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Abstract. Analyzing pathological movements can substantially help neurologists in 

the diagnosis and treatment improvement for patients with Parkinson’s disease (PD). 

A linkage between the intensity and characteristics of moving and walking disorders 
and the stage and types of PD can be actually established. The main aim of this study 
is to develop an effective methodology that allows to evaluate, in real time and / or 
in deferred time, movements and posture of PD patients in their usual living 
environments. For this purpose, a wearable suit with Inertial Measurement Unit 
(IMU) sensors was designed; it has made it possible to acquire linear and angular 

signals of displacement, velocity and acceleration of the most relevant body points 
of the patients. The filtered and integrated signals were then used to animate a 
human parametric multibody model that virtually reproduces in real time and / or in 
deferred patient’s movements and posture. Serving as the patient's “avatar”, the 
multibody model enables the neurologist to carry out an accurate assessment of the 
patient’s movements and posture (freezing, festination, postural balance) as well as 

to measure disease progression and response to interventions. If compared to 

traditional 3D video-based motion analysis systems, the proposed method has the 
advantage of providing a more accurately measurable patients movements analysis 
and comparison performed in their usual living environments in real-world 
conditions. 
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1 INTRODUCTION 

Tremor is one of the most important motor phenotypes of dystonia traced in over 80% of patients 
with neurological diseases [2],[3],[11]. Capturing the movements of these patients it can be realized 
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through computer vision analysis [8], by using motion capture tools (mocap) [13] or adopting 
standard and depth cameras [1],[4]. A recent study has emphasized a technique developed using 
embedded sensors such as the Inertial Measurement Unit (IMU), composed of accelerometers, 
gyroscopes and sometimes magnetometers, for the detection of the body's movements [18]. 

Since 2013 Prof. Yoneyama from Mitsubishi, Prof. Mitoma from Tokyo Medical University and 
Prof. Watanabe from Hosei University have focused their attention to algorithms elaborated to 
process acceleration gait with the aim of studying Parkinson's disease [16]. More recently two of the 
authors of this manuscript have developed algorithms in a Matlab environment to filter the signals 
coming from IMU sensors placed on the patients' bodies so to be able to identify and analyze the 
movements of interest in Parkinson's disease (PD) [9]. 

Convolutional Neural Networks (CNN) has revealed to be one of the most efficient methods 

employed to characterize human movement as it involves image processing or also signal pre-

processing associated with Recurrent Neural Networks (RNN) [6]. This method can turn out robust 
even with degraded data, such as noisy data or poor-quality sensors [17]. Specifically, the skeleton-
based approach uses data from IMUs, where the person is represented as a raw data stream from 
these sensors, with quality improvement of the network and time performance. It is also true that 
an important technological advancement in real-time motion recognition is represented by Long-

term Recurrent Convolutional Networks (LRCN) [5] where skeleton points are retrieved directly from 
video and data; which is considered an easier implementation compared to neural networks. 

Differently, other recent studies advance the use of more synthetic modeling tools and a motion 
recognition approach based on the polytopic state-space representation as well as a Linear and Time-
Invariant representation [10]. 

In the present study, data from IMU sensors was filtered and modelled in a matrix form by 
adopting the Ordinary Least Squares (OLS) method. The data thus processed was related to the 

movements of 17 points properly positioned on the body, allowing for the animation of a parametric 
multibody model that virtually reproduced the movements and posture of PD patients in their usual 
living environments. The neurologist was, therefore, able to carry out an accurate assessment of 
patients’ movements and posture (freezing, festination, postural balance) as well as to measure 
disease progression and response to therapies. 

The proposed method provides in real time and / or in deferred time the measurable movement 
analysis of the patients performed in their usual living environments in real-world conditions without 

resorting to clinic visits and /or acquisitions with cameras. The quality and accuracy of the method 
was preliminary tested as part of an experiment including 5 movements, each performed by 14 
student volunteers wearing the suit with IMU sensors. 

