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Abstract. The boundary diffusion phenomenon often occurs in structural topology 

optimization-based on the variable density method, and the inevitable jagged 

boundary also appears in optimized model, which increases the complexity of the 
structure and the difficulty of manufacturing. Aiming at solving above problems, a 
post-processing method of the topology optimization model is proposed. The 
partition weighted sensitivity filtering method is used to remove the gray value to 
obtain the topology optimization structure with clear boundaries. Then the 

optimized structure is binarized and the jagged boundary line is extracted to obtain 
the target discrete angle point set, which is used as sample points for curve fitting 
to obtain the optimized structure with smooth boundary. The feasibility and 
effectiveness of the boundary smoothing post-processing method in solving the 
boundary diffusion and jagged boundary problems are verified by some typical 
arithmetic examples. This method can effectively obtain a topologically optimized 
structure with clear, smooth and accurate boundaries, and reduce the difficulty of 

model reconstruction and fabrication while ensuring the structural performance 

within the permitted range.  
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1 INTRODUCTION 

Structural topology optimization, as an effective structural optimization method, has become a 
major research hot spot in the field of structural optimization. It can obtain a best design at the 
early stage of design, which has reasonable way of material distribution and a stronger and lighter 

optimized structure [21]. Structural optimization can be classified as shape optimization, size 

optimization, and topology optimization [14]. Different from shape and size optimization, topology 
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optimization, as a free-form material distribution scheme, enables the creation, merging and 
splitting of the interior solids and voids during the structural evolution. Therefore, it can explore a 
larger design space and obtain superior structural performance as can be expected compared to 
size and shape optimization [8]. Currently, the common topology optimization methods mainly 

include the variable density method, homogenization method, evolutionary structural optimization 
and level set method [19]. Among them, the variable density method has gradually become a 
popular method to solve structural topology optimization problems due to its advantages of less 
design variables and higher efficiency. 

Problems such as boundary diffusion, tessellation lattice and mesh dependence may occur 
when the variable density method is used for optimization, increasing the difficulty of 
manufacturing the optimized structure [13]. Among them, the boundary diffusion phenomenon is a 

common problem affecting post-processing in the topology optimization process, and many 

intermediate density cells appear in the optimization results. Post-processing by curve 
approximation or curve fitting without solving the boundary diffusion problem does not result in an 
ideal and accurate boundary. It also increases the geometric complexity and reduces the efficiency 
of the optimization. In order to ensure optimization results practicable , scholars at home and 
abroad have conducted in-depth researches on how to solve the problem of numerical instability 

arising in the process of topology optimization. Sigmund [12] introduced the minimum filtering 
radius for distance-weighted averaging of the sensitivity filtering method to effectively solves the 
problems of tessellation grid and grid dependence, but low optimization efficiency and boundary 
diffusion are not solved by this method. Guest [5] controlled the boundary diffusion phenomenon 
by introducing the method of Heaviside function, but the number of iterations is high and the 
efficiency is low. Yin [18] proposed to establish an efficient topology optimization model based on 
probabilistic reliability with mass and displacement as objective functions and constraints, which 

can quickly obtain clear topology optimization boundaries with fast iteration, but individual regions 
still have gray-scale cells. Lian [7] proposed a sensitivity filtering method considering partitioning 

to effectively suppress the boundary diffusion phenomenon with low optimization efficiency, while 
slender rods or porous structures may appear to reduce manufacturing difficulty of the structure.  

Besides boundary diffusion will hinder the fabrication of optimized structures, the presence or 
absence of unit cells is often used to characterize the material characteristics in the continuum 
structure, and the jagged boundaries appearing in the optimization results also increase the 

difficulty of fabricating the structure. However, the topology optimization needs to be attached to 
the mesh so that the jagged boundary of the optimization result is inevitable, which greatly limits 
the development of the variable density method in the field of structural topology optimization. 
Therefore, it is necessary to post-process the jagged boundary of the optimized structure in order 
to improve the smoothness of the topology-optimized boundary and the overall quality of the 
topology-optimized structure. Liu [9] introduced volume constraints for boundary smoothing, 

which can effectively prevent the problem of mesh shrinkage. But it is mainly used for smoothing 
surfaces, and it is rarely used in two-dimensional boundary smoothing. Hashemian [6] proposed a 

method of curve fitting combined with smooth processing dynamics to achieve the desired 
results.But it needs to apply the fitting and fairing procedures simultaneously to achieve more 
desirable results, and the processing process is more complicated. Birk [1] proposed an automatic 
differentiation method to control the degree of curve smoothing, which has better flexibility in 
choosing constraints and the smoothing effect is more stable. But it takes a lot of experimentation 

and data calculation to get the desired shape, and is very labor-intensive. Sun [16] proposed to 
combine the particle swarm optimization algorithm into B-sample curve fitting, which is able to 
achieve a smooth boundary with fewer control points and optimization time. However, it is easy to 
fall into local optimum, while it is difficult to improve the fitting accuracy.  

