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Abstract. Additive manufacturing (AM) is a process by which complex components or
assemblies are fabricated in layers. As materials are deposited over time, the possibility of
collision increases, in�icting damage to the components being printed or the machine parts.
Therefore, special care needs to be taken while designing the tool-path (the path that the
deposition head follows during the manufacturing process).

We provide an algorithm to modify a given tool-path to avoid collision between the
printing surface and the tool holder using a geometric approach. For each point on the tool-
path, we generate multiple tool vectors that are collision-free. A tool vector at a point of the
tool-path shows the direction of the deposit head at that point. Using these collision-free
tool-vectors we build an edge-weighted graph, where an edge is added between two tool-
vectors if they are associated with adjacent points on the tool-path. The weight of an edge
denotes the change in angle between two tool-vectors. Then using shortest path algorithm,
we generate a collision-free tool-path such that the di�erence in tilting angle is minimized
between adjacent tool-path points. We present experimental results to show the performance
of our algorithm.
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1 INTRODUCTION

With many contemporary additive manufacturing (AM) systems, a planar build strategy is employed. A thin-
walled component example is shown in Fig. 1, where a machining or a combination of machining and welding
would be costly, time consuming, and have much waste materials. On the other hand, an AM solution is trivial
as the designer would select the slicing and �ll strategies then initiate the build.

With a planar ‘2
1
2D′ build strategy, collision avoidance issues between the component and AM heat source

solution (e.g., a laser, or a material deposition nozzle) do not exist. However, the directed energy deposition
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Figure 1: Left to right: (a) Thin walled component, (b) sample layer, (c) virtual build model with tool paths.

(DED) processes utilize a heat source and material feeding system mounted on a multi-axis CNC system or a
robot to deposit beads side by side to �ll a layer. With leveraging non-planar slicing and multi-axis tool paths,
the DED process can be used for fabricating a new part without support structures, repairing a damaged part,
and surface coatings. This multi-axis solution introduces potential collision issues that need to be addressed.

Figure 2: Left to right: (a) Tool depositing material onto a recessed area, (b) showing the holder and a boss.

Existing algorithms to design tool-paths for AM processes do not ensure that the tool-path is collision-free
for multi-plane/multi-axis build scenarios, which is typical for turbine blade repair, surface coating, arbitrary
volume build cases (see Fig. 2). Collisions between the machine parts and the workpiece (i.e., the object
being printed) may cause damage to the machine part and/or the workpiece which would be expensive both
�nancially and time-wise. Moreover, if collision cannot be avoided automatically when generating the tool-
path, manual intervention would be required more frequently during the virtual veri�cation processes (i.e.,
hand editing tool-paths) prior to engaging in manufacturing the component. Such overhead can be avoided
by automating the designing of collision-free tool-paths for AM processes.

Although collision avoidance in CNC machining has attracted the attention of researchers for some time
(see Section 2 for details), it is relatively a new direction of research in the �eld of additive manufacturing.
As mentioned above, the possibility of collision increases over time in additive manufacturing in contrast to
machining, and hence, avoiding collisions in bead based AM deposition processes are of utmost importance.

However, since there is a large di�erence in the working environment and objects of CNC machine tools
and the AM machine tools, the approaches applied in machining to avoid collisions are not readily applicable
to AM processes. While we do study algorithms in the literature on avoiding collisions in CNC machining, we
do not compare the performance of our algorithm with any such algorithm.
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1.1 Our Contribution

In this paper, we give an algorithm to modify a given tool-path to a collision-free tool-path, where a tool-path
is a path de�ned by a sequence of points in 3D along with tool vector for each tool-path point which is a
vector representing the direction of the deposit head at that point, and change in the angle of the tool vectors
of the two consecutive points of the tool path does not exceed some given threshold.

Avoiding collisions in a tool-path: Given a surface, a tool-path, and the AM tool holder speci�cations, the
goal is to propose a collision-free tool-path.

In our algorithm, we represent the surface and machine model using a 3D triangle-mesh. To detect collisions
between the deposition head and the workpiece, we implement algorithms from the literature [13, 4], and also
use a third party software licensed under an NDA for comparison. Using these tools, we build a con�guration
graph where di�erent tool vectors for each tool-path point is represented as vertices. We then compute a
collision-free tool-path by applying graph algorithms to compute a path in the con�guration graph containing
a collision-free tool-vector for each tool-path point.

