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ABSTRACT 

 

This paper outlines an approach for the interpolation of scattered data points by Catmull-Clark 

subdivision surfaces. This approach relies in a fundamental way on an algorithm that groups the 

initial data points into a sequence of control polygons. Each one of these polygons is transformed 

in such a way that its corresponding limit curve interpolates its original control points. A polygonal 

complex is then constructed to embody each one of these polygons, which is then transformed to 

correspond to the original polygon it was embodying. Finally, automatic connection of each 

complex to its immediate neighbors is established. This process results in a control polyhedron 

whose limit surface interpolates the initial control points. This process is straightforward and easy to 

implement. While not utilizing too many auxiliary data points, these additional points can be used 

to tailor the interpolating surface to suit additional user requirements, without affecting the initial 

interpolation constraints.  
 

Keywords: Catmull-Clark Subdivision Surfaces, Polygonal Complexes, Skinning, Active Contours, 

Interpolation. 

 

 

1. INTRODUCTION 

Numerical data in the form of 3D points usually arises in continuous domains both in science and in technology; e.g. 

engineering, medicine, earth science and meteorology. This data is usually collected in a fashion that cannot 

predictably be in any specific order. In this context, constructing a surface that interpolates these data points is 

motivated by the need to organize such data in a manner more meaningful to the goals it is collected for.  

 

When constructing a continuous surface interpolating a random collection of points in the 3D space, one has the 

following two options: interpolation or approximation. While the first option produces an exact result (in the sense that 

it does not except any of the input data), the latter could be more appropriate in the sense that it will leave out noisy 

input, and thus produces a better result.  

 

Whether to opt for one of the above options or the other largely depends on the expected input and on the expected 

use the result is going to be put for. In this paper, we choose to address the interpolation problem. Thus, although not 

known in advance, the sets of data points treated as input are expected to belong to a coherent surface admitting not 

too complex a representation. We follow this line even though an initial idea of what this surface is like should provide 

pointers for improving the quality of the result. 

 

The research that has been done on the interpolation of scattered data points is already extensive [11, 12]. Some of 

the reported methods can be classified as global methods, because the construction of the interpolating surface 

requires the evaluation of a function over all the given data points. Understandably, global methods tend to be 

expensive when applied to larger sets of input data. Therefore more localized methods tend to fare better in this 

respect. The reader is referred to [7] for an in-depth review of the state of the art of the subject up to late 90’s. 
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This paper outlines an approach for automatically constructing a subdivision surface interpolating an initially 

unorganized set of data points in the 3D space. The only assumption required by this approach is that the data points 

come (or intended to be) from an (initially unknown) surface of reasonable smoothness. Other than that, the approach 

is quite straightforward, easy to understand and implement. While not utilizing too many auxiliary data points, these 

additional points can be used to tailor the interpolating surface to suit additional user requirements, without affecting 

the initial interpolation constraints. Furthermore, the amount of computation required by this method is reasonable 

when measured in terms of time as well as space metrics. 

 

The major challenge that this task faces is that the set of data points is not initially given in any meaningful order. To 

address this difficulty, we follow the main direction taken in [5]. We also adopt the basic terminology used there, 

although the finer details and the ultimate goals of the approach reported in this paper are radically different. 

 

2. SUBDIVISION AND POLYGONAL COMPLEXES 

Before going into the details of the approach, we start by presenting some background information necessary to make 

this paper somewhat self-contained.  

 

2.1. The Catmull-Clark Subdivision Scheme 

We use Catmull-Clark subdivision [4] to illustrate the interpolation process. Catmull-Clark surfaces are a generalization 

of tensor product cubic B-splines. According to this scheme, an initial control polyhedron is subdivided into another 

control polyhedron as depicted in figures 1(a) and 1(b). 

 

At the end of this process, each F-vertex is connected to the adjacent E-vertices and each E-vertex is connected to the 

adjacent V-vertices. The resulting faces will form the new subdivided polyhedron. In this context, note that repeated 

application of this subdivision process will in general lead to more faces and smaller edges. At the limit, this will 

converge to a smooth surface. 

 

Initial 

polyhedron 
Subdivided 

polyhedron 

Subdivision  

Rules 
face f F-vertex vf average of vertices of f 

inner edge e E-vertex ve average of vertices of e together with the F-vertices of  adjacent faces of e 

inner vertex v V-vertex ((n-2)*v + (R + S)/n)/n 

where 

n is the number of faces adjacent to v 

R = Sum ({vi; i = 1 .. n}), where vvi is an edge  

S = Sum ({vfi; i = 1 .. n}), where vfi is an F-vertex of a face fi containing v 
 

Fig. 1(a). The Catmull-Clark Subdivision Scheme: 

The rules for generating the various type of faces in a refined polyhedron 

 

 
Fig. 1(b). The Camull-Clark Subdivision Scheme:  

A red polyhedron resulting from a black polyhedron in one subdivision step 
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According to this formulation, the border edges and vertices do not contribute any new vertices. Therefore, these 

vertices and edges are kept away from the limit surface. However, these vertices and edges are sometimes 

incorporated into the main subdivision routine as special cases. 