Aiming at solving the problems of boundary diffusion and jagged boundaries which will make 
structures cannot be fabricated, this paper proposes a post-processing method of topology 
optimization models based on the variable density method. The method first adopts a partitioned 

weighted sensitivity filtering method instead of traditional sensitivity filtering method in the 
variable density method, and introduces a new weighting factor to weight different regions to 
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weaken the boundary diffusion phenomenon. Then the optimization model is binarized and 
analyzed to extract the serrated boundary lines. Finally, the target discrete angle point set is 
obtained by numerical calculation which is used as the reference point for curve fitting based on 
the ordinary least squares method to obtain the model structure with smooth boundaries. The 

method can effectively solve the problems of boundary diffusion and jagged boundary while 
ensuring the original design requirements of the optimized structure, and greatly reduces the 
manufacturing difficulty of the topology optimized structure. 

2 TOPOLOGICAL OPTIMIZATION THEORY OF THE VARIABLE DENSITY METHOD 

2.1 Topology Optimization Model of the Variable Density Method 

Structural topology optimization is one of the most useful numerical optimization tools to develop 
new lightweight design concepts by determining the optimum material layout within a given design 
domain. It is a structural optimization method that seeks the best distribution form of the structure 
in a given design space with the optimization objective of obtaining greater stiffness and lighter 
weight [4]. It has more design freedom and can overcome the limitations of parametric processing 
of structures to obtain a larger design area [3]. The most widely used topology optimization 

method in engineering applications is the variable density method. The theoretical material 
interpolation model of the variable density method is to convert discrete problems into continuous 
optimization problems by introducing intermediate density elements. In reality, the intermediate 
density cells cannot exist and cannot be manufactured, so it is necessary to penalize the 
intermediate density value in the design variables to avoid the generation of intermediate density 
cells. The numerical expression takes the relative density as the design variable and the 
mathematical expression of the modulus of elasticity and density of the material satisfies: 
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Here, the Ei is the modulus of elasticity of the cell after interpolation. The Emin is the modulus of 
elasticity of the material in the hole part. The li is the relative density of the cell, taking a value of 1 
means that there is material, taking a value of 0 means that the hole. The P is the penalty factor. 
The E0 is the modulus of elasticity of the solid part of the material. 

In the topology optimization process, a volume constraint or a mass constraint is set, and the 
minimum flexibility value is used as the optimization objective to determine the functional 
relationship between the material cell density and the material properties [17]. The mathematical 
model of the periodic topological optimization problem based on the variable density method can 
be expressed as: 
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Here, the L is the cell relative density vector. The Li,j is the relative density of the j-th cell in the i-
th subdomain. The n is the number of cells in the subdomain. The C(L) is the minimum value of 
flexibility for a given topology. The U is the structural displacement vector of the cell node. The K is 

the structural stiffness matrix. The ui,j are the cell displacement vectors. The K0 is the initial cell 
stiffness matrix. The F is the load vector applied by the element nodes. The V is the volume of the 

optimized structure. The f is the retained volume fraction. The V0 is the initial volume. The vi,j is the 
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cell volume. The Lmin is the minimum value of the design variable. The Lmax is the maximum value 
of the design variable.  

2.2 Optimization Criterion Method for Topology Optimization 

In order to obtain more desirable topology optimization results, a suitable numerical solution 
algorithm is required. The widely used numerical solution algorithms for topological optimization 
are optimization criterion method, mathematical programming method and random search 
algorithm [10]. Among them, the optimization criterion method specifies the optimal criterion that 
can handle the corresponding constraint from the viewpoint of mechanics principles to build an 

optimization iterative mathematical model accordingly. The Lagrange equation is obtained by 
associating the objective function and the predetermined constraints, establishing an optimization 
iteration based on the Kuhn-Tucker optimization condition, and transforming the combination of 

the constraints and the objective function into a zero-constraint problem [20]. The iterative 
convergence of the optimization criterion method is fast, computationally small, and does not 
become complicated with the increase of structural complexity and design variables. Therefore, the 
optimal criterion method is chosen as the numerical solution algorithm in this paper. The core idea 

of the optimization criterion method is to construct the following Lagrangian function by 
introducing a Lagrangian multiplier: 

C)()()()()( max

11

min2

1

1 +−+−+−+−+= 
===

llllVlvlCL i

n

i

ii

n

i

i

T
n

i

iii  FKU

                     

(3) 

Here, the λ1, λ2, α and β are Lagrangian multipliers. With this model it is possible to transform a 

nonlinear programming problem with inequality constraints into an unconstrained problem.  

