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Abstract. Signed distance functions (SDF) are versatile shape representations and challeng-
ing to realize as Lipschitz division and minimum/maximum CSG operations do not generally
yield an exact distance representation. On the other hand, signed distance lower bounds are
convenient for modeling as they are closed under the above operations, yet the sphere tracing
algorithm may not converge for the resulting distance estimate.

In this paper, we �rst show that, under certain conditions, the CSG operations are closed
under sphere tracing convergence; that is, if the algorithm converges on the primitives, it
will converge on any CSG tree assembled from them. Second, we quantify the precision
loss for each operation and region of space through the notion of set-contact smoothness, a
generalized angle of intersection of surfaces.
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1 INTRODUCTION

Our paper presents a general theoretical framework to investigate the quantitative aspects of bounding distance
functions. In practice, distance function representations are rarely exact, yet most mathematical foundations
are either generalized for any implicit function or only applicable to exact distance representations. Our research
aims to close this gap.

We propose a precision de�nition for quantifying the accuracy of the min/max representation of set-
theoretic operations in the entire space and show how the precision and the geometric con�guration of the
arguments determine the accuracy of the resulting approximation. The Lipschitz division is a practical technique
for distance estimation, but it often yields imprecise results. This paper analyzes such estimates and states
how set-operations can further degrade the precision of the distance representation.

For example, the minimum of two exact signed distance functions (SDF) that describes the union of two
objects is often treated as another exact signed distance function. However, the resulting function is not an
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exact SDF, and the error can be arbitrary large under certain conditions, as visualized in Figure 1. Similarly,
representing the result of an intersection via the maximum operation or the o�set geometry by subtraction is
no longer an exact SDF; the former is demonstrated in Figure 2.

In addition, the theorems presented here can be applied in an arbitrary geometrical context. The proposi-
tions only impose conditions on the implicit mappings used to represent the particular set of points. As such,
they hold for objects with or without volumes, implicit curves in space, non-di�erentiable or non-manifold
surfaces, fractals, and any combination of these. Despite the generality, our theorems show that the sphere
tracing algorithm retains convergence under set-theoretic union and intersection operations, a result for which
such a general derivation has not yet been presented.

We prove our results on a subset of Hart's signed distance lower bounds called signed distance function
estimates (SDFE). Despite this, most so-called distance estimates used by the industry and the online creative
coding communities such as ShaderToy are SDFEs, placing no practical restrictions on the applicability of
our results. This means that any Constructive Solid Geometry (CSG) tree made from SDF primitives and
such set-operations will, in general, retain sphere tracing convergence in CAD systems such as nTopology [1].
Our theoretical framework allows the analysis of general argument geometries via a function that quanti�es
intersection smoothness at various scales.

1.1 PREVIOUS WORK

This paper mostly builds upon three previous theoretical results. Firstly, Hart [17] devised the sphere tracing
algorithm for signed distance lower bounds. Hart also formulated a mathematical framework for modeling
surfaces by de�ning set-operations and various primitives to build CSG trees [11]. He Provided a strong
theoretical foundation with an e�cient rendering algorithm and inspired numerous rendering techniques and
modeling methods [29, 12, 19, 4, 15, 3], and their applications in computer-aided geometric design and
modeling, computer graphics, and physics [16, 28, 10, 2, 23, 14].

Secondly, this paper is an extension to the papers by Bálint and Valasek et al. [12, 27]. They investigated
the SDF o�set operation, which mostly retains the exact distance representation in [12], and they attempted
to de�ne exact set-operations by replacing the SDF representation to footpoint mapping or boundary projec-
tion [27]. Unfortunately, the former paper lacks any description of the resulting function properties inside the
o�set, while the latter lacks the mathematical background to support the need for the algorithm.

Signed distance functions are powerful implicit representations, adapted for a wide range of applications
such as computer-aided geometric design and modeling, computer graphics, and physics [16, 28, 10, 2, 23, 14].

Even though these functions o�er attractive theoretical and practical properties, constructing exact distance
functions to free-form surfaces is intractable in closed form [21, 5, 6, 27]. As a result, one must use approximate
distance functions, for which a variety of approaches have been presented in the literature. These include
sampling and �ltering [13], piece-wise approximations [26], machine learning [24, 20], and devising bounds to
the actual distance mapping [17]. Our paper focuses on the latter, that is, on the investigation of distance
bound functions that are de�ned on the entire space.

Hart showed that the properties of signed distance lower bounds lead to a robust and e�cient direct
visualization method in [17]. He also proved that signed distance lower bounds are closed under minimum
and maximum operations, which are the implicit representations of the result of intersection and union of
implicit geometries [25]. Figures 1 and 2 visualize how the distance estimate becomes inaccurate under these
operations.

Moreover, Ricci noted that one could construct signed distance lower bounds by dividing a Lipschitz
continuous implicit function by any of its Lipschitz constants. However, contrary to the common intuition, the
Lipschitz constants cannot be used to quantify the precision of the distance estimation: Lipschitz continuity
does not imply the convergence of the sphere tracing algorithm.

Biswas and Shapiro proposed the use of the order of normalization to quantify the accuracy of distance
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Figure 1: Comparison of distance estimate (top row) and exact signed distance values (bottom row) of a
union of a circle and a half-plane in 2D with various distances between. The estimate is exact on the outside
regions (orange), but inaccurate inside the union (blue) in the middle three images. The distance estimate of
the union is the minimum of the exact signed distances to the circle and half-plane.

approximation close to the boundaries. They presented a detailed analysis of the quality of approximation
in [8], relying on an initial polygonization of the input geometry.

Outline The following section contains a brief notational and theoretical summary of the most relevant
mathematical results for this paper.

Section 3 reviews the practical anchor for our investigation, Hart's sphere tracing algorithm. The precision
of distance approximation directly a�ects the computational cost of ray-surface intersections, giving us an
intuitive geometric setting in which we can interpret our theoretical results. We also present a signed and
unsigned distance function de�nition.