This manuscript was structured as follows: in section II, the developed methodology was 
illustrated: the movements acquisition, the motion recognition algorithms and the developed 
parametric multibody model were described; in section III, the preliminary testing and the 

implementation of methodology on patient were reported; in section IV the main results obtained 
were discussed, while in section V the conclusions of the research were drawn. 

2 METHODOLOGY 

The analysis of the data available in the scientific literature and those that were collected at the 
Neurosurgery Department of the Hospital Center University of Picardie Jules Verne (Amiens, France) 
allowed the authors to establish the correct strategy for movement acquisitions, data filtering and 
the reproduction of the movements in the multibody avatar model. In particular, through the analysis 

conducted in this study the proper number and position of IMU sensors on the body patient were 
identified and the construction of patient-specific multibody models was carried out. The three 
phases of patient's movements data acquisition, signal filtering and movements implementation on 
multibody models are described hereafter in detail. 
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2.1 Movements Acquisition 

The preliminary tests conducted on 14 student volunteers with a double acquisition (by adopting 

IMU sensors and RGB camera integrated with depth sensor and IR emiters) confirmed that 17 IMU 
sensors positioned in front and rear parts at the level of the main joints of the body guarantee the 
best compromise between the number of sensors and a high enough accuracy of signal acquisition. 
The Perception Neuron® IMU wireless sensors were selected among the most performing commercial 
IMU sensors (Table 1). Each sensor delivered signals obtained via triaxial accelerometer-gyroscope-
magnetometer at the frequency of 125Hz to the computer which captured data through a transceiver. 

The signal data were then elaborated with commercial plugin (Unity3D®, Unreal®) and C++ API 
SDK and organized as a function of time in matrices exportable in .bvh, raw, .fbx formats easily 
implemented in commercial software for movement analysis (e.g. MotionBuilder®, Maya®, 
Blender®). 

 

Characteristics Value  Characteristics Value 

Weight [g] 15  Data output rate [Hz] 100/125/240 
Size [mm] 12×13×4.3  Data format .bvh; raw; .fbx 
Accelerometer range [g] ± 32  Power [Wh] 3.9 

Gyroscope range [dps] 2000  Operating autonomy [h] 40 
Resolution [deg] 0.02  Latency [ms] < 5 
Frequency [MHz] 2400÷2483  Battery capacity [mAh] 280 
Accuracy Roll [°] 0.7  Operating autonomy [h] 8 
Accuracy Pitch [°] 0.7  Operating temperature [°C] -10 - 50 
Accuracy Yaw [°] 2  Magnetic Resistance Full immunity 
Internal processing rate [Hz] 800  Wireless Range [m] 10 

Data output rate [Hz] 60/90/96/  Estimated cost [USD] 350 

 
Table 1: IMU wireless sensor main characteristics. 

 
The positions of the 17 sensors used in the analysis for the acquisitions are visible in Figure 1. The 
layout used for the acquisitions, and others similar, can be found in numerous scientific studies 
[4],[16],[18]. With this distribution the movements and proper PD vibrations of all parts of the body 
were captured with high accuracy. In some other scientific studies, the patient movements 
acquisition was completed adopting also a glove with several micro IMU wireless sensors (Figure 1 
(a)) [16],[18]. 

a)  b)   c) 
 

Figure 1: Positioning of IMU wireless sensors on the patient: (a) front (green) and rear (red) 
placement; (b) Perception Neuron IMU wireless sensor; (c) experimental acquisition. 
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Sensors delivered 16 signals for each skeleton point which are: 3D position, 3D speed, 3D 
acceleration, 3D angular velocity and the orientation quaternion representation. Some skeleton 
points were interpolated, such as neck and a few vertebra points. The signals were registered at a 

frequency of 125 hertz. 

In this study, 14 volunteers’ students were preliminary monitored, they were asked to perform 
5 specific movements: walk [M1], stand up (hands on shoulders) [M2], long steps [M3], trembling 
[M4], freezing [M5]. 