The topology optimization of the continuum structure contains more design variables and the 

unknown variables are very computationally intensive. In order to ensure the stability and 

efficiency of the entire iterative process, certain limits need to be placed on the amount of 
variation in the design variables during the optimization process. An improved iterative format of 
enlightenment, can effectively update design variables, and its iterative expression of design 
variables can be expressed as: 
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Here, the le is the relative density of cell e. The t is the panning limit. The   is the damping factor. 

The Be is the intermediate variable. The 
 
is a Lagrangian multiplier.  

3 TOPOLOGY OPTIMIZATION POST-PROCESSING FLOW 

The post-processing of topology optimization can effectively remove gray cells and jagged 

boundaries, improve the boundary smoothness of the topology structure and the performance 
related to manufacturing, and then improve the overall quality of structural topology optimization. 
A topology optimization post-processing method based on the variable density method is proposed 
in this paper. Firstly, finite element analysis is performed on the target model, and the partitioned 
weighted sensitivity filtering method is used to remove the gray cells at the boundary to obtain a 

structure with clear boundaries. Then, the obtained results are subjected to a binarization to obtain 

optimized results with density values fully distributed as 1 and 0. Next, edge detection is 
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performed to extract the boundaries. Finally, corner points are extracted from the boundary lines 
to obtain a sample point set, and the point set is used as a benchmark for curve fitting to obtain a 
topological optimization model structure with clear, smooth and easy manufactured boundaries. 
The post-processing flow chart of the method is shown in Fig. 1.  

 

 
Figure 1: Topology optimization post-processing flow chart. 

3.1 Sensitivity Filtering Method 

3.1.1 Sigmund sensitivity filtering method  

Numerical instabilities such as grid dependencies and tessellation lattices are often observed in 
topology optimization based on the variable density method. Sigmund [12] proposed a sensitivity 
filtering method that has become the most widely used class of heuristic algorithms in topological 

optimization today. It belongs to local constraint methods, which achieve the elimination of 
problems such as tessellation and network dependencies by filtering the cell sensitivity. The 
schematic diagram of the Sigmund sensitivity filtering area is shown in Fig. 2. The main idea is to 

first determine a central cell, and then set a sensitivity filtering area with a minimum filtering 
radius of rmin. Then a weighting factor is introduced to weight the distance of each cell to the 
central cell, so that each cell close to the central cell gets a higher sensitivity value, while each cell 
far from the central cell at the sensitivity filtering boundary gets a lower sensitivity value. 
Replacing the sensitivity value of the central cell with the weighted average of the sensitivities of 
the cells in the filtered area leads to a general downward trend of the sensitivity value from the 
central cell to the boundary, preventing drastic fluctuations of the cell density values in the local 

design area.  
 

rmin

Boundary

Sensitivity filter area

 
 

Figure 2: Schematic diagram of the Sigmund sensitivity filter area. 
 
By constructing the average sensitivities of all cells in the sensitivities filtering region, the original 

cell sensitivities are replaced by the original cell sensitivities for the subsequent iterations. The 
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weighting factor can be used to assign the weight between cells. The smaller the distance between 
two cells in the filtered area, the greater the weight, the greater the distance, and the smaller the 
weight. And rmin must be larger than 1. When rmin tends to 1, the mean value of the constructed 
sensitivities approximates the original cell sensitivities and cannot eliminate the tessellation 

problem. The mathematical expressions of the filtered cell sensitivities and the weighting factors 
are： 
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Here, the li and le are the relative densities of the corresponding cells. The n is the number of cells. 

The 
iH

~
 is the weighting factor. The rmin is the minimum filtration radius. The ),( ikdist  is the 

center distance between the corresponding two cells. 
From equation (6), it can be seen that the weighting factor is taken linearly according to the 

distance between cells, and the weighting factor tends to decrease linearly from the central cell to 

the cell where the filtering boundary is located. This ensures that the cells close to the center get 
higher weight values, but the cells close to the filtering boundary will also have a greater impact on 
the sensitivity of the center cell, and the topologically optimized boundary will have an overly 
smoothed optimization result, which may lead to the problem of boundary spreading. Now taking a 
two-dimensional plane stress structure as an example, the design area is 80mm×80mm, and the 
mesh division is 80×80. The left end is restrained in full plane, and the upper and lower right 
corners of the structure are subjected to vertical upward and vertical downward loads respectively, 

and the model is restrained and loaded as shown in Fig. 3.  
 