A wider family of functions is introduced and investigated in Section 5 called signed distance function
estimates (SDFE). Such a distance estimate has convergence guarantees for sphere tracing, yet they can be
constructed e�ciently for most surfaces. Our main contribution, a uni�ed investigation of how bounds behave
when intersecting SDFEs, is presented throughout Sections 6, 7, and 8. The intersection theorem is divided
into four theorems that describe the behavior of the SDFE on di�erent subsets of space.

Section 9 summarizes and generalizes the four theorems into one unifying set-operation theorem, including
union, intersection, and set-di�erence.

2 PRELIMINARIES

Let (R3, d) denote a Euclidean metric space with d : R3×R3 → [0,+∞]. We utilize the same symbol for point-
to-set and set-to-set distance: d(p, ∅) = +∞, d(p, A) := infa∈A d(p,a), and d(A,B) := infa∈A d(a, B) for
all p ∈ R3, ∅ 6= A,B ⊆ R3. Note that set-to-set distance is not a metric, but it is symmetric and positive.

We denote the r > 0 neighborhood of a p ∈ R3 point by the Kr(p) :=
{
x ∈ R3

∣∣ d(x,p) < r
}
open set.

A ⊆ R3 set is open if ∀a ∈ A,∃ε > 0 : Kε(a) ⊆ A. B ⊆ R3 is closed if its complementary set, R3 \ B, is
open. A set is bounded if there exists Kr(p) that covers it. The diameter of a bounded ∅ 6= C ⊆ R3 set is a
real number de�ned as diamC := sup{d(x,y)

∣∣ x,y ∈ C}.
Lemma 1 (Existence of extrema). If A ⊆ R3 is closed and p ∈ R3, then ∃a ∈ A : d(p, A) = d(p,a). [18]
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Figure 2: Comparison of distance estimate (top row) and exact signed distance values (bottom row) of the
intersection of a circle and a half-plane in 2D with various distances between. The estimate is exact on the
inside regions (blue), but inaccurate outside the intersection (orange) in all but the leftmost image. The
distance estimate of the intersection is the maximum of the exact signed distances to the circle and half-plane.

Furthermore, we denote the interior of the set A ⊆ X as intA := {a ∈ A | ∃ ε > 0 : Kε(a) ⊆ A}. The
closure of the set A ⊆ X is denoted as A := {a ∈ X | ∀ ε > 0 : Kε(a) ∩ A 6= ∅}. The boundary set of A
is denoted by ∂A := A \ intA. For any set A ⊆ X, it is clear from the de�nitions that intA is open, A and
∂A are closed sets.

De�nition 1 (O�set). For any D ⊆ R3 the radius r ≥ 0 closed o�set set from D is de�ned as Kr(D) :=
{x ∈ R3 | d(x, D) ≤ r}.

The interior of Kr(D) is denoted as Kr(D) := intKr(D). This equals to {x ∈ R3 | d(x, D) < r} if r > 0.
The di�erence compared to the neighboorhood de�nition is to allow r = 0 which opens the set. O�setting is
additive Kr1

(
Kr2(D)

)
= Kr1+r2(D) (r1, r2 > 0) due to the following theorem from [6]:

Theorem 1 (O�set-theorem). If D ⊆ R3 is closed and r ≥ 0, then

d(p, D)− r = d
(
p,Kr(D)

)
(∀p ∈ R3 \ Kr(D)).

Remark. Our de�nition di�ers from the o�set surface de�ned with translations along the normal because we
may not have a normal or a surface. Therefore, the o�set is the neighbourhood, and the o�set surface is the
boundary of that neighbourhood.

3 SPHERE TRACING

From now on, let us consider surfaces de�ned by an f : R3 → R implicit function, such that the surface is the
{f = 0} := {x ∈ R3 | f(x) = 0} level-set. When denoting a function as f : A → B, we assume that it is
de�ned for all a ∈ A. A ray is a half line originating from a particular point p ∈ R3, for example, the camera,
towards a given unit length direction v ∈ R3, ‖v‖2 = 1, denoted as:

s(t) := sp,v(t) := p+ t · v ∈ R3 (t ≥ 0) .

Therefore, the ray-surface intersection problem is expressed as �nding the smallest positive root of the
composite function f ◦ s : [0,+∞)→ R. Usually, we infer that f is continuous, or it at least has the
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(a) Sphere tracing takes distance sized steps so it does not
overstep a solution and converges quickly. The unbounding
spheres (orange circles) contain no surface points while each
of the green circles do, so f is an SDFE.

In : ppp,vvv ∈ R3, ‖vvv‖2 = 1 ray
f : R3 → R distance function

Out: t ∈ [0,+∞)
distance traveled along the ray

t := 0; i := 0;
for i < imax and

f(p+ t · v) not too small do
t := t+ f(p+ t · v)
i := i+ 1

end

return t

(b) Sphere tracing adapted from [17].

Figure 3: Sphere tracing visualized in 2D (a) is a practical algorithm (b) for implicit surface rendering.

De�nition 2 (Bolzano-property). The function f : R3 → R is Bolzano if

∀x,y ∈ R3 : f(x) · f(y) ≤ 0 =⇒ ∃ z ∈ xy : f(z) = 0 .

where xy = {(1− t)·x+ t·y | t ∈ [0, 1]} is the segment connecting x and y.

Let us now consider the Banach-space
(
R3, ‖.‖2

)
with the induced metric d(x,y) := ‖y−x‖2

(
x,y ∈ R3

)
.

De�nition 3 (Distance operator). Let us de�ne the set to distance function operator D : P(R3) \ {∅} →
C(R3, [0,+∞)) as

DA(p) := d(p, A) (∅ 6= A ⊆ R3,p ∈ R3) ,

where C(R3, [0,+∞)) is the set of continuous functions from R3 to [0,+∞), and P(R3) is the power set.

Remark. This operator denotes the implicit distance function representation for any set of points in space,
including curves and surfaces. Thus, at every sample point the function DA evaluates to the distance from
the surface of A. This leads us to the following properties:

1. The distance operator is invariant under closure, i.e. ∀ ∅ 6= A ⊆ R3 =⇒ DA = DA.

2. However, the reverse is not necessarily true, i.e. DA 6= DintA. For example, if A is �nite, then intA = ∅.

3. D is bijective on the set of open sets. That is, if ∅ 6= A,B ⊆ R3 are open, then A = B ⇐⇒ DA = DB .

4. D is bijective on the set of closed sets. That is, if ∅ 6= A,B ⊆ R3 are closed, then A = B⇐⇒DA = DB .

Luo et al. investigated the singed distance operator in more detail in their recent paper [21].