The rest of the paper is organized as follows. In Section 2, we discuss some related work on collision
detection and avoidance. Section 3 describes our algorithm for computing con�ict-free toolpath. In Section 4,
we present the results of our experimental runs, and compare them with state-of-the-artwork on collision-free
tool-path design for CNC machining. We conclude in Section 6 with a summary of our contributions and
future directions of research.

2 RELATED WORK

Several approaches for detecting avoiding collisions have been investigated for CNC machining for both local
(i.e., local gouging, rear gouging, etc.) and global collisions. Researchers have applied variety of methods
including correction vector-based method [8], where the interference surface normal can be leveraged avoid
the interference region; C-space-based method [14]; local surface geometry-based method [12]; visibility and
accessibility-based method [2, 3]; graphics-assisted method [19]; methods based on physical modeling of the
machining tool [7], and many other approaches to solve the problem. See [17] for a detailed survey.

Balasubramanium et al. [2] presented an algorithm to generate tool-path using visibility and accessibility-
based method. The algorithm works in three stages. First, it computes visibility cones (a set of angles from
which the given tool-path point is visible from an observer outside) for every point in the tool-path. However,
since visibility does not ensure accessibility (i.e., the machining tool cannot access the point without colliding),
the second stage checks for accessibility of the tool for each of the angles in the visibility cone; and computes
the set of angles which are valid or collision-free. Finally, a continuous tool-path is computed from the sets
of valid angles for each tool-path point. Balasubramanium et al. [3] presented another algorithm in 2003
using similar approaches to deal with global collision detection, where they apply a rotational or translational
correction when a collision occurs based on the location of the colliding points in the local coordinates of the
tool. Note that, in both the above algorithms, the object being machined is presented as a cloud of points
and thus, computationally expensive.

Wang and Tang [19] proposed an algorithm using the concept of discretized visibility map (VMap) to iden-
tify the set of valid orientations or con�gurations by inspecting the valid area with all the gouging constraints.
Although the algorithm can handle a general type of tool including the �at-end tool and arbitrarily complicated
obstacles, the computation, and storage of the VMaps have a high space and time complexity. Xu et al. [20]
applied a similar approach. Li and Zhang [9, 11, 10] used point cloud-based approach, which requires huge
computer resources in terms of space and time, similar to the algorithms of Balasubramanium et al.

Aliyu and Al-Sultan [1] gave linear programming algorithm to detect collisions between moving objects,
where the objects are represented as polyhedral sets in R2 and R3. Tang et al. [16] gave a sweep plane based
algorithm to detect global collisions in 5-axis NC machining. They �rst check for collision between spheres
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bounding the workpiece and machine part. If intersection is found then they slice both the objects, and detect
for collision in 2D planes (i.e., XY , Y Z or XZ planes) using the workpiece slices and machine component
slices. They followed up this work with an algorithm to avoid collision in 5-axis NC machining [18].

Schumann et al. [15] gave an algorithm to compute a hull around moving machine parts (e.g., tool holder)
based on the maximum speed and deceleration values of the speci�c part. They argued that computing this
hull beforehand will allow to prevent collision in real time.

In this paper, we use the convex hull of a coarse approximation of the tool holder (i.e. the smallest convex
geometry enclosing the approximated holder model) to check for collision with the printing surface. Previously,
Lee and Chang [8] presented a collision avoidance algorithm by using convex hull of the sculpted surface (i.e.,
workpiece). Wang [19] proposed a graphics-assisted approach to compute admissible tool orientations for
collision avoidance in �ve-axis ball-end milling. The algorithm relies on graphics-assisted cubic mapping, and
instantaneous visibility and accessibility cones computation. However, image resolution determines correctness
of the approach. To the best of our knowledge, graph algorithms (e.g., shortest path algorithms) has not been
yet employed to compute collision-free smooth toolpath.

Detecting an intersection between geometric objects in 3D, especially the intersection of triangles, has been
extensively studied. The algorithms by Möller [13] and Held [5] are the most popular among them. Guigue
and Devillers [4] gave an algorithm based on the algorithms in [13, 5], and improved the time complexity by
around 20% using �oating-point computation.