F1

F2

80

80

 
 

Figure 3: Schematic diagram of the algorithm model. 
 
The Sigmund sensitivity filtering method does not introduce new constraints, making the 
optimization process relatively simple and easy to apply in practical problems, and it has also 

become a widely used topological optimization method in the traditional variable density method. 
However, this method inevitably results in boundary diffusion, where intermediate density cells 
appear in a laminar distribution at the inner and outer boundaries of the structure. The traditional 
variable density method is used to optimize the topology of the above example, and the 
optimization results are shown in Fig. 4.  
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Figure 4: Topology optimization results of the traditional variable density method. 

3.1.2 Partition weighted sensitivity filtering method 

There is an obvious and unavoidable boundary diffusion in the results of the topology optimization 
using the traditional variable density method, and no clear boundary can be obtained. Direct edge 
extraction is more difficult and will greatly affect the accuracy of subsequent post-processing 
operations such as boundary extraction and boundary smoothing, while increasing the difficulty of 
direct fabrication of topologically optimized structures. In order to remove gray cells to obtain clear 
boundaries, a partitioned weighted sensitivity filtering method is proposed. The main idea is to 

divide the original sensitivity filtering area into two sub-regions, and use different weighting 
factors in different sub-regions, so as to increase the influence of cell sensitivity of the cells in the 
internal sub-region where the central cell is located, and at the same time reduce the sensitivity 
influence weight of the cells in the external sub-region far from the central cell, which can 
effectively suppress the phenomenon of border diffusion where a large number of grayscale cells 

appear. The schematic diagram of the area of the partitioned weighted sensitivity filtering method 

is shown in Fig. 5.  

 

rmin
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Bundary A
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rn

 

 

Figure 5: Schematic diagram of the area of the partitioned weighted sensitivity filtering method. 

 

The region I and region II are internal sub-regions and external sub-regions, respectively. By 
changing the size of filter radius rn and minimum filter radius rmin, the relative positions of 

boundary A and boundary B can be changed, thus changing the number of cells contained in each 

region. By repeatedly adjusting the weighting factor within region Ⅰ for experiments, it was found 

that the weighting factor of cells within region I can be directly assigned to 1 to ensure that the 
sensitivity values of cells near the center are not affected by the cells within region II to be in 

lower weights, and thus increasing the weight of the influence of cells within region I on the 

sensitivity of the objective function. The weighting factor of region II is determined by the set 
exponential function, so that the weight within region II can achieve a slow decrease near the 
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boundary A and a significant decrease near the boundary B, thus achieving a further weakening of 
the influence of the sensitivity of the cell in region II on the central cell. On the premise of 
ensuring the optimization stability of sensitivity filtering in the traditional variable density method, 
it can effectively suppress the boundary diffusion problem and obtain a clear topological 

optimization structure boundary. The mathematical expression for the partition weighted 
sensitivity filtering weighting factor is: 
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Here, the g

~
H  is the modified weighting factor. The   and   are correction factors for the 

exponential function. The rn is the filtering radius of region I. The number of cells contained in each 

of the two inner and outer sub-regions is changed by setting the size of rn according to the actual 
constraint and loading situation.  

From equation (7), it can be seen that the maximum value of the weighting factor in region II 
can be changed by adjusting the magnitude of the correction factor. In order to avoid the 
boundary diffusion phenomenon due to the excessive difference in the sensitivity value of the 
transition cell at boundary A, and try to ensure that the maximum value of the weight factor of 
region II and region I are consistent, so the continuity of the function at boundary A can be 

ensured by setting the value of 0.7. And the different values of the correction coefficients affect 
the degree of curvature change of the exponential function. In order to explore the more 
appropriate value of the correction coefficient  , the minimum filter radius rmin is taken as 2.5 

and the filter radius rn of region I is taken as 1 to analyze the trend of the exponential function 

image when   takes different values. The image of the function change is shown in Fig. 6.  

 

 

Figure 6: The image of weighted factor functions for different values of 
. 