 

2.2. Polygonal Complexes and Their Limit Curves 

In the context of any given subdivision scheme (S), a polygonal complex is thought of as a polygonal structure whose 

limit under (S) is just a curve (see figure 2).   

 

In the context of Catmull-Clark subdivision, a general polygonal complex is simply a polygon (M) set as the 

intersection of a pair of sequences of faces (T) and (B) both of the same length as (M). It is important to note here that 

each inner vertex of this complex is regular in the sense that it connects exactly four edges of the surrounding faces.  

However, these faces do not have to be rectangular at their outer edges.  

 

 
 

Fig. 2. A Subdivided General Polygonal Complex and its Limit Curve 

 

Note here that a general complex can be transformed into a simple one after be performing a single subdivision step. 

Here, a polygonal complex is simple when all its constituent faces are rectangular. This way, the complex admits a 

representation of three rows of vertices (ti), (mi) and (bi), all of the same length. This makes the complex fits very 

nicely into a 3×n matrix M of vertices. 

 

In this context, the limit of a simple complex M is a B-spline curve whose control polygon P is given by the following 

formula (see [8] and [9]): 

(1/6)*[1 4 1]*M                                                                                                  (1) 

 

Now, if a complex M’ is obtained from a complex M by substituting the mid-polygon m of M by the polygon: 

 

m’=(1/4)*[-1 6 -1]*M                                                                                        (2) 

 

then the limit of M’ is a B-spline curve identical to that of m. 

 

3. SCATTERED DATA POINTS INTERPOLATION 

The interpolation task can modularly be divided into three major steps: 

 

1- Slicing: this is the process of partitioning the initial set of data points into separate subsets. 

 

2- Fitting: this is the process of ordering the elements of each subset so as to form a specific polygon. 

 

3- Linking: this is the process of linking (and maybe modifying) the polygons of step (2) above so as to form a 

control polyhedron. This is constructed in such a way that its subdivision will (at the limit) result in a surface 

interpolating the initial data points.  



 

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 77-84 

 

80 

We note here that the polygons generated in step (2) need not be all of the same length. Moreover, along with other 

known interpolation methods, this process introduces more auxiliary points, especially in step (3) above. These 

auxiliary points are necessary in order to achieve interpolation. In our approach, an upper bound on the number of 

these auxiliary points can be estimated in advance and is modest in comparison to that required by other interpolation 

methods.  

 

Note that these extra points give the overall process an added degree of freedom, which can be exploited in modifying 

the quality of the interpolating surface. This can be used to satisfy additional user requirements such as local normal 

and cross curvature values in specified regions of the generated surface. 

 

3.1. Slicing the 3D Data Points 

The first step of the process consists of partitioning the 3D data points into separate subsets. The point elements of 

every subset can be ordered then linked according to this order so as to form an open polygon. The result of this 

process will be a set of “parallel” (i.e. non-intersecting) polygons. 

 

In the absence of any guiding information as to how the slicing should be conducted, the basic guiding intuition that 

remains is the relative distances between various points and the likelihood that this slicing process will lead to those 

parallel polygons. We might add here that the coordinate system with reference to which these points are represented 

will have a role in the success of the algorithm presented below. Moreover, a relative coordinate system [5] that 

improves the performance of the algorithm presented below is worth investigating together with the other techniques 

[13].   

 

3.1.1. The Slicing Algorithm  

 

Input: a set of scattered 3D data points S 

 

Output: a set of slices (Pi).  Each slice Pi becomes a polygon toward the end of this process 

 

1. Calculate the minimum (nx, ny and nz) and the maximum (mx, my and mz) of the corresponding 

coordinate value (x, y and z) of all points <x, y, z> elements of S. 

2. Calculate the differences dx = mx – nx and dy = my – ny and dz = mz – nz. 

3. Arrange dx, dy and dz in decreasing order then rearrange the coordinates of each point of S in such a 

way that dx ≤ dy ≤ dz. 

4. Ignore dx for the moment. 

5. Subdivide the interval [ny .. my] into a sequence of k subintervals each of which has a length equal 

to no more than d, where d is the minimum non-zero difference between the z-coordinates of 

various points of S. 

6. Divide S into a sequence P of k sets sz, where each sz contains the elements of S whose z 

coordinates fall into the corresponding subinterval of step 5. 

7. Perform the union procedure on P (see below) repeatedly until each element of P contains the 

minimum required number of points. 

8. Undo the arrangement performed in step 3 over all the points in P. 

9.  Perform an ordering over each element of P (for example, lexicographical ordering) with respect to 

x and z and in that order). The aim of this ordering is to make a polygon out of each of these 

element sets. At the end of the process, these will be transformed into a sequence of “parallel” (i.e. 

non-intersecting) polygons (see section 3 below for more elaboration on this particular step). 

