool path
is comprised of several tool positions. The number of tool positions are a function of the feed forward and side

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

828

∆xxi

δ

∆xxi

δ

(a) (b)

Figure 6: Error estimation in discrete approximation of toroidal tool as a function of location between tool
bottom and tool side and discretization spacing.

Figure 7: Triangular approximation of the cutting surface of a spherical end milling tool.

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

829

Figure 8: Error (Gray) and computation time (Blue) as a function of point spacing. Yellow curve shows the
computation time for user acceptable error of 0.001 inch.

steps. The feed forward and side steps are related to the spacing of the rays, ∆xSurf , that are fired to model
the surface and the tool. The larger the number of triangles, the higher the accuracy required in the tool
path, and the feed-forward step needs to be small, just like ∆xSurf . The time required to compute one tool
position is proportional to the spacing of the rays, ∆xTool, fired in the GPU or the tool triangulation (number
of triangles to represent the tool). The time for computing a tool position is also directly proportional to the
number of tool positions in the tool path, thus the time is directly proportional to the surface triangulation
(number of triangles to represent the surface). So, the time to compute the tool path comprising of a number
of tool positions is given by

TToolPath ∝ NSurfNTool

TToolPath = CTP (π
2RSurf)/(4δSurf)(π

2Rtool)/(4δTool),

where RSurf is the average radius of curvature of the surface, RTool is the average radius of curvature of
the Tool, NSurf is the number of triangles in the surface model, NTool is the number of triangles in the tool
model, δSurf is the sagittal error in the surface model, δTool is the sagittal error in the tool model and CTP is
a constant of proportionality. For a spherical surface with RSurf = 200, a tool with RTool = 12, and a user
specified tolerance of ϵuser = 0.001, TToolPath is plotted in Figure 8.

Figure 8 shows that for a user specified error a variety of combinations, such as the yellow line on the
gray plane, are possible. The plane and line are shown clearly in Figure 9. For each of the combinations the
computation time is estimated and is marked with the yellow curve on the blue surface. It is a flat U-shaped
curve, indicating that there is a wide variety of ∆xTool and ∆xSurf spacing that can be used without loss of
surface finish or increase in machining time. Figure 8 will change as surface curvature and tool size change,
but the shape will remain the same.

The error could be improved by having non-uniform triangulation, which places more triangles in high
curvature zones, giving the same surface approximation for fewer triangles as a uniformly triangulated surface.
However, for this work uniform triangulation is used. The optimal triangulation would correspond to the

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

830

Figure 9: Surface finish as a function of tool and surface discretization. The contours show the possible
values of discretization for a desired surface finish.

accuracy of the CNC machine. In this work the machine accuracy is taken to be 0.025mm or 0.001 inch. With
0.025mm the length of the line approximating the arc can be calculated as 2a = 2

√
δ2Ri = 1mm. A 1mm

long arc along the circle of radius Ri subtends an angle of approximately 10 degrees at the center. Thus, in
this work the insert circle is discretized into 36 sectors.

In the other direction, the largest circle has a radius of RO +Ri, and this circle must be represented with
1mm segments as well. An 1mm long arc along the circle subtends an angle of approximately 4.8 degrees at
the center. Thus, in this work, the circle along which the insert rotates is discretized into 80 segments. Fewer
segments will increase the error, and more segments will increase the processing time.

The error in surface representation with triangles depends on the radius of curvature of the surface. In this
work, the radius of curvature is large and is approximated by 200 mm. The length of the line segment between
two neighboring points on the surface can be approximated by 2a = 2

√
δ2Ri = 5mm. Uniform discretization

with spacing between points of 5mm will suffice. However, in this work a uniform grid of 100×100 in the
parametric space was used and the spacing is 1.5 mm. This grid is finer than that required and thus with
less sagittal error. When machining a convex surface, the surface triangulation should be done to ensure that
|εS + εt| is less than the acceptable tolerance. With εS < 0.025mm and εt < 0.025mm, the machined surface
accuracy is given by |εS + εt| < 0.05mm. The achieved accuracy is better than the precision that can be
achieved on today’s CNC machines.

The above error calculations are based on the tool positions only. While machining a surface the tool
moves from one tool position to another and it is assumed that if the tool positions are close to one another
the deviation between the design surface and the surface produced as the tool moves (swept surface) are small.
These calculations do not consider the swept surface.

Triangles are the most convenient method of describing objects in OpenGL. In this work Bézier surface are
first triangulated and then used for tool path planning. The GPU method can thus be used for any type of
surface by first triangulating the surfaces to approximate the surface within an acceptable tolerance and then
using the GPU method to plan a toolpath.

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

831

10 CONCLUSIONS

The procedural method proposed in this paper does not require the solution of simultaneous equations or
initial guesses and is faster in implementation as compared to previous attempts. The key difference between
this method and the recent other is that rays are fired from a common plane towards the part surface and the
tool surface using the GPU hardware and software. The new method emulates the tool dropping on a surface
[3].