The linear weighting represented by the dashed line in Fig. 6 is the weighting principle image of 
the traditional variable density method of sensitivity filtering, while the solid line is the function 
principle image of the weighting factors with different values adopted by the partitioned weighted 
sensitivity filtering method. When the distance between the optimized cell and the central cell is 
less than 1, the value of the weighted segmentation function is significantly larger than the value 
of the linear weighting function, which can effectively improve the influence of cell sensitivity in 
region I. When the distance between the optimized cell and the central cell is greater than 1, the 

function changes slowly near the boundary A, while the value of the weighting factor near the 
boundary B has significantly reduced and tends to be close to 0, further reducing the influence 

weight of the cell sensitivity near the boundary B. The smaller the value of  , the slower the 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 20(6), 2023, 1152-1170 

© 2023 CAD Solutions, LLC, http://www.cad-journal.net 
 

1160 

change trend of the weighting factor as a function of the boundary A, the weights do not fall 
rapidly and lead to too small, and the weights near the boundary B are all at a lower value, which 
meets the optimization requirements of sensitivity filtering. To sum up, the correction factor   is 

set to 1 to ensure that the function variation trend satisfies the reasonableness of topology 

optimization. Of course, the setting of the correction factor is not fixed, but also needs to be 
adjusted according to the load and constraints of the specific case.  

 In order to measure whether the optimization model satisfies the optimization requirements 
after the partition sensitivity filtering process, measures such as dispersion rate, gray rate and 
flexibility value are introduced. The dispersion rate reflects the deviation of the density of gray 
cells from 0 and 1, and is the main basis for judging whether the results after partition sensitivity 
filtering converge to the discrete solution. When the dispersion rate takes the maximum value, it 

means that all cells have not been discrete; while when the dispersion rate takes the minimum 

value, it means that all cells have been discrete. Therefore, in general, the topologically optimized 
structure should ensure that the dispersion rate is as small as possible, and a better discrete cell 
structure can be obtained. The gray rate can reflect the degree of the proportion of gray cells in 
the topology optimization results, and the gray rate is used to quantify the amount of gray cells in 
the optimization results. When the gray rate is larger, the proportion of gray cells is larger and the 
boundary diffusion is more obvious. So the optimization result should make the gray rate of the 

optimization result decrease as much as possible, which can effectively weaken the problem of 
boundary diffusion. The flexibility value reflects the stability of the structure when subjected to 
forces. The smaller the flexibility value, the larger the stiffness value, the stronger the ability of 
the structure to resist elastic deformation when subjected to force, and the smaller the 
deformation, the better the stability of the structure. So the flexibility value should be as small as 
possible in the optimization process, so that the optimization results will achieve better.  

The partitioned weighted sensitivity filtering method used in this paper is relatively simple to 

implement through programming. The optimized model changes all the measures in a better 
direction and can effectively suppress the boundary diffusion phenomenon to obtain a clear 
boundary structure, which is convenient for the subsequent post-processing operation. The 
topological optimization of the algorithm model in Fig. 3 above is performed using the partitioned 
weighted sensitivity filtering method, and the optimization results are shown in Fig. 7. 

 

 

 

Figure 7: Optimization results of the partitioned weighted sensitivity filtering method. 
 
The optimization results of the partitioned weighted sensitivity filtering method in Fig. 7 are 

significantly effective in suppressing boundary diffusion and the gray cells are greatly reduced 
compared with the optimization results using the sensitivity filtering method of the traditional 
variable density method in Fig. 4, and clearer optimization results can be obtained. Compared with 
the Sigmund sensitivity filtering method, the main improvement is that the original sensitivity 
filtering area is divided into two and weighted separately, and the influence of the boundary cell 

can be effectively weakened through changing the linear weighting factor of the Sigmund 
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sensitivity filtering into the weighting factor of the segment function, so the optimization result 
with clearer boundary in Fig. 7 can be obtained. 

3.2 Binarization Operation 

The optimization results of the sensitivity filtering method using the traditional variable density 
method exist a large number of gray cells and the boundaries are relatively fuzzy. Therefore, the 
direct binarization operation cannot obtain accurate processing results, and there will be a big 
error. However, clear boundary optimization results can be obtained after the partitioned weighted 
sensitivity filtering method optimization and then binarization processing can be performed at this 

time to obtain the optimization results with completely black and white separation and uniform 
density distribution, which can avoid unnecessary interference brought by grayscale cells in 
subsequent topology optimization post-processing. The mathematical expression of the 

binarization operation process can be expressed as： 
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Here, the lij is the density value of a discrete cell. The gij is the density value of a particular 
discrete cell after binarization. The equation (8) first transforms the topology optimization result 
into a numerical matrix L between 0 and 1. Then the equation (9) compares lij with the set density 

threshold value to get gij, and finally obtains a numerical matrix G with the value of 0 or 1 in the 

equation (10). 