De�nition 4. f : R3 → R is a distance functionif f = D{f=0}.

Example. The open unit sphere has the following distance function: f◦(p) = d
(
p,K1(0)

)
= max

(
‖p‖2 −

1, 0
)
(p ∈ R3).

De�nition 5 (Unbounding sphere). An unbounding sphere to the surface A at a given point p is an open
neighbourhood Kr(p) where 0 ≤ r ≤ DA(p).
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There are no surface points closer to p thanDA(p), soKf(p)(p)∩{f = 0} = ∅. This property demonstrates
that the sphere tracing algorithm can be applied to �nd the �rst ray-surface intersection. The algorithm on
Figure 3b iteratively takes distance-sized steps along the ray; thus no ray-surface intersection is skipped while
large empty spaces are traversed quickly as illustrated by Figure 3a.

The sphere tracing algorithm is not optimal; however, faster algorithms only di�er in a constant factor [19,
4, 7, 15]. In this paper, we focus on operations on the implicit representations of surfaces and their e�ect on
convergence speed rather than the algorithms or surfaces themselves.

4 SIGNED DISTANCE FUNCTIONS

De�nition 6 (SDF). If f : R3 → R is continuous and |f | is a distance function, then f is a signed distance
function.

Here, the distance values of the function are augmented with a sign. This means that, from the perspective
of the representation, {f < 0} := {x ∈ R3 | f(x) < 0} is the "inside" and the {f > 0} = {−f < 0}
is the "outside" of the described geometry while either of these sets can be empty. Throughout the rest
of the paper, we mean inside and outside as such, and the argument object will mean the nonempty set
{f ≤ 0} = {f < 0} ∪ {f = 0}. For example, R3 3 p 7→ ‖p‖2 − 1 ∈ [−1,+∞) is a signed distance function
of the closed unit sphere.

Continuity in the de�nition is required to ensure that the SDFs are Bolzano functions, i.e., the signs do
not change without crossing the surface. However, this does not imply that the signs have to change at
{f = 0}, so distance functions are SDFs without interior ({f < 0} = ∅) by our de�nition. Moreover, the
de�nition implies that {f = 0} 6= ∅. Mathematically, the exact distance representations are important, and
there are extensive studies that investigate signed distance functions [6], boundary projections [27], or both
[21]. Practically, however, exact SDFs are infeasible for anything but the most trivial scenes.

Since signed distance values de�ne solid objects, boolean operations on these implicit functions become
practical for union, intersection, and subtraction to combine them into complex shapes. Taking the minimum
distance values yields the union, and taking the maximum distance produces the implicit function of the
intersection object. However, the result is not an exact SDF, as demonstrated on Figure 1 and 2. The shading
is adapted from Íñigo Quílez [22]. To quantify how inaccurate the distance estimation is we introduce the
SDFE in Section 5 and derive prevision bounds through Section 6 to 8.

A common way of obtaining a distance estimate from an implicit function is to divide it by one of its
Lipschitz constants. We can generalize this to functions that are not Lipschitz continuous by using a more
general divisor. To identify the necessary properties of this quantity, let us �rst derive an alternative de�nition
to Hart's signed distance lower bounds from [17].

De�nition 7 (Lipschitz constant). Let f : R3 → R be arbitrary. We de�ne the set of Lipschitz constants as

Lip f :=
{
L > 0

∣∣∣ ∀x,y ∈ R3 : |f(x)− f(y)| ≤ L · d(x,y)
}
. (1)

The function f is Lipschitz continuous if Lip f 6= ∅.

This implies that the smallest Lipschitz constant of an f signed distance function is 1, i.e.,

∀ f : R3 → R SDF : inf Lip f = minLip f = 1 .

De�nition 8 (Closer factor). For any f : R3 → R function, we de�ne the set of closer factors as

C f :=
{
Q > 0

∣∣∣ |f | ≤ Q ·D{f=0}

}
⊆ (0,∞)
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The less symbol on functions above should hold for all inputs, that is ∀x ∈ R3 : |f(x)| ≤ Q ·D{f=0}(x).

Remark. Therefore, C f is the set of all positive numbers that scale the true distance function such that it is
still larger than |f | at every point. C f can be derived from the Lipschitz constant De�nition 7 by restricting
y in Equation 1 such that y ∈ {f = 0}. Moreover, closer factors have the following properties for any
f : R3 → R and b ∈ R:

1. C f = ∅ or C f is an unbounded interval.

2. Lip f ⊆ C f .

3. Lip bf = |b| · Lip f and C bf = |b| · C f .

4. Lip(f + b) = Lip f ; however, C(f + b) 6= C f .

5.
⋂
b∈R
C(f + b) = Lip f .

Note that the Lipschitz continuity is a much stronger requirement than having a non-empty closer factor
set, i.e. C f 6= ∅. For example, if Lip f 6= ∅, then f is di�erentiable almost everywhere, yet there are
non-continuous g : R3 → R functions where C g 6= ∅, e.g.:

g(x, y, z) =

 x if x 6= 1
1
2 if x = 1

=⇒ C g = [1,+∞)

Then signed distance lower bounds of Hart [17] that have a consistent sign are de�ned as

De�nition 9 (Signed Distance Lower Bound). The f : R3 → R function is a signed distance lower bound if
1 ∈ C f and sgn ◦f ∈ C({f 6= 0}).

The de�nition by Hart [17] only used the 1 ∈ C f condition, which ensures that f is a lower bound to the
actual distance. We also stipulate that sgn ◦f ∈ C({f 6= 0}), so that the resulting function retains the Bolzano
property from De�nition 2. Otherwise, one could take a distance function and rede�ne it at a single point to
be −1 times its original value taking a single point from the outside inside. Hence, the sgn ◦f ∈ C({f 6= 0})
condition guarantees inside {sgn ◦f = −1} and outside {sgn ◦f = 1} makes sense in relation to the surface
without restricting geometric properties.