Only 6 signals out of the 16 delivered for each skeleton point were considered, namely those 
relating to the angular velocity and to the longitudinal acceleration in 3D space. Filtering and 
integrating these signals as described below, a proper movement dataset associated with 6 vectors 

of �̅� samples was created. This is resumed in Equation 1 and in Equation 2 for each movement i (i 

∈{1,….,5}) and each person j (j ∈{1,….,14}). In particular, the 3 vectors relating to the angular 

velocity Vi,j were showed in Equation 1, while the 3 vectors relative to the longitudinal acceleration 
𝛤i,j are showed in Equation 2. 
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For each volunteer and each specific movement (𝑖,̅ 𝑗)̅ the 6 movements vectors calculated for the 17 

skeleton points were implemented in the equivalent body points of the multibody parametric model 
so concurring in the reproduction of the specific movement. 

According to the 6 signals generated by the associated sensors the linear matrix representation 
for each movement i and for each person j can be expressed as follows: 

 

Γi, j = Ai, j.Vi, j + Bi, j        ∀ {i, j} ∈ {(1,..,5) × (1,..,14)}    (3) 

 

Where: Γi, j = [

𝑎𝑥𝑖,𝑗

𝑎𝑦𝑖,𝑗

𝑎𝑦𝑖,𝑗

] ∈ 3
 
x

 
k    and Vi, j = [

𝑣𝑥𝑖,𝑗

𝑣𝑦𝑖,𝑗

𝑣𝑦𝑖,𝑗

] ∈ 3
 
x

 
k 

 
Ai, j ∈ 3x3 and Bi, j ∈ 3x1 to be determined. The unknown coefficients Ai,j and Bi,j (parameters) of 

the linear models expressed in (3) were determined in four steps using the Ordinary Least Squares 
method (OLS) [15]. Three explanatory variables were considered to describe the behavior of Γi, j: 𝑣𝑥, 

 𝑣𝑦, 𝑣𝑧. 

Step 1: Find a11, a12 and a13, the unknown parameters of the first line of Ai, j that best fits the data 

(𝑎𝑥, Vi, j) while minimizing 𝑒1, the average of the sum of squared errors. In other words, solve the 

following optimization problem: 

𝑚𝑖𝑛  
1

𝑘
𝑒1

𝑇 ∙ 𝑒1  such as  𝑎𝑥=𝑎11 ∙ 𝑣𝑥 + 𝑎12 ∙ 𝑣𝑦 + 𝑎13 ∙ 𝑣𝑧++𝑒1 𝑎11 , 𝑎12 , 𝑎13    (4) 

 
The solution of which is: 

[𝑎11 , 𝑎12 , 𝑎13]𝑇 =   (𝑉𝑖, 𝑗𝑉𝑖, 𝑗
𝑇)

−1
 ∙ 𝑉𝑖, 𝑗 ∙ 𝑎𝑥

𝑇         (5) 
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Step 2: In the same way as in step 1 we can find a21, a22 and a23. 
 
Solution: 

[𝑎21 , 𝑎22 , 𝑎23]𝑇 =   (𝑉𝑖, 𝑗𝑉𝑖, 𝑗
𝑇)

−1
 ∙ 𝑉𝑖, 𝑗 ∙ 𝑎𝑦

𝑇        (6) 

 
Step 3: Always in the same way of step 1 we can find a31, a32 and a33. 
 
Solution: 

[𝑎31 , 𝑎32 , 𝑎33]𝑇 =   (𝑉𝑖, 𝑗𝑉𝑖, 𝑗
𝑇)

−1
 ∙ 𝑉𝑖, 𝑗 ∙ 𝑎𝑧

𝑇        (7) 

 
Step 4: Generate Bi, j such as: 

 

𝐵𝑖, 𝑗 = [
𝑒1

𝑘
  

𝑒2

𝑘
  

𝑒3

𝑘
]

𝑇
=   [𝑏1 𝑏2 𝑏3]𝑇               (8) 

 