In addition, it has been shown that the efficient tool drop using GPU can also be algorithmically used
to obtain multiple contact points between the tool and the design surface to produce gouge-free 5-axis tool
positions. The presented method does not depend on the type of surface used to describe the part and thus can
be used both on parametrically and algebraically defined surfaces without occlusion. Furthermore, to reduce
the computational burden and to speed up the computational process an adaptive discretization method is
presented.

The proposed method at its heart uses triangular approximation for surface and tool. It has been shown that
the impact of the approximations on tool positioning is within the accuracy to which parts can be machined
on a typical CNC machine. Simple methods of determining the tool path parameters such as discretization
distances, number of pixels and surface finish achievable are presented. These limits can be used as guides for
setting the accuracy of triangulation for curved surfaces. While our examples show how to achieve an accuracy
of 0.01 mm, our methodology can be used to determine the appropriate discretization to achieve any level of
software accuracy.

APPENDIX

The pseudo-code for the proposed algorithm is given below.

1.0 Initialize OpenGL and render objects: Initialize(orthogonal,Ro,Ri,P[n][n],GL)
2.0 Generate Toolpath Footprint:

FootPrint[k][2] = GenerateFootprint(sideset,forwardstep,xmax,ymax)
3.0 Set zmax = torusZ+50; th=[0,0,1]
4.0 For i=1; i<=k

4.1 Obtain first point of contact and its surface normal:
[Pi,npi,dmin] = ToolDropMethod(camera,projection,torus,surface,Footprint[i])

4.2 Obtain the center of pseudo-insert: Oi = Pi + Ri npi
4.3 Set coordinate frame: [u1,v1,w1]

w1=t; u1=(T-Pi) x w1/|(T-Pi) x w1|; v1=w1 x u1;
4.4 Set Bmin = 0; Bmax=pi/4; B=Bmax; Blast=0;
4.5 while |B-Blast| < eps

4.5.1 Blast = B
4.5.2 B=(Bmax+Bmin)/2
4.5.3 Rotate Bezier Surface around u1 axis at O1 by angle B:

surface’=rotate(surface,B,u1,O1)
4.5.4 Obtain second point of contact, its surface normal, and drop distance

[Qi,nQi,dmin] = ToolDrop(camera,projection,torus,surface’,Footprint[i])
4.5.5 If (dmin>eps) then Bmax=B else Bmin=B

4.6 Rotate tool axis around global x axis at Origin by angle B
t’=rotate(t,B,x,Origin)

4.7 Output too position: (Pi,nPi,Qi,nQi,t’)

Initialize(orthognal, Ro, Ri, P[n][n],GL)

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

832

1.0 Define Window Size: GLwindow(width,height)
2.0 Enable Depth test for obtaining Z-buffer: Enable GL
3.0 Set orthogonal Matrix: orghographics(Ro,Ri)
4.0 Set Projection Matrix: projectionMatrix(orthographic)
5.0 Set Viewpoint and Camera: camera(projectionMatrix)
6.0 Define and Initialize Toroidal cutter object: torus(Ro,Ri)
7.0 Define and Initialize Bezier surface: surface(P[n][n])

ToolDrop(camera,projection,torus,surface,FootPrint)

1.0 moveTorus(FootPrint[1], FootPrint[2], 0)
2.0 moveCamera(FootPrint[1], FootPrint[2], zmax)
3.0 Define depth buffer arrays for Torus and Surface
4.0 Read depth buffer of Torus: getDepth(depth(torus))
5.0 Read depth buffer of Surface: getDepth(depth(surface))
6.0 Get the pixel position with minimum diference of torus and surface depth buffers

(pixel x, pixel y, difference]=compareDepthBuffers(depth(torus),depth(surface)
7.0 Convert pixel position and difference into 3D Euclidean Space for surface model:

P,np,dmin = screenToWorld(pixel x, pixel y, difference, projection, surface)
8.0 return (P,np,dmin)

ACKNOWLEDGEMENTS

This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Mukhmeet Singh, https://orcid.org/0000-0001-5101-4312
Sanjeev Bedi, https://orcid.org/0000-0002-6993-9502
Stephen Mann, https://orcid.org/0000-0001-8528-2921

REFERENCES

[1] Duvedi, R.; Bedi, S.; Mann, S.: An efficient multipoint 5-axis tool positioning method for tensor prod-
uct surfaces. Advanced Manufacturing Technology, 97, 279–295, 2018. http://doi.org/10.1007/
s00170-018-1940-y.

[2] Duvedi, R.; Bedi, S.; Mann, S.: Numerical implementation of drop and tilt method of five-axis tool
positioning for tensor product surfaces. Int J Adv Manuf Technol., 95, 219–232, 2018. http://doi.
org/10.1007/s00170-017-1193-1.

[3] Duvedi, R.; Singh, M.; Bedi, S.; Mann, S.: Multipoint tool positioning of a toroidal end mill for five-
axis machining of generalized tensor product Bézier surfaces. Advanced Manufacturing Technology, 111,
495–503, 2020. http://doi.org/10.1007/s0017-020-06006-1.