The AM problem space has unique challenges to overcome: (i) the nozzle or deposition head is not always
rotationally symmetric, unlike the rotary tool holders and cutting tools utilized in machining; (ii) the AM
process adds material to the workspace, which means that the collision detection probability increases as the
build progresses; and (iii) the build shape cannot be accurately represented due to the basic imprecision of the
DED AM process. This paper presents a foundation for addressing these issues.

3 COMPUTING A COLLISION-FREE TOOL-PATH

We present the surface as a triangular mesh. Instead of using the actual holder model, we export an approximate
model of the tool-path holder from Mastercam, and then compute the convex hull of the approximated tool
holder. We use the triangular mesh representation of the convex hull in our calculation as it contains less
triangles and improves the performance of the collision detection algorithm. We used two di�erent holder
models in our experiments: rotationally symmetric and asymmetric; see Figs. 3 and `4, respectively, for the
constructed convex hulls of the approximated models.

Figure 3: From left to right: (a) rotationally symmetric holder (1,446 triangles), (b) approximate model of
the holder (144 triangles), (c) convex hull of the approximated model ( 72 triangles).
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Figure 4: From left to right: (a) rotationally asymmetric holder, (b) the CAD model (6,122 triangles), (a)
approximate model of the holder (340 triangles), (c) convex hull of the approximated model ( 140 triangles).

We try two geometric approaches in detecting the collisions. Our �rst approach is based on collision
detection between triangles. We implement Möller's algorithm [13] and Devillers and Guigue's algorithm [4]
to detect collision between two triangles. We check for collisions between each pair of triangles from the
surface mesh and the mesh of the deposit head. Additionally, we applied parallel calculation to improve the
computation time further.

Our second approach is based on collision detection between solids using a clash detection algorithm
supplied in a commercial third-party library. In this case, we check for collision between the whole solid surface
and the solid that represents the model of the holder. The clash detection algorithm applies multithreading
to detect collision.

To compute a collision-free tool-path, we apply the following three steps, which are described in the next
three sections.
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1. Generating di�erent tool vectors for each tool-path point.

2. Building the con�guration graph.

3. Computing a collision-free tool-path from the con�guration graph.

3.1 Generating Di�erent Tool Vectors for Each Tool-path Point

We generate unit tool vectors on a unit sphere where the center of the sphere is a point on the tool-path as
shown in Figure 6. Here, θ is the maximum allowable change of angle for the tool between adjacent tool-
path points, and φ is the maximum tilt angle for the tool/holder. As the �gure shows, the distance between
consecutive cycles is θ, as is the distance between two consecutive tool vectors on the same circle.

X

Y

Z

(0, 0, 1)

θ

a(sin θ, 0, cos θ)

Y

t

C1

C1

(a) (b)

a
X

b

θ

r1

r1 = sin θ

r1 = sin θ

h1 = cos θ

Figure 5: Generating points on a circle on the unit sphere.

We �rst compute circles on the unit sphere, as shown in Fig. 5, such that the angular distance between
two consecutive circles is θ. Let C1 be the closest circle to Z-axis on the sphere, and let a be the point on
the XZ plane on C1. Then the coordinate of a is (sin θ, 0, cos θ). Let r1 and h1 respectively be the radius
and height of the circle C1. Then r1 = sin θ and h1 = cos θ; see Fig. 5(a). Let C1, C2, . . . be the circles with
increasing angles θ, 2θ, . . . with the Z-axis. Then the radius rq and height hq of any such circle is given by
the following formulae.

rq = sin(qθ) (1)

hq = cos(qθ) (2)

We now compute points on C1 such that the corresponding vectors to the consecutive points on C1 have
angular distance θ. All such point will have Z coordinate equal to h1, we have to compute the X and Y
coordinates. We take a projection of C1 on the XY plane as shown in Fig. 5(b). Let the angular di�erent
of the points on the circle be δ1, and let b be the counterclockwise neighbor of a. Since the length of the
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vector from the center of the circle to b is r1, the coordinates of the point b will be (r1 cos δ1, r1 sin δ1, h1),
or (sin θ cos δ1, sin θ sin δ1, cos θ). Therefore the pth point counterclockwise from a will have the coordinate:

(sin θ cos pδ1, sin θ sin pδ1, cos θ)

We compute the value of δ1 from the dot product of the vectors −→a and
−→
b :

−→a ·
−→
b = |−→a ||

−→
b | cos θ

cos θ =
r21 cos δ1 + 0 + h21

|−→a ||
−→
b |

cos θ =
r21 cos δ1 + h21

1 · 1

cos δ1 =
cos θ − h21

r21

δ1 = cos−1
cos θ − h21

r21

Generalizing for any circle Cq, the angle δq between consecutive points on the XY projection of the circle
is:

δq = cos−1
cos θ − h2q

r2q
(3)

Therefore, the number of points on circle Cq would be 2π
δq
, where q = 1, 2, . . .. Fig. 6 shows all the circles

around the normal along Z-axis, where φ is the maximum tilt angle of the tool holder.

3.2 Building the Con�guration Graph

We build a con�guration graph with tool vectors as vertices. We then apply graph algorithms such as breadth-
�rst search or Dijkstra's shortest path algorithm on . For a tool-path with n points, we construct a con�guration
graph G as follows. G is a directed layered graph (directed edges appear only between consecutive layers)
with each layer corresponding to a point of the tool-path. Every layer of G contains vertices corresponding to
tool vectors of the corresponding tool-path point. We introduce a directed edge between two vertices in that
appear in consecutive layers exactly when the two corresponding tool vectors are compatible with the head's
speci�cations. Finally, we introduce two auxiliary vertices, a source s and a target t. We introduce a directed
edge from s to every vertex of the �rst layer of G, and directed edges from the last layer of G to t, see Fig. 6.
An s-t path in G corresponds to (collision-free) tool-vectors that are compatible with the heads specs along
the tool-path.

3.3 Computing a Collision-free Tool-path from the Con�guration Graph

To �nd a collision-free tool-path, we �rst apply the breadth-�rst search (BFS) algorithm to �nd an s-t path
in the unweighted con�guration graph. However, the path returned by BFS may have jittering issues, where
the direction of the tool vectors changes frequently, making the tool-path unsuitable for a 5-axis machine tool
or robot. We address this issue by considering a weighted con�guration graph, where the edges have weights
proportional to the angular di�erence between their two corresponding tool vectors of their endpoints. We
then �nd the shortest path from the source to the sink node using Dijkstra's shortest path algorithm. The
shortest path makes a minimal change to the tool vectors between consecutive tool-path points.
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Figure 6: Left: Generating tool vectors on a unit square withing the given conic volume around a normal
along Z-axis; isometric view (above) and top view (below) are shown. Right: A con�guration graph with 16
tool-path points, where 7 di�erent con�gurations are considered for each tool-path point. Vertices 0 and 113
are the auxiliary vertices s and t, respectively.

4 EXPERIMENTAL RESULT

We use APlus software that integrates with Mastercam to generate AM speci�c toolpaths and visualize them.
Our algorithm takes the tool-path generated by the APlus software as an input, as well the workpiece and

Computer-Aided Design & Applications, 20(6), 2023, 1094-1109
© 2023 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


1102

the holder geometry as STL (Standard Tessellation Language) �les, and generates a collision free tool-path if
such a path exists. If no collision free tool-path is found by our algorithm, we return the original tool-path
recieved as input with a noti�cation that the path has possible collision between the holder and workpiece.

We conducted our experiment on two solid parts shown in Fig. 7. We nicknamed the solids in Fig. 7(a)
and (b) as Bathtub and L-bracket. The two workpieces were chosen because the tool-path generated by the
APlus software causes collision between the holder and workpiece. Our goal was to generate tool-paths by
modifying the current tool-path that will be collision free and will not introduce mechanical issues such as
jittering.

Figure 7: The two solid parts used in our experiments, and collisions with tool holder. Above from left to
right: (a) Bathtub, and (b) collision with symmetric holder approximation. Below from left to right: (a)
L-bracket, and (b) collision with asymmetric holder.