After the binarization, the few existing intermediate density cells disappear completely, and 
the optimized structure with clear and black-and-white boundaries can be obtained, and the 
optimization results after the binarization are shown in Fig. 8. 

3.3 Edge Detection and Boundary Extraction 

There are several edge detection operators in image processing, and the Canny operator is a 
technique that extracts useful structural information from different visual objects and greatly 
reduces the amount of data processed. It is able to detect image edges close to the actual edges 
with a low error rate and is now widely used in various machine vision systems [2]. Therefore, the 
Canny operator is introduced to extract clear and accurate effective boundaries for edge detection 

of topology optimization results in this paper. 
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Figure 8: Optimization results after binarization operation. 

 

In order to avoid the negative impact of noise on the edge detection process and results, a 
Gaussian filter and a model with convolution optimization process are used to smooth the image, 
which can effectively avoid the interference of invalid noise and reduce the error rate. The 
expression for a two-dimensional Gaussian filter can be expressed as: 
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Here, the (x,y) is the coordinate of any point inside the mask. The  is the standard deviation, 

(ux,uy) is the coordinate of the center point inside the mask. 

The results of the topology optimization model are extracted, and the gradient direction and 

amplitude of the smoothed image are calculated after the Gaussian filter smoothing and noise 
removal processing, and the mathematical expressions are shown below: 
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The gradient direction can be generally divided into four directions: horizontal, vertical, 45° and 
135°. The larger the gradient amplitude, the greater the rate of change of the pixel value and the 
more obvious the change. 

In practical applications, the points with gradient amplitude greater than the threshold value 

are marked as edges. In order to realize that edges in an image are marked only once and ensure 
that possible image noise is not marked as edges, non-maximal suppression of gradient 
magnitudes along the gradient direction is required to find local maximal points in the image 

gradient and to obtain refined edges by setting the non-maximal points to zero. Finally, the 
double-threshold algorithm is used to detect and determine the potential boundaries and eliminate 
the weak boundary connection edges. The results after boundary extraction are shown in Fig. 9. 

3.4 Boundary Corner Point Extraction 

After the topology optimization model extracts the effective boundary, the individual corner points 
of the boundary need to be determined. The Harris corner point detection algorithm is introduced 
to extract the corner point coordinates, and its basic idea is to imagine a sliding window in the 
image, so that the sliding window is moved in all directions in a small range, and the point in the 
window area with a large change in gray level is the desired corner point [15]. 
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Figure 9: Boundary extraction results. 

 

The expression for the change in the average pixel gray value within the window is shown below: 
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Here, the u and v are the window deflections in the horizontal and vertical directions. The W(x,y) 

is the window centered on the point (x,y). The w(u,v) is the Gaussian weighting function. The I is 
the gradient value of the corresponding point. 

The quadratic term function is essentially an elliptic function, and the flatness and size of the 
ellipse are determined by the eigenvalues of the local matrix M. The eigenvalues and response 
function of the matrix are calculated and zeroed when the response value is less than the set 

threshold, and the response function expression is as follows: 

)(trace)det( 2 MkMR −=
                                                      

(15) 

Here, the R is the Harris response value of the pixel point. The det(M) and trace(M) are the 
determinant and trace of the matrix M, respectively. The k is an empirical constant. 

The above optimization results are locally non-maximal suppressed in the preset domain, and 
when the response value of a point is the neighborhood maximum and greater than the set 
threshold, the point can be confirmed as the desired corner point. The coordinate origin is further 
determined, and the coordinates of each corner point are confirmed to form a point set using a 
single discrete cell boundary dimension as the coordinate reference cell. The result of corner point 

extraction is shown in Fig. 10. 

 

 

Figure 10: Boundary corner point extraction results. 
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3.5 Smooth Boundary Treatment 

The ordinary least squares is widely applied as the standard regression method for analytical 

calibrations, and it is usually accepted that this regression method can be used for quantification 
starting at the limit of quantification [11]. It is used to fit the set of boundary corner points in this 
paper, and the optimized model can obtain a smooth boundary, which greatly reduces difficulty of 
the optimized model. It can find the most suitable matching function for the data by minimizing 
the sum of squares of errors, and get the position data with the smallest sum of squares of errors 
between the actual data to achieve curve fitting. The mathematical expression for the ordinary 

least squares method is shown below: 
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Here, the i  is the error of the data point (xi,yi). The n is the number of data points. The f(x) is 

the fit function. The   is the coefficient to be determined. The r(x) is the conversion function that 

converts the nonlinear part into the linear part. 