As Hart noted in [17], we can generate a signed distance lower bound by dividing a function by its Lipschitz
constant. However, the introduction of closer factors allows for more:

Corollary 1. If f : R3 → R, C f 6= ∅ and sgn ◦f ∈ C({f 6= 0}), then for all Q ∈ C f the function f/Q is a
signed distance lower bound.

Remark. Lipschitz constants are typically computed by �nding the largest magnitude of the gradient function;
however, Lipschitz-continuity on the entire R3 is a very restricting requirement. In most cases, like algebraic
surfaces, f is Lipschitz-continuous only on the compact subsets of R3. For example, authors of [5] obtain
signed distance lower bounds in those cases by �nding an unbounding sphere such that its radius coincides
with |f |/minLip f when f is restricted to the unbounding sphere.

5 SIGNED DISTANCE FUNCTION ESTIMATE

This section introduces SDFEs, a set of signed distance bounds that possess convergence guarantees for
algorithms such as sphere tracing by bounding their worst case slowdown. To quantify this, let us de�ne
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Figure 4: Left: SDFE obtained through min and max set operations using transformations of a half-plane
(line) and a circle primitive. The ratio of the SDFE (left) and the exact SDF (middle) is displayed on the right.
The right image shows that the precision of the �nal SDFE is around 0.2 at maximum. We prove that there
is a lower bound to the precision and thus a maximum slowdown of the sphere tracing rendering algorithm.

De�nition 10 (Farther factors). For any f : R3 → R, let the set of farther factors be

F f :=
{
q > 0

∣∣∣ |f | ≥ q ·D{f=0}

}
⊆ (0,+∞) .

Remark. Note that compared to closer factors, the relation sign is �ipped meaning f is increasing at least
q times more further away from the surface than the distance does. The F f set is unrelated to Lipschitz

continuity as it bounds the argument function from below with the actual distance. Let us summarize the
properties of farther factors for a given f : R3 → R:

1. 0 6∈ F f .

2. F f is either empty or an interval with 0 as its left open end.

3. F f ≤ C f , that is ∀ q ∈ F f, ∀Q ∈ C f : q ≤ Q.

4. F f ∩ C f is empty or has a single element.

5. F bf = |b| · F f for any b ∈ R.

De�nition 11 (SDFE). The function f : R3 → R is a signed distance function estimate if F f 6= ∅, 1 ∈ C f ,
and sgn ◦f ∈ C({f 6= 0})

Note that SDFs are SDFEs as well, since {1} = F f∩C f = (0, 1]∩[1,∞). We call any q ∈ F f a precision
of f since 0 < q ≤ 1 quanti�es the di�erence between an exact SDF and our estimate, as demonstrated by
Figure 4. Precision is also the maximum slowdown of the sphere tracing algorithm. This is the most distinct
feature of SDFEs compared to signed distance lower bounds. More intuitive use of the farther factors is shown
in the following Proposition. For the proof, the reader is referred to Appendix A.

Proposition 1 (SDFE equivalence). For any f : R3 → R function and a �xed q ∈ (0, 1] number, the following
statements are equivalent:

1. f is an SDFE with precision q ∈ F f

Computer-Aided Design & Applications, 20(6), 2023, 1154-1174
© 2023 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


1162

Figure 5: Partitions of space investigated by the proposed theorems. First, we prove the theorem on the
intersection set, then on the far exterior. The third theorem sets bounds for the di�erence set, and �nally, the
fourth theorem applies to the close exterior.

2. {f = 0} 6= ∅ and sgn ◦f is continuous on the {f 6= 0} 6= ∅ set, and

∀p ∈ R3 : q · d(p, {f = 0}) ≤ |f(p)| ≤ d(p, {f = 0}) (2)

3. ∃µ : R3 → [1, 1q ] bounded function such that f · µ is an SDF.

Remark. For any function and Q ∈ C f , the open sphere centered at a p ∈ R3 point with radius f(p)
Q is an

unbounding sphere. As such, it does not contain any surface points. However, for any q ∈ F f , the K f(p)
q

(p)

set is guaranteed to contain at least one surface point, as illustrated on Figure 3a with the green circles.

6 INTERSECTION-THEOREM: PART I

For all theorems that follow, let f and g denote signed distance function estimates (SDFEs) with precisions
qf ∈ F f and qg ∈ F g, respectively. For simplicity, from this section on, the functions f : R3 → R may
either mean the function or the set {f = 0} ⊆ R3. Let us also use the notational shorthands f−0 := {f ≤ 0}
and f− := {f < 0}. The f+0 and f+ symbols are analogous. Minimum and maximum on functions are to be
interpreted element-wise.

The most important theorem in the �eld comes from [17] that states how set-operations can be applied
to objects de�ned by SDFs. Adapting our notation, Hart's theorem states that if f, g : R3 → R are such that
1 ∈ C f and 1 ∈ C g, then 1 ∈ Cmin(f, g) and 1 ∈ Cmax(f, g), and therefore:

Union: min(f, g) is a signed distance lower bound of the f−0 ∪ g
−
0 object.

Intersection: max(f, g) is a signed distance lower bound of f−0 ∩ g
−
0 .

Di�erence: max(f,−g) is a signed distance lower bound of f−0 \ g
−
0 .

Despite the practical robustness, Hart's set theorems do not show that the sphere tracing algorithm will still
converge on the resulting estimate; for example, the lower distance bound set may be empty of the resulting
function. Figure 4 demonstrates how precision drops as the result of the above set operations.

In the following four theorems, we provide a precision q ∈ F max(f, g) for the intersection set operation.
The intersection theorem was subdivided into four theorems because the conditions and the techniques used
change signi�cantly depending on the subset of space that we investigate.
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Figure 6: Intersection theorem when p is inside the
intersection. The max(f, g) function is the most pre-
cise within this region, as demonstrated by Figure 2.

Figure 7: The theorem when p is far away from the
intersection set. The estimation regains precision far
from the surface in Theorem 3.