2.2 Movements Signal Filtering and Integrating 

The second phase of the proposed methodology consisted in the fine-tuning of algorithms for the 
profilation of 5 studied movements. Motion recognition algorithms were developed by specifically 
following an approach that consists in comparing the movement to be recognized and the models 
contained in the database. The most similar database movement model (MSM) was then identified 
and the corresponding movement was associated with the movement to be recognized. It was 
assumed that the models specific to the recognition of the person performing the movement were 
not to be included in the training database. Fine-tuning (filtering and integration) was carried out 

using the signals acquired by 14 volunteers wearing the suit with IMU sensors as it will be described 

in more detail in the following section 3. 

This approach can be achieved, for any person p performing the movement m, by respecting 
the following steps. 
 
Step 1: Concatenation: Generate 𝑀𝑖,𝑗 ∀ {i, j} ∈ {(1,..,5) ×(1,.., 14)} corresponding to the 

concatenation of Ai,j and Bi,j such as: 
 

𝑀𝑖,𝑗= [

𝑎11𝑖,𝑗

𝑎21𝑖,𝑗

𝑎31𝑖,𝑗

𝑏1𝑖,𝑗

𝑎12𝑖,𝑗 

𝑎22𝑖,𝑗

𝑎32𝑖,𝑗

   𝑏21𝑖,𝑗

𝑎13𝑖,𝑗 

𝑎23𝑖,𝑗

 𝑎33𝑖,𝑗

 𝑏3𝑖,𝑗

]          (9) 

 

Step 2: Resemblance: Compute the resemblance index  𝑟𝑖,𝑗  ∀ {i, j} ∈ {(1,..,5) ×  (1,.., 14)} & (j≠p) 

such as: 
 

𝑟𝑖,𝑗= (𝑀𝑖,𝑗  – 𝑀𝑚,𝑝)  × ( 𝑀𝑖,𝑗  – 𝑀𝑚,𝑝)𝑇        (10) 

 

Step 3: Selection: Determine the smallest resemblance indexed ri*,j* such as: 
 

ri*,j* = 𝑚𝑖𝑛 (ri,j)                  (11) 

 
Finally, MSM = i*. 

Algorithms were tested by exploiting the eigenvalues of Ai,j with the number of parameters of the 
matrix Mi,j reduced such as: 
 

𝑀𝑖,𝑗 = [eig (𝐴𝑖,𝑗)    𝑏1𝑖,𝑗     𝑏2𝑖,𝑗     𝑏3𝑖,𝑗]      (12) 
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2.3 Patient Multibody Model 

Using the wide database of 3D human scans (CAESAR) [14] a parametric articulated multi-body 

model able to faithfully reproduce the acquired movements of patients was developed. The model 
consists of 16 parts, connected to each other through six spherical joints, one translational joint, 
one planar joint and one revolute joint (Table 2) with frictions and motion actuators located at the 
point at which the IMU Sensors were positioned on the patient (Figure 2). The choice of articulation 
constraints was carried out in such a way that we can faithfully reproduce the PD characteristic 
movements. The virtual patient model has 28 degrees of freedom overall. 

The translational and rotational displacements measured as a function of time by each IMU 
Sensors were applied as motion actuators in the corresponding markers through time-histories 
contained in matrix form in the files .fbx. 

A parameterization of the model was performed by introducing 3 parameters: the total height; 
the total weight and the waist circumference. The model lends itself to a more refined 
parameterization, like the one carried out by some of the authors in their previous works [12], [15], 
but in the current phase of the research this was not deemed necessary. 

The mass and intertie values of the individual parts were given based on average values and 
regression equations and considering as input only the height, the weight and waist circumference 
of the subject. 

 
Figure 2: Parametric 
Multibody model. 