The curves processed by boundary smoothing need to be discriminated by the degree of 
smoothing, and the fit between the detection curve and the model boundary are used as a 
measure. The smaller the value of the fit is, the more the curvature change tends to be linear and 
the more uniform the change is, the better the curve fit is. The relevant expression for the degree 

of fit can be expressed as: 
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Here, the fi is the measured value of the corner point. The f


 is the theoretical value of the fitted 

curve. The f  is the mean value. The smaller the C value of the fit, the better the curve fit. 

By merging the independent smoothing curves, the closed area of the curve with smooth 
boundary can be obtained, and the final topology optimization structure with clear and smooth 
boundary can be obtained. In this way, the jagged boundary existing in topology optimization can 

be effectively removed, and the optimization structure is more convenient to manufacture at the 
same time. The final topology optimization results after the boundary smoothing treatment are 

shown in Fig. 11. 

 

 

Figure 11: The results of the boundary smoothing treatment. 
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4 NUMERICAL ALGORITHM ANALYSIS AND VERIFICATION 

The feasibility and effectiveness of the partitioned weighted sensitivity filtering method and the 
subsequent boundary light-smoothing post-processing method are verified by topology 
optimization algorithms in the MATLAB-2019a software environment. In the calculations of each 

algorithm, a planar four-node quadrilateral cell is used for discrete processing, and the elastic 
modulus of the material is set to 1 with Poisson's ratio in 0.3 and penalty factor in 3. 

4.1 Single Load Model and Post-processing Results Analysis 

The two-dimensional planar stress structure design area for the single load model is set to 90mm

×60mm, with a full-plane fixed restraint at the left end of the structure and a vertical downward 

load applied at the middle node of the structure’s right end. The optimization area is divided into 

90×60 rectangular four-node cells, and the allowable material volume fraction of the optimized 

structure is set to 0.3. The schematic diagram of the model is shown in Fig. 12. 

 

F

90

60
 

 
Figure 12: Schematic diagram of single load model. 

 

The model is subjected to a single load. By comparing the topology optimization results under the 
traditional variable density method with the topology optimization results of the partitioned 
weighted sensitivity filtering method, and the optimized structure after the boundary smoothing 

post-processing, the feasibility and effectiveness of this paper's method in solving the boundary 
diffusion problem and removing the jagged boundary when subjected to a single load are verified. 
The model was programmed and implemented with the traditional variable density method, the 
partitioned weighted sensitivity filtering method and the boundary smooth post-processing method, 
and the optimization results are shown in Fig. 13. 

 

                     

 

Figure 13: Left：Optimization results of traditional variable density method；Middle：Optimization 

results of partitioned weighted sensitivity filtering method ； Right ： Optimization results of 

boundary smooth post-processing method. 
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By comparing the optimization results of the traditional variable density method and the 
partitioned weighted sensitivity filtering method in Fig. 13, it is obvious that the partitioned 
weighted sensitivity filtering method can solve the boundary diffusion problem existing in the 
traditional variable density method. In order to quantitatively assess the differences between these 

two methods, three major measures are introduced to compare these two methods, and the 
comparison of the optimization data with the two methods in this model is shown in Table 1. 

 

Optimization methods Dispersion rate(%) Gray rate(%) Flexibility value 
Traditional variable density 

method 
18.269 43.705 64.430 

Partitioned weighted sensitivity 
filtering method 

1.069 3.458 56.436 

Reduction rate 94.1% 92.1% 12.4% 

 
Table 1: Comparison of optimization data for different optimization methods. 

 

As can be seen from Table 1, the percentage of gray cells of the model optimized by the traditional 
variable density method is up to 43.705%, and the boundary diffusion is serious, which greatly 
affects the accuracy of the optimized model manufacturing. The reduction rate of both dispersion 
rate and gray rate by using the partitioned weighted sensitivity filtering method is more than 90% 
compared with the traditional variable density method, and the flexibility value is also reduced, 
which is significantly improved. It not only solves the boundary diffusion, but also improves the 
stiffness of the structure and facilitates the post-processing of topology optimization. 

In summary, it can be seen that the partitioned weighted sensitivity filtering method is 

significantly more effective than the traditional variable density method in solving the boundary 
diffusion. The boundary smoothing post-processing method can effectively process the jagged 
boundary optimized by the partitioned weighted sensitivity filtering method, and finally obtain the 
topological optimization model with smooth boundary with a good feasibility. 

4.2 MBB Beam Model and Post-processing Results Analysis 

The MBB beam model has a geometry of 240 mm×40 mm and is subjected to a vertical downward 

external load at the middle of the top. In order to simplify the optimization, the 1/2MBB beam 
structure is meshed to obtain an optimized model with geometry of 120mm × 40mm. The 

schematic diagram of the MBB beam model is shown in Fig. 14. 