The intersection operation on SDFEs is expressed as the maximum of the two arguments denoted as

h := max(f, g) := x 7→ max
(
f(x), g(x)

)
: R3 → R .

Since Hart has proved that h is a signed distance lower bound, we only have to show that F h 6= ∅. For
union and di�erence, the theorems can be reformulated using the de Morgan identities while considering the
complement object de�ned by the SDFEs −f or −g. We summarize all of these corollaries in Section 10.

Theorem 2 (Intersection theorem: Interior). h = max(f, g) is an SDFE of the set h−0 = f−0 ∩ g
−
0 on the set

h−0 with the precision
min(qf , qg) ∈ F h (qf ∈ F f, qg ∈ F g)

The proof is rather straightforward, see Appendix B for the details. Figure 6 provides a visual aid. The
theorem states that within the intersection, the resulting SDFE h retains the precision of the less precise
argument estimate.

Theorem 2 showed that intersection yields an SDFE that is as precise inside the intersection as the input
distance estimates allow. However, the precision can be signi�cantly lower on the exterior. The following
sections investigate how precision drops as the two surfaces meet. Next, we prove that the bound tends
toward that of the smaller object. Figure 7 depicts the situation when the neighborhood of the intersection is
excluded from the SDFE bound calculation.

Theorem 3 (Intersection-Theorem: Faraway). Suppose that f−0 is bounded and R > diam f−0 . Then h is an
SDFE on R3 \ KR(h−0 ) with the precision

R− diam f−0
R

qf ∈ F h (qf ∈ F f) .

Remark. The proof is in Appendix C. Note that as R approaches in�nity, the above tends to qf . This means
that at a distance, the SDFE of the bounded object determines the accuracy of the resulting SDFE.

If none of the surfaces {f ≤ 0} and {g ≤ 0} are �nite, a counterexample on Figure 8 displays a scenario
where the F h = ∅. This 2D scene is the intersection of two unbounded objects f−0 and g−0 . Each object is
a union of a half-plane and a circle. The intersections is the red bounded region and its distance function is
poorly approximated with h = max(f, g), especially far away from h−0 , causing sphere tracing to be slow.
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Figure 8: A counterexample for an intersection of two
objects (blue & green) where both are unbounded and
the maximum of their SDF is not an SDFE in Theo-
rem 3. Here, sphere tracing does not accelerate for a
diverging ray because limn→∞ h(pn)/d(h

−
0 ,pn) = 0.

Figure 9: Set-contact smoothness σF,G(δ) for a given
δ ≥ 0 is the distance between the o�set di�erence sets
F \ K δ

2
(F ∩ G) and G \ K δ

2
(F ∩ G). This function

describes the F ⊆ R3 and G ⊆ R3 sets geometric
relation in various scales.

7 SET-CONTACT SMOOTHNESS

Our goal is to estimate the precision of the resulting h = max(f, g) function close to the exterior of the surface
{h = 0} without any geometric assumptions. However, the geometry of the intersection plays a vital role in
the resulting precision. For this reason, we de�ne a general set-contact smoothness modulus independent of
both the geometric assumptions and the representation.

De�nition 12 (O�set di�erence of sets). The δ ≥ 0 o�set di�erence of sets F ⊆ R3 and G ⊆ R3 is

F \δ G := F \ Kδ(F ∩G) .

The above shorthand notation for subtracting a little more from a set proved useful in the theorems that
follow. The lemma below is an observation about the o�set di�erence of objects, proved in Appendix D.

Lemma 2. Let F,G ⊆ R3, δ ≥ 0, and p ∈ R3 \ Kδ(F ∩G), then

min

(
δ

2
, d
(
p, F \ δ

2
G
))
≤ d(p, F ) . (3)

De�nition 13. Let F,G ⊆ R3 be arbitrary sets. We de�ne their contact smoothness modulus as the function

σF,G(δ) := min
(
δ, d

(
F \ δ

2
G, G \ δ

2
F
))

(δ ≥ 0) .

For example, if F and G are two perpendicular intersecting lines, σF,G(δ) =
√
2
2 δ. In general, σF,G

quanti�es how smoothly F and G melds on various scales.

Proposition 2 (Properties). Let F,G ⊆ R3, then the following holds:

1. σF,G(0) = 0

2. σF,G is a monotonically increasing function

3. σF,G(δ) ≤ δ
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(a) p is in the di�erence set. (b) p is in the close-exterior set.

Figure 10: Visual aid for the proof of Theorem 4 and 5 located in Appendix F and G. In both cases, the
set-contact smoothness of the argument geometries σf−

0 ,g
−
0
(δ) aids the estimation of the precision.

4. If F and G are closed sets, then ∀ δ > 0 : σF,G(δ) 6= 0

Proof. Properties 1 and 3 follow from the de�nition. Property 2 holds since F \δ G is also monotonic, so
F \δ1 G ⊆ F \δ2 G if δ1 ≤ δ2. The distance of sets is also monotonic, that is, the distance of subsets cannot
decrease. Property 4 holds since if the remaining sets are non-empty, they remain closed and disjoint. The
distance of closed and disjoint sets is non-zero.

Remark. When one of the sets are not connected, the function σ∗F,G(δ) := d
(
F \ δ

2
G, G \ δ

2
F
)
, (δ ≥ 0) can

have a discontinuity and retain a higher value until Kδ(F ∩ G) reaches the next component. Therefore, the
min(δ, ·) is used in the equation allows the de�nition to make sense when σ∗F,G is in�nite, and it ensures that
properties 1 through 3 hold. The following lemma allows us to estimate the precision in the two intersection
theorems that follow. The proof is located in Appendix E.