4.1 System Speci�cation

Our testing system speci�cations are given below:

� CPU: Intel(R) Core(TM) i9-10885H CPU @2.40GHz
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� Memory: 32GB 2933MHz DDR4

� Storage: 953.86GB (Model: SKHynix_HFS001TD9TNI-L2B0B)

4.2 Tool-paths Generated by our Algorithm

Fig. 8 shows the modi�ed tool-path generated by our algorithm for the Bathtub solid, and Fig. 9 shows the
modi�ed tool-path generated by our algorithm for the L-bracket solid. In both the tool-paths generated by our
algorithm, the tool vectors have been modi�ed to avoid-collision. In Figure 8, one can observe that additional
points have been added to the tool-path so that the di�erence between the tool vectors of adjacent tool-path
points do not exceed some given threshold. Figure 9 shows another e�cient feature of our algorithm, i.e.,
only the tool vectors for the tool-path points that causes collision have been modi�ed.

To make sure that the tool-paths do not induce jittering to the holder or machine, we ran machine
simulations in Mastercam.

Figure 8: Above: Original tool-path with collisions generated by APlus for the Bathtub;below: the tool-path
that is collision-free, generated by our algorithm from the above tool-path.
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Figure 9: Above: the original tool-path causing collisions for the L-bracker; below: the modi�ed collision-free
tool-path that was generated by our algorithm.

4.3 Comparing Collision Detection Algorithms

We �rst compared di�erent collision detection algorithms to determine their performance on the two solids.

Experiment I: Bathtub and symmetric holder model. We ran Moller's algorithm with parallel execution
on the Bathtub using the symmetric holder model, and a collision-free tool-path was generated in 64 seconds.
For the same set up, Guigue and Deviller's implementation took 66 seconds. However, even with sequential
execution the commercial third-party library generated the desired tool-path in 4.4 seconds.

Experiment II: L-bracket and asymmetric holder model. Using parallel execution, both Moller's algorithm
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and the algorithm by Guigue and Deviller generated collision-free tool-paths in approximately 36 seconds. The
commercial third-party library took 9 seconds using sequential execution policy.

The running time for our two experiments are listed in Table 1. Since the commercial third-party library
was the fastest, we conducted further experiments using this library.

Algorithm Execution policy Symmetric holder & Asymmetric holder &

Bathtub L-bracket

Moller's algorithm Parallel 64 s 36 s

Guigue and Deviller's algorithm Parallel 66 s 36 s

Commercial third-party library Sequential 4.4 s 9 s

Table 1: Comparing our approaches in computing collision-free toolpaths.

4.4 Comparing Holder Model Approximations

Using the commercial third-party library, we measured performance of our collision avoidance algorithm for
di�erent approximations of the holder models from Figs. 3 and 4 in Mastercam with APlus.

L-bracket. The L-bracket tool-path contains 566 points. For the actual symmetric holder model generated
from Mastercam (1, 446 triangles), the algorithm takes 145 seconds; for the approximation (144 triangles),
also exported from Mastercam with a higher error tolerance, it takes 22 seconds; with the convex hull of the
approximated holder (72 triangles) the running time comes down to 13 seconds.

With the asymmetric holder model (6, 122 triangles) the running time is 400 seconds, with a coarser
approximation (340 triangles) exported from Mastercam it is 35 seconds, and with the convex hull of the
coarse approximation the time required is 15 seconds.

Bathtub. The Bathtub tool-path contains 273 points. For the actual symmetric holder model generated from
Mastercam (1, 446 triangles), the algorithm cannot generate a collision free tool-path; for the approximation
(144 triangles), a collision-free tool-path is generated in 19 seconds; with the convex hull of the approximated
holder (72 triangles) the running time comes down to 12 seconds.

With the asymmetric holder model (6, 122 triangles) the running time is 78 seconds, with a coarser
approximation (340 triangles) exported from Mastercam it is 27 seconds, and with the convex hull of the
coarse approximation the time required is 14 seconds.

The summary of our results are shown in Table 2, which shows that using the convex hull of a coarse
approximation improves the running time substantially.