 

Part Neck Shoulder Arm Forearm Hand Pelvis Thigh Tibia Foot 

Head S – – – – – – – – 

Neck – P – – – – – – – 

Shoulder P – S – – T – – – 

Arm – S – S – – – – – 

Forearm – – S – S – – – – 

Hand – – – S – – – – – 

Pelvis – T – – – – S – – 

Thigh – – – – – S – R – 

Tibia – – – – – – R – S 

Foot – – – – – – – S – 

R = Revolute,  P = Planar,  S = Spherical,  T = Translational 
 

Table 2: Joints between main parts of multibody model. 

 
Setting the parameters on the anthropometric values of the patient studied and implementing 

acquired and filtered movements data in the homologous points of the multibody model, an accurate 
assessment of Parkinson patients’ movements and posture (freezing, festination, postural balance) 
was carried out, and contextually disease progression and response to therapy were measured. 

3 PRELIMINARY TESTING AND IMPLEMENTATION ON PATIENTS WITH PD 

To validate the methodology, evaluate its accuracy and fine-tuning algorithms preliminary tests were 
performed. 14 volunteers wearing the suit with IMU sensors performed the 5 characteristic PD 

movements: walk [M1], stand up (hands on shoulders) [M2], long steps [M3], trembling [M4], freezing 
[M5]. 

These calibration tests made it possible define the algorithms of filtering and integrating motion 
signals described in section 2.2. Furthermore, calibration tests made it possible to perfectly measure 

the accuracy of the method in the recognition of the 5 pathological movements. 
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In detail to verify the accuracy of the algorithms, the analysis of the movements was limited to 
a period of only 700 seconds. Table 3 shows the overall score obtained in the 70 scenarios analyzed. 
The global precision involved by our approach is 92.86%. The table shows that movements 1, 3 and 
5 were identified with 100% accuracy. 

 

Movement Identified\ Predicted M1 M2 M3 M4 M5 

[M1] – Walk 100 0 0 0 0 
[M2] - Stand up (hands on shoulders) 7.1 78.8 0 0 14.2 
[M3] - Long steps 0 0 100 0 0 

[M4] - Trembling 0 0 1 85.7 0 
[M5] - Freezing 0 0 0 0 100 

 
Table 3: Accuracy matrix evaluation for 70 scenarios. 

 
In Table 4, as an example, were reported the mass and principal moment of inertia values assigned 
to the multibody model to reproduce the movements of one of the 14 volunteers visible in Figure 3. 
 

Part Mass [kg] Ix , Iy , Iz [kg×m 2] 

Head 6.0 0.035            0.315          0.019 
Neck 1.0 1.251 E-003  1.25 E-003  1.24 E-003 
Shoulder 13 0.651            0.473          0.318 
Arm 1.8 × 2 0.0133          0.0133        2.29 E-003 

Forearm 1.8 × 2 0.0157          0.0157        0.0135 
Hand 0.5× 2 5.935 E-004  5.935 E-004 4.672 E-004 

Pelvis 13.4 0.135            0.130         0.0472 
Thigh 8.6 × 2 0.146            0.416         0.031 
Tibia 3.8 × 2 0.150            0.143         0.017 
Foot 1.6 × 2 0.050            0.042         0.014 

Total 69.6  

 
Table 4: Mass and inertia values in the parts of multibody model. 

 

Specifically, the patient visible in Figure 3 had the total height of 1.76 m, the total weight of 69.6 
kg and the waist circumference of 1.1 m. Figure 3 shows a comparison between the images captured 
in a video made with Microsoft Azure Kinect DK ver. 3 devices and the images reproduced in the 
multibody environment with the patient parametric model. 

Finally, the methodology has been definitively applied to process the signals acquired by 20 

patients at the University Hospital Center of Amiens; the 5 characteristic pathological Parkinson’s 
movements were identified and evaluated. The acquisitions were repeated 3/4 times for each patient 
and evaluated along the 3 main axes of inertia associated with the patient (Figure 2). 