 

F

F

 

 

Figure 14: Schematic diagram of the MBB beam model. 

 

By setting different optimization parameters, whether the partitioned weighted sensitivity filtering 
method and the boundary smooth post-processing method are feasible at different grid densities 
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and volume ratios is analyzed and verified. The optimization results with different optimization 
parameters are shown in Table 2. 

 

 

Table 2: Comparison of optimization results of MBB beam with different optimization parameters. 

 

As can be seen from Table 2, Experiments 1, 2 and 3 show the comparison of optimization results 
under different grid density conditions. By analyzing the different experimental results, it can be 

seen that the partitioned weighted sensitivity filtering methods can all obtain the ideal topology 

optimization structure with well-defined structural boundaries, and all of them have only a very 
small number of gray cells. The boundary smooth post-processing method has good optimization 
results for the models optimized by the partitioned weighted sensitivity filtering method in different 
grid densities. Experiments 2 and 4 show the optimization results under different volume ratio 
conditions, and it can be seen that the partitioned weighted sensitivity filtering method and the 
boundary smooth post-processing method also have good optimization effects under different 

volume ratio parameters. 

4.3 Multiple Load Model and Post-processing Results Analysis 

The multi-load model is a conventional Michelle-type structure with solid support at both ends, 
with a design area of 150 mm × 50 mm and fixed constraints at the lower left and lower right 

nodes. Vertical downward loads are applied at the upper quarter and three-quarter nodes of the 
model, while vertical downward loads are applied at the middle node at the structure’s lower end. 
The grid is divided into 150×50 four-node planar stress cells with equal size, and the allowable 

material volume fraction of the optimized structure is set to 0.3. The schematic diagram of the 
model is shown in Fig. 15. 

F1

F2

F1

 

 

Figure 15: Schematic diagram of the multiple load model. 

Experiment 
number 

Grid 
densities 

Volume 
ratios 

Traditional variable 
density method 

Partitioned 
weighted sensitivity 

filtering method 

Boundary smooth 
post-processing 

method 

 

1 

 

90×30 

 

0.3 

   
 

2 

 

120×40 

 

0.3 

   
 

3 

 

150×50 

 

0.3 

   
 

4 

 

120×40 

 

0.4 
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By comparing the topology optimization results of the traditional variable density method with the 
topology optimization results of the partitioned weighted sensitivity filtering method and the 
optimization results after the boundary smooth post-processing, the feasibility and effectiveness of 
the method in this paper can be verified when subjected to multiple loads. The optimization results 

of different methods for this model are shown in Fig. 16. 

 

                  

 

Figure 16: Left：Optimization results of traditional variable density method；Middle：Optimization 

results of partitioned weighted sensitivity filtering method ； Right ： Optimization results of 

boundary smooth post-processing method. 

 

From Fig. 16, it can be seen that the partitioned weighted sensitivity filtering method is equally 
feasible in the case of multiple loads and can suppress the boundary diffusion. A comparison of the 
optimized data from the traditional variable density method and the partitioned weighted 
sensitivity filtering method in this model is shown in Fig. 17. 

 

 

 

Figure 17: Histogram of the optimization data of the model by different methods. 

 

As can be seen from Figure 17, the partitioned weighted sensitivity filtering method has improved 
in terms of dispersion rate, gray rate and flexibility value compared to the traditional variable 
density method. In particular, the values of gray rate and dispersion rate are greatly reduced, and 
the optimization effect is remarkable. At the same time, by comparing the optimization results of 
the conventional variable density method with those of the post-processing, it is verified that the 
use of the boundary smooth post-processing method is equally feasible when subjected to multiple 

loads. 

5 CONCLUSIONS 

The boundary diffusion and the unavoidable jagged boundary in the optimization of the variable 
density method will bump the reconstruction and manufacturing of the optimization model. To 

address the above problems, this paper proposes a post-processing method of topology 
optimization models based on the variable density method. Some typical arithmetic models are 
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optimized and post-processed in the case of single loads, multiple loads, and different mesh 
densities and volume ratios, respectively. The experimental results show that the method can 
effectively avoid boundary diffusion and jagged boundaries, while ensuring that the structural 
performance is within the permitted range and the optimized structure can be manufactured more 

easily. At present, the method is only applicable to the post-processing of topology optimization of 
two-dimensional planar structures, and its application scope is somewhat limited. In the future 
research, its expansion and application in 3D spatial structures need to be further explored to 
enhance the effectiveness and applicability of the method in 3D topology optimization post-
processing.  
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