5 FUTURE WORK

While building our con�guration graph, we generate a number of di�erent tool vectors for each of the tool-path
points. We then check for each such tool vectors, whether there is a collision between the holder and the
printing surface using a collision detection algorithm. Therefore, the performance of our algorithm depends
on the following factors:

1. E�ciency of the collision detection algorithm we choose.

2. Size of the con�guration graph. There are two sub factors.
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Test surface Symmetric Asymmtric Symmetric Asymmetric Symm convex Asymm convex

holder holder approximation approximation hull hull

L-bracket 145 s 400 s 22 s 42 s 13 s 15 s

(566 point)

Bathtub n/a 78 s 19 s 27 s 12 s 14 s

(273 point)

Table 2: Comparing performance of the collision avoidance algorithm using di�erent holder models.

(a) Number of tool-path points

(b) Number of tool vectors (i.e., con�gurations) considered for each point on the tool-path.

3. E�ciency of the algorithm to calculate the optimal collision-free tool-path from the con�guration graph.

Since we are using Dijkstra's shortest path algorithm for the last step, which is computationally optimal,
we focus on the remaining factors to improve the performance of our collision-avoidance algorithm presented
in the paper.

5.1 Improving E�ciency of Detecting Collision

We implemented collision-detection algorithms that checks for collision between each pair of triangles from
the surface mesh and the holder mesh. Here the number of triangles in the two meshes are usually huge. In an
e�ort to reduce the number of triangles in the holder mesh, we exported a coarse approximation of the holder
model from Mastercam and then computed its convex hull. As our experiments show, the performance of the
algorithm has improved using convex hulls. However, we have not changed the surface mesh. We believe that
by applying remeshing techniques, the size of the surface mesh can also be reduced, which can improve the
running time of our algorithm further.

Another technique that we are considering is using the slicing and clipping algorithm presented in [16, 18]
for collision detection. The idea is to compute `slices' of both the holder and the printing surface, where each
slice is a 2D polygon. Then for each pair of slices, one from the holder and one from the printing surface, we
compute the intersection of the polygons to see if there is any collision.

5.2 Using Less Number of Tool-path Points in the Graph

We design a heuristic algorithm as follows. Instead of using all the points on the tool-path when creating
the con�guration graph, we use some of the points. For example, we can take every tenth point to create
the graph, which will be much smaller in size. In that case, if the maximum change of angle between two
consecutive tool vectors for two adjacent tool-path points is θ, the maximum change we allow in the graph
will be 10 × θ. If we cannot �nd a continuous tool-path from the graph that respects the requirement of
maximum change of angle between adjacent points on the tool-path, we �rst �nd the bottleneck point; we
then add more points from the ignored tool-path points that are before or after the bottleneck point; then we
try to �nd a continuous tool-path in the modi�ed (and slightly bigger than before) con�guration graph. We
recursively apply modi�cation to the graph as long as we do not �nd a smooth and continuous tool-path from
the graph.
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5.3 Reducing the Number of Tool Vectors for Each Point

The idea here is to apply some local correction before computing the con�guration graph. Given the initial
tool-path, we apply a local correction similar to the approach in [8] whenever we �nd a collision. However,
these local modi�cations might give us a tool-path where the maximum angle between two adjacent tool
vectors might be bigger than the threshold. Therefore, we create a con�guration graph after applying the
local corrections, but in this case we consider a smaller conic volume around the new surface normal (not
around Z-axis as we do in this paper) at the tool-path points. The graph will be smaller in size and improve
the time to calculate a collision-free continuous tool-path.

6 CONCLUSION

The AM process family is expanding from the 2 1
2 D build domain into simultaneous 5 axis motions for the

DED process, allowing us to manufacture structures (e.g., overhangs beyond certain angle limits) without
extra support structures that needs to be removed later [6]; see Fig. 10. This introduces new process planning

Figure 10: Maximum allowed over hang angle for 3-axis and 5-axis machines [6].

challenges related to both heat management and collision avoidance. New tools to assist in developing viable
build strategies need to be developed. This research focuses on developing a foundation for fast, robust collision
avoidance. Multiple approaches are being explored. The running time of our algorithm greatly improves with
multithreading in the commercial third-party library. However, we believe that it can be improved even more
by using OpenCL to include GPU in the computation. In the future, we would like to test our algorithm for
complex multilayer tool-paths. Adding rapid moves (where no material is deposited) in the tool-path to avoid
collision could be another interesting direction.
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