[4] Duvedi, R.K.; Bedi, S.; Batish, A.; Mann, S.: A multipoint method for 5-axis machining of triangulated
surface models. Computer-Aided Design, 52(1), 17–26, 2014. http://doi.org/10.1016/j.cad.2014.
02.008.

[5] Gray, P.; Bedi, S.; Ismail, F.: Rolling ball method for 5-axis surface machining. CAD, 35, 347–357, 2003.
http://doi.org/10.1016/S0010-4485(02)00056-8.

[6] Gray, P.; Bedi, S.; Ismail, F.: Arc-intersect method for 5-axis tool positioning. CAD, 37, 663–674, 2005.
http://doi.org/10.1016/j.cad.2004.08.006.

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

https://orcid.org/0000-0001-5101-4312
https://orcid.org/0000-0002-6993-9502
https://orcid.org/0000-0001-8528-2921
http://doi.org/10.1007/s00170-018-1940-y
http://doi.org/10.1007/s00170-018-1940-y
http://doi.org/10.1007/s00170-017-1193-1
http://doi.org/10.1007/s00170-017-1193-1
http://doi.org/10.1007/s0017-020-06006-1
http://doi.org/10.1016/j.cad.2014.02.008
http://doi.org/10.1016/j.cad.2014.02.008
http://doi.org/10.1016/S0010-4485(02)00056-8
http://doi.org/10.1016/j.cad.2004.08.006
http://www.cad-journal.net

833

[7] Gray, P.J.; Ismail, F.; Bedi, S.: Graphics-assisted rolling ball method for 5-axis surface machining.
Computer-Aided Design, 36(7), 653–663, 2004. http://doi.org/10.1016/S0010-4485(03)00141-6.

[8] Hsieh, H.; Chu, C.: Gpu-based optimization of tool path planning in 5-axis flank milling. In 2010
International Conference on Manufacturing Automation, 143–150, 2010. http://doi.org/10.1109/
ICMA.2010.31.

[9] Kukreja, A.; Dhanda, M.; Pande, S.: Voxel-based adaptive toolpath planning using graphics processing
unit for freeform surface machining. ASME. J. Manuf. Sci. Eng., 144(1), 2022. http://doi.org/10.
1115/1.4051535.

[10] Ranjan, R.: Gpu acceleration of cfd codes, 2019. http://doi.org/10.13140/RG.2.2.11321.93286.
[11] Rao, F.I.S.B.N.: Tool path planning for five-axis machining using the principal axis method. International

Journal of Machine Tools and Manufacture, 37(7), 1025–1040, 1997. http://doi.org/10.1016/
S0890-6955(96)00046-6.

[12] Roth, D.; Ismail, F.; Bedi, S.: Mechanistic modelling of the milling process using an adaptive depth buffer.
Computer-Aided Design, 35(14), 1287–1303, 2003. http://doi.org/10.1016/S0010-4485(03)
00044-7.

[13] Sanfui, S.; Sharma, D.: A three-stage graphics processing unit-based finite element analyses matrix
generation strategy for unstructured meshes. Numerical Methods in Engineering, 121(17), 3824–3848,
2020. http://doi.org/10.1002/nme.6383.

[14] Singh, M.: Fast and Robust Approach to Find the Gouge-free Tool Position of the Toroidal Cutter for
the Bézier Surface in Five Axis Machining. Master’s thesis, University of Waterloo, 2020.

[15] Warkentin, A.; Ismail, F.; Bedi, S.: Multi-point tool positioning strategy for 5-axis mashining of sculptured
surfaces. CAGD, 17, 83–100, 2000. http://doi.org/10.1016/S0167-8396(99)00040-0.

Computer-Aided Design & Applications, 21(5), 2024, 819-833
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://doi.org/10.1016/S0010-4485(03)00141-6
http://doi.org/10.1109/ICMA.2010.31
http://doi.org/10.1109/ICMA.2010.31
http://doi.org/10.1115/1.4051535
http://doi.org/10.1115/1.4051535
http://doi.org/10.13140/RG.2.2.11321.93286
http://doi.org/10.1016/S0890-6955(96)00046-6
http://doi.org/10.1016/S0890-6955(96)00046-6
http://doi.org/10.1016/S0010-4485(03)00044-7
http://doi.org/10.1016/S0010-4485(03)00044-7
http://doi.org/10.1002/nme.6383
http://doi.org/10.1016/S0167-8396(99)00040-0
http://www.cad-journal.net

	INTRODUCTION
	GPU BACKGROUND
	GOUGE CHECKING
	CONCEPT
	IMPLEMENTATION
	ERROR DUE TO PIXELIZATION
	MULTI-LEVEL RENDERING
	DISCUSSION
	DISCRETIZATION OF THE TOOL AND DESIGN SURFACE
	CONCLUSIONS