Lemma 3. If F,G ⊆ R3 are closed, δ ≥ 0 and p ∈ R3 \ Kδ(F ∩G), then

1

2
σF,G(δ) ≤ max

(
d(p, F ), d(p, G)

)

8 INTERSECTION THEOREM: PART II

This section investigates how the intersection a�ects sphere tracing near the surface. We compute the precision
of the SDFE in relation to the surface smoothness. First, we present our theorem on the di�erence set, which
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Figure 11: Counterexample (left, middle) for δ = 0 in Theorem 5. If the two surfaces join smoothly, then
the sequence pn =

(
1

2n2 ,
1
n

)
converges faster to f−0 and g−0 than to h−0 = {(0, 0)} resulting in F h = ∅,

so h = max(f, g) is not an SDFE in this case. In practice, this decreases convergence rate because the
set-contact smoothness function (right) has small values near the intersection. The middle image visualizes
the distances (dashed lines) between the o�set di�erence sets (shaded areas).

is followed by the theorem that provides a precision on the subspace of R3 that is exterior to both argument
objects.

Theorem 3 proved that the SDFE regains precision further away from the intersection. The following
theorem focuses on the behavior of the SDFE close to the intersection surface within the di�erence set
g−0 \δ f

−
0 shown in Figure 10a.

Theorem 4 (Intersection-theorem: Di�erence). For every 0 < δ < R the function h = max(f, g) is an SDFE
on (g−0 \δ f

−
0 ) ∩ KR(h−0 ), with the precision:

σf−
0 ,g

−
0
(δ)

R
· qf ∈ F h (qf ∈ F f) (4)

The proof is in Appendix F. Assuming R → δ, the precision will be qh → σ(δ)
δ · qf , so 'smoother' surface

connections, i.e. tangent surfaces, result in less precise SDFEs in the vicinity.
The �nal subset of space that we investigate is the near outside of the intersection, depicted in Figure 10b.

Theorem 5 (Intersection-theorem: Exterior). For every 0 < δ < R the function h := max(f, g) is an SDFE
on the exterior set

(
(f+0 ∩ g

+
0 ) ∩

(
KR(h−0 ) \ Kδ(h

−
0 )
)
with the following precision:

σf−
0 ,g

−
0
(δ)

2R
·min(qf , qg) ∈ F h (qf ∈ F f, qg ∈ F g) (5)

The proof is located in Appendix G. In practice, the convergence speed of the sphere tracing algorithm
depends on the δ 'near-threshold' distance, on the diameter of the smaller object diam f−0 , and its SDFE
bound Kf . The δ appears in sphere tracing implementations as an arbitrarily small value used for a distance
threshold under which the ray-surface intersection computation is terminated. This way, sphere tracing stops
when the surface is su�ciently approximated, i.e. the error is smaller than a pixel.

Remark. If this near-threshold distance δ is zero, the theorem does not hold as illustrated in Figure 11. The
pn :=

(
1

2n2 ,
1
n

)
∈ R2, (n ∈ N) sequence is O

(
n−2

)
close to the two surfaces, but only O

(
n−1

)
close to their

intersection set h−0 = {(0, 0)} which means qh > 0 must be zero, thus F h = ∅.
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Figure 12: Examples for the set-contact smoothness modulus with di�erent intersection angles in 2D. E.g.,
a 90◦ intersection results in σF∩G =

√
2
2 δ as seen on the second and fourth images. Larger values in the

modulus indicate a more accurate SDFE of the intersection.

9 RESULTS

We summarize our results in the following single theorem.

Theorem 6 (Set operations). Suppose that f and g : R3 → R are SDFEs, and let 0 < δ ≤ diam{f = 0}.
Then, the following set-operations produce an SDFE with the function

Union h = min(f, g) for the f−0 ∪ g
−
0 set if f+0 is bounded

Intersection h = max(f, g) for the f−0 ∩ g
−
0 set if f−0 is bounded

Di�erence h = max(f,−g) for the f−0 \ g
−
0 set if f−0 is bounded

with the precision
1

4

σ{f=0},{g=0}(δ)

diam{f = 0}
·min(qf , qg) ∈ F h

∣∣∣
R3\Kδ({h=0})

(6)

The theorem is proved in Appendix H. The theorem directly implies sphere tracing convergence on the
resulting representation for the union, intersection, and di�erence operations. The theorem summarizes the
previous ones and gives a single bound for a given near threshold distance. Unfortunately, this summarizing
theorem is impractical for applications because the convergence rate depends on the size of the smaller
set. Usually, the resulting SDFE is much more precise than this theorem guarantees because of the rough
estimation that we used to get the global guarantee. For the above reasons, we must refer back to the
individual intersection theorems since those can provide much better bounds individually.

However, the set-contact smoothness modulus only depends on the argument geometry and their relative
position and indicates the precision loss quite well at various scales. The slope of this function indicates
the angle at which the surfaces meet, as demonstrated by Figure 12. Our implementation can generate the
set-contact smoothness modulus for 2D polygons but does so with a relatively brute-force approach. We
adaptively sample the σF∩G function using Chebfun [9] to �nd discontinuities and e�ciently store the result.
We found that small changes in shape or position can have a large e�ect on the modulus and the precision of
the estimate, as seen in Figure 13.
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Figure 13: Additional examples for the set-contact smoothness modulus in 2D. Tangential (�rst) and almost
intersecting surfaces (third) create the most inaccuracy in the signed distance function estimate.

10 CONCLUSION

This paper presented a subset of signed distance lower bound functions called signed distance function estimates
(SDFE) with provable precision characteristics. These functions only pose constraints on the mapping and not
on the represented geometry; as such, they can be applied in an arbitrary geometric context. In practice, the
vast majority of signed distance approximations are also SDFEs.

We derived how the distance approximation accuracy can be obtained for the result of set-theoretic opera-
tions and how the SDFE representation of the argument geometries a�ects it via the closer and farther factors.
We showed the quantitative e�ect of the relative geometric con�guration of the arguments by introducing the
set-contact smoothness modulus of arbitrary sets in space.

In particular, in Theorems 2, 3, 4, and 5, we have shown under which conditions are SDFEs closed under the
intersection operation. Most importantly, the bound is determined by the contact of the argument surfaces in
proximity to the resulting intersection surface. Another important factor is the diameter of the input geometries
and the SDFE bound of the function that de�nes it implicitly.

In Section 9 we summarized our theoretical results for intersection, union, and set di�erence operations.
We have concluded that apart from the contact smoothness of the argument geometries, the most deciding
factor on the convergence speed of the sphere tracing algorithm is the subspace of R3 in which the majority
of the ray-tracing occurs.