Among the main results obtained, were reported below (Figures 4) the comparison between the 
average accelerations measured on the forearm, through direct acquisitions (with piezoelectric 
accelerometers) and those acquired with IMU sensors that, after being filtered and integrated, were 
reproduced in the multibody model. In particular in Figure 4 were reported the average values of 

the accelerations measured along the 3 main axes (x, y and z) of inertia on the forearm for a period 
of 700 seconds. 
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Figure 3: Comparison between video captured images and patient’s multibody model frames at the 
same time steps: a) 0s; b) 2s; c) 4s; d) 6s; e) 7s; f) 9s; g) 10s; h) 11s; i) 11.5s; l) 12s. 
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Figure 4: Comparison between measured and estimated acceleration signals on forearm. 

 
The values acquired experimentally with piezoelectric accelerometers (black signal in Figure 4) were 
compared with values estimated with IMU sensors after filtered and integrated as described in 

sections 2.2 (red signal in Figure 4). 
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In Figure 5 the trembling movement of the hand is shown. Also, in this case the values were 
those obtained after filtering and integrating signals acquired 4 times for the patient. The 
correspondence between the estimated and acquired signals has a maximum error of less than 3%. 

 

 

 

Figure 5: Comparison between measured and estimated acceleration signals on left hand. 

4 DISCUSSION OF RESULTS 

The proposed methodology led to a global estimation accuracy of over 90%. We can add that with 
this approach, the five movements were systematically recognized. 

The proposed approach is based on signal selection. This means that each interpreted movement 
of the dataset involved one or more parts of the body and its representative IMUs sensors. According 

to this, we managed to determine, owing to a simple data analysis type PCA, which sensor was the 
most relevant for each movement. Table 5 shows the most relevant sensor that was seen be 

associated with each specific movement. 
We want to highlight how the developed methodology is able to monitor and study the movements 
of patients during sleep, monitoring and measuring agitated dreams, movement stiffness and motor 
slowdown. 

 

Movements Most relevant sensors 

[M1] – Walk Feet 

[M2] - Stand up (hands on shoulders) Forearms 
[M3] - Long steps Spine 
[M4] – Trembling Hands 
[M5] – Freezing Feet 

 

Table 5: Most relevant IMU sensors for each studied movement. 
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Using patient multibody model, the patient's observation point can be changed as desired. The 
reproductions of the patient's movements through the animations of the multibody model have the 
considerable advantage of being able to be observed from neurologists a different speed, from any 
angle and with infinite levels of detail. 

Authors received several positive feedbacks about the method effectiveness from neurologists 
of University Hospital Center of Amiens. In particular Neurologists found interesting to be able to 
accurately measure the magnitude of patients' movements and vibrations. The proposed 
methodology, according to neurologists, can be used for rehabilitation purposes also in other kinds 
of health problems in which it is possible to carry out neurological rehabilitation with greater 
effectiveness. 

5 CONCLUSION 

This paper presented an effective methodology suggested as an important strategy for the 
recognition of some pathological movements specific to Parkinson’s disease. A wearable suit 
equipped with 17 IMU sensors positioned at the level of the main joints of the body was developed. 
The suit acquired the information considered as necessary to analyze the movements and posture 
which were characteristic of PD patients in their usual living environments. The signals collected by 
the suit, properly filtered and integrated, were employed to animate a parametric multibody model 

that virtually reproduced the patients’ movements. The experimental clinical use of the suit at the 
University Hospital Center of Amiens enabled to identify and evaluate 5 more characteristic 
pathological Parkinson’s movements. We can state that the main key contribution of this work can 
be indicated in two aspects: 1) the development of an effective non-invasive methodology that 
allows the neurologist to carry out an accurate assessment of Parkinson’s disease, observing the 
graphic animations of pathological movements from any angle and with infinite levels of detail and 

contextually to measure disease progression and response to therapy; 2) the development of 

algorithms that allow to identify Parkinson’s characteristic movements from a limited database 
acquired with IMU sensors. Differently from the traditional three-dimensional video-based motion 
analysis systems, the proposed method can be relevant for assuring a more easily measurable and 
comprehensive kinematic and kinetic analysis of patients’ movement in normal living conditions. 
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