In summary, we have proved that if these widely used distance bound set-operations are applied, the sphere
tracing algorithms converges. This property was observed in practice but was not derived before.

Further research could investigate the optimization of a CSG tree since we formulated exact bounds for each
operation. This CSG optimization would reorder operations and �nd better bounding volumes to minimize the
resulting SDFE bound and computational cost, so the rays are computed most e�ciently. Moreover, it would
be interesting to analyze the various blending operations and their e�ect on SDFE precision.
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APPENDICES

A PROOF OF SDFE EQUIVALENCE

Proof of Proposition 1. 1.⇒2. is trivial.

2.⇒3. Since {f = 0} 6= ∅, let µ(p) := 1 (p ∈ {f = 0}),

µ(p) :=
d(p, {f = 0})
|f(p)|

∈
[
1,

1

q

]
(p ∈ {f 6= 0}) ,

where the range of µ is obtained by writing the inequalities in (2) into the nominator above. Trivially,
|f · µ| is a distance function because the right hand side of the

f(p) · µ(p) = f(p) · d(p, {f = 0})
|f(p)|

= sgn(f(p)) · d(p, {f = 0})

equation is continuous on the {f 6= 0} set.
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3.⇒1. Because f · µ SDF is continuous, the function sgn ◦(f · µ) = (sgn ◦f) · (sgn ◦µ) = sgn ◦f is also
continuous on the set {f 6= 0}. q ∈ F f and 1 ∈ C f holds because ∀p ∈ R3 :

|f(p)| · 1 ≤ |f(p) · µ(p)| = d(p, {f · µ = 0}) = d(p, {f = 0}) ≤ |f(p)| · 1
q
.

B PROOF WITHIN THE INTERIOR

Proof of Theorem 2. The fact that h is a signed distance lower bound was already proven by [17]. To prove
out claim on the precision, �rst we show that if f(p) ≤ 0 and g(p) ≤ 0, then

d(p, h) = min
(
d(p, f), d(p, g)

)
. (7)

Due to the Bolzano-property, p ∈ f−0 ⇒ d(p, f) = d(p, f+0 ). So

min
(
d(p, f), d(p, g)

)
= min

(
d(p, f+0 ), d(p, g+0 )

)
= d(p, f+0 ∪ g

+
0 )

because of the de�nition of distance to a set. Using the de Morgan identity, one can reformulate the above
for the intersection as

d
(
p, f+0 ∪ g

+
0

)
= d

(
p,R3 \ (f− ∩ g−)

)
= d

(
p,R3 \ h−

)
= d

(
p, h+0

)
= d(p, h) .

using the Bolzano property again in the last equation. This proves that Equation (7) holds.
Second, let us prove that min(qf , qg) ∈ F h on the h−0 set for qf ∈ F f , qg ∈ F g. Because p ∈ h−0 , i. e.

f(p) < 0 and g(p) < 0, we have

|h(p)| =
∣∣max

(
f(p), g(p)

)∣∣ = min
(
|f(p)|, |g(p)|

)
. (8)

Finally, multiplying (7) with min(qf , qg) and applying (8) leads to

min(qf , qg) · d(p, h) = min(qf , qg) ·min
(
d(p, f), d(p, g)

)
≤ min(qf , qg) ·min

(
1
qf
|f(p)|, 1

qg
|g(p)|

)
≤ min(qf , qg) ·max

(
1
qf
, 1
qg

)
·min

(
|f(p)|, |g(p)|

)
= |h(p)|.

Therefore, min(qf , qg) ∈ F(max(f, g)) on the f−0 ∩ g
−
0 set.

C PROOF FOR FAR AWAY FROM THE SURFACE

Proof of Theorem 3. First, we derive an upper estimate of d(p, h−0 ) with the exact distance to the bounded
set d(p, f−0 ). Since h−0 ⊆ f

−
0 ,

d(p, h−0 ) ≤ d(p, f
−
0 ) + diam f−0 (p ∈ R3) . (9)

For the rest of the proof, let p ∈ R3 \ KR(h−0 ). Because R ≤ d(p, h−0 ), and the assumption R > diam f−0 ,
Equation (9) implies

0 < R− diam f−0 ≤ d(p, f
−
0 ) . (10)

Second, we express a lower estimate of max
(
f(p), g(p)

)
using the distance d(p, f−0 ). Since f is an SDFE,

let qf ∈ F f , so estimating max(h(p)) yields

qf · d(p, f−0 ) ≤ f(p) ≤ max
(
f(p), g(p)

)
. (11)
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Finally, we estimate the precision of the SDFE from the ratio of (9) and (11):

max
(
f(p), g(p)

)
d(p, h−0 )

≥ qf · d(p, f−0 )

d(p, f−0 ) + diam f−0

= qf ·
d(f−0 ,p) + diam f−0 − diam f−0

d(p, f−0 ) + diam f−0

= qf

(
1− diam f−0

d(p, f−0 ) + diam f−0

)

≥ qf ·
R− diam f−0

R
∈ F h .

For the last estimation Equation (10) was used.

D OFFSET DIFFERENCE SET

Proof of Lemma 2. Using the distance de�nition and that F =
(
F \ δ

2
G
)
∪
(
F ∩ K δ

2
(F ∩G)

)
,

d(p, F ) = min
(
d
(
p, F \ δ

2
G
)
, d
(
p, F ∩ K δ

2
(F ∩G)

))
(12)

holds. However, F ∩ K δ
2
(F ∩G) ⊆ K δ

2
(F ∩G), so

d
(
p,K δ

2
(F ∩G)

)
≤ d
(
p, F ∩ K δ

2
(F ∩G)

)
. (13)

Using the additivity of o�sets and Theorem 1 for the set K δ
2
(F ∩G) with r = δ

2 , so

d
(
p,K δ

2
(F ∩G)

)
− δ

2
= d
(
p,Kδ(F ∩G)

)
holds because p 6∈ Kδ(F ∩G). Therefore

δ

2
≤ d
(
p,K δ

2
(F ∩G)

)
≤ d
(
p, F ∩ K δ

2
(F ∩G)

)
(14)

Substituting (14) into (12) yields statement (3).

E SET CONTACT SMOOTHNESS LEMMA

Proof of Lemma 3. Using Lemma 2 on both F \ δ
2
G and G \ δ

2
F , and taking the maximum of the inequalities

results in

min

(
δ

2
,max

(
d
(
p, F \ δ

2
G
)
, d
(
p, G\ δ

2
F
)))

≤ max
(
d(p, F ), d(p, G)

)
(15)

Assume that F \ δ
2
G and G \ δ

2
F sets are not empty. Because these sets are closed, there exists x ∈ F \ δ

2
G

and y ∈ G \ δ
2
F such that

d
(
p, F \ δ

2
G
)
= d(p,x) and d

(
p, G \ δ

2
F
)
= d(p,y)
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from Lemma 1. From the distance de�nition and the triangle inequality in xpy, we estimate the maximum
distance

2max
(
d
(
p, F \ δ

2
G
)
, d
(
p, G\ δ

2
F
))

= 2max
(
d(p,x), d(p,y)

)
≥

≥ d(p,x) + d(p,y) ≥ d(x,y) ≥ d
(
F \ δ

2
G,G\ δ

2
F
)
= σ∗F,G(δ)

Combining (15) and the inequality yields the estimate in the theorem.
If one of the F \ δ

2
G and G \ δ

2
F sets are empty, we get a lower estimate of δ2 from (15). So the Lemma

holds in this case because of property 3 in Proposition 2.

F PROOF ON THE DIFFERENCE SET

Proof of Theorem 4. Since we know that h is a distance bound of h−0 from [17], we only have to prove that

inf

{
h(p)

d(p, h−0 )
: p ∈ g−0 \δ f

−
0

}
> 0

Let p ∈ g−0 \δ f
−
0 , so g(p) ≤ 0 ≤ f(p); therefore, h(p) = max

(
f(p), g(p)

)
= f(p), and

h(p)

d(p, h−0 )
=

f(p)

d(p, h−0 )
≥ qf ·

d(p, f−0 )

d(p, h−0 )

From Lemma 2 with F := f−0 , G := g−0 , we can approximate the above further by

qf ·
d(p, f−0 )

d(p, h−0 )
≥ qf ·

min
(
δ
2 , d
(
p, f−0 \ δ2 g

−
0

))
d(p, h−0 )

(16)

Since p ∈ g−0 \δ f
−
0 ⊆ g

−
0 \ δ2 f

−
0 , then

d
(
p, f−0 \ δ2 g

−
0

)
≥ d
(
g−0 \δ f

−
0 , f

−
0 \ δ2 g

−
0

)
≥ d
(
g−0 \ δ2 f

−
0 , f

−
0 \ δ2 g

−
0

)
= σ∗

f−
0 ,g

−
0

(
δ
)
,

which implies the following using (16) and De�nition 13:

qf ·
min

(
δ
2 , d
(
p, f−0 \ δ2 g

−
0

))
d(p, h−0 )

≥ qf ·
σf−

0 ,g
−
0
(δ)

d(p, h−0 )
.

Since d(p, h−0 ) ≤ R, the bound in (4) holds. The lower distance bound is positive because of property 4 in
Proposition 2.

G PROOF IN THE EXTERIOR

Proof of Theorem 5. Let us estimate h(p) from below. Using the SDFE precision gives

max
(
f(p), g(p)

)
≥ max

(
qf · d(p, f−0 ), qg · d(p, g−0 )

)
≥ min(qf , qg) ·max

(
d(p, f−0 ), d(p, g−0 )

)
≥ min(qf , qg) ·

1

2
σf−

0 ,g
−
0
(δ)

≥ min(qf , qg) ·
1

2
σf−

0 ,g
−
0
(δ) · d(p, h

−
0 )

R

Lemma 3 and the d(p, h−0 ) < R condition gave the precision which is positive because of property 4 in
Proposition 2.
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H PROOF FOR SUMMARY OF SET OPERATIONS

Proof of Theorem 6. If f±0 is bounded and f∓0 is not, then diam f±0 = diam{f = 0}. Equation (6) holds
if we replace f by −f and g by −g, so it is enough to prove the proposition for h = max(f, g), since that
implies the case of the union and the set di�erence. Theorem 2 implies that

min(qf , qg) ∈ F h
∣∣∣
h−
0

. (17)

Since f−0 \ g
−
0 ⊆ f

−
0 ⊆ Kdiam f−

0
(h−0 ), Theorem 4 with R = diam f−0 implies

σf−
0 ,g

−
0
(δ)

diam f−0
· qg ∈ F h

∣∣∣
f−
0 \δg

−
0

. (18)

In Theorems 3, 4, and 5, let R := 2 diam f−0 , so that

1

2
qf ∈ F h

∣∣∣
R3\K

2 diam f
−
0

(h−
0 )
,

1

2

σf−
0 ,g

−
0
(δ)

diam f−0
· qf ∈ F h

∣∣∣(
g−0 \δf

−
0

)
∩K

2 diam f
−
0

(h−
0 )
,

1

4

σf−
0 ,g

−
0
(δ)

diam f−0
·min(qf , qg) ∈ F h

∣∣∣(
f+
0 ∩g

+
0

)
\δh−

0 ∩K2 diam f
−
0

(h−
0 )
.

For the union of sets on the right hand side of Equations (17), (18), and (H), we need to take the minimum
value of the precision values on the left. Since σf−

0 ,g
−
0
(δ) ≤ δ ≤ diam f−0 , the last value is always the smallest

of the four. Therefore,
1

4

σf−
0 ,g

−
0
(δ)

diam f−0
·min(qf , qg) ∈ F h

∣∣∣
R3\Kδ(h−

0 )∪h−
0

.

Finally, note that R3 \ Kδ({h = 0}) ⊆ R3 \ Kδ(h−0 ) ∪ h
−
0 , and that σ{f=0},{g=0}(δ) ≤ σf−

0 ,g
−
0
(δ) because

{f = 0} ⊆ f−0 and {g = 0} ⊆ g−0 .
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