 

It is important to note here that the polygons resulting from the above algorithm are not necessarily of the same size 

(see figure 3). Furthermore, it will be instructive to compare this algorithm to the one presented in [5] which is 

intended to do a similar task. In comparison with that algorithm, for example, the data points in each layer do not 

have to be coplanar; that is, the layer can have some thickness. 
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Fig. 3. The Slicing Procedure 

 

3.1.2. The Union Procedure over P 

 

1. Find the element sz of P, which contains the minimum number of elements. 

2. Unite sz with the previous element pz (if any) (resulting in uz) and the next element qz (if any) 

(resulting in vz) in the sequence. 

3. Choose from uz and vz the set that contains the minimum number of elements. 

4. Replace by this set inside P, the pair of elements of P this set is the union of. 

 

3.2. Fitting 3D Data Points into a Polygon 

The task here is to order the data points of a given set so as to form a polygon with some desirable “smoothness” 

characteristics (see figure 4). The quality of the polygon resulting from this process will affect the quality of the resulting 

surface in a fundamental way. The main difficulty here resides in the fact that the “nice” property of the resulting 

polygon is inherently vague and, therefore, hard to capture. 

 
Fig. 4. The Fitting Procedure 

 

A first attempt at doing that is to select some point in the set as an initial starting point and to pick the next point as the 

closest (in terms of Euclidean distance) and so on. However, experimental results have shown that reliance on the 

closeness property alone can quickly lead to anomalies (such as self intersection) in the resulting polygon.  

 

This ordering problem may alternatively be looked at as an optimization problem. For example, in [11], this is seen as 

a contour deformation exercise. That is, the process starts from a known contour (a curve, such as the arc of a circle). 

This curve is then deformed step by step through minimizing a certain energy function. More details about this process 

can be found in [6]. This process terminates with the curve becoming a snake passing through all the initial data 

points. This way, the points are ordered as they are found on the curve, thus giving the desired polygon. 
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3.3. Generating the Control Polyhedron 

 

3.3.1. Interpolating a Set of Points by a B-spline Curve 

The task now is to link the generated polygons together so as to form a control polyhedron. When subdivided, this 

control polyhedron will converge on a smooth surface interpolating the initial data points.  

 

This task requires the introduction of auxiliary points at two different stages of the process. These are: 

 

1. Interpolating a set of points by a B-spline curve. 

 

2. Interpolating a set of “parallel” (i.e. non-intersecting) curves by a subdivision surface. 

  

This first stage is very well covered in the CAGD literature, and the second stage is often called lofting (or skinning 

[10]). However, it will be somewhat insightful to note here that the approach pursued in this paper regards the first 

stage as a particular case of the second. This can clearly be seen in the situation where every curve in the second stage 

collapses to a point. In this situation, the interpolating surface just collapses into the interpolating curve of these points! 

 

The task of interpolating the data points specified by a polygon P = (mi)i is traditionally addressed through the 

construction of a system of linear equations. However, in our approach, all we have to do is to insert some more 

auxiliary points in between the points mi’s to obtain a new polygon P’. This is done in such a way that there is at least 

one new point between any to consecutive initial data points. The knot refinement algorithm [3] may be employed 

here to produce these auxiliary data points.  The minimum number of auxiliary points required for a polygon of length 

n is 2n+1. 

   

Now, for every triplet M = [t m b] of consecutive points of the polygon P’, were m is an initial data point and t and b 

are auxiliaries, we replace m by m’ obtained by applying transformation (2) above. This way, we obtain another 

polygon P’’ which, when subdivided, will converge on a curve interpolating the initial data points. 

 

It is evident that the quality of the interpolating curve is very much affected by the way the intermediate auxiliary 

points are selected. In turn, the quality of the curve will affect the quality of the interpolating surface. So, we might as 

well exploit this additional degree of freedom to satisfy additional user requirements, such as normal and curvature 

constraints (see figure 5). 

 

 
 

Fig. 5. Multiple Curves Interpolating a Given Set of Points  

 

Here, we refer the reader to [1], where we discuss in more details how a surface can be modified to satisfy additional 

user constraints, while maintaining the original interpolation constraints intact. 

 



 

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 77-84 

 

83 

3.3.2. Interpolating the Resulting Curves by a CC Subdivision Surface 

The task here is to link the consecutive polygons obtained from the previous stage so as to form a control polyhedron. 

This polyhedron will then be subdivided to obtain the final interpolating surface. 

 
Fig. 6. The linking Procedure 

 

We start the process by generating, for each polygon (mi), two more polygons (ti) and (bi) of lengths identical to that 

of (mi). This way we obtain a sequence of polygonal complexes Mj = (<t m b>i)j. Thus, two consecutive polygons 

(mi) and (mi+1) will be separated by two new polygons (bi) and (ti+1) not necessarily of the same length. Note here 

that these pairs of polygons are linked together using an algorithm that relies on information based on the relative 

Euclidean distances between pairs of points from corresponding consecutive polygons. The specific details about how 

this linking process is conducted may be found in [9].  Note here that if (bi) and (ti+1) both have the same length then 

both can be replaced by a single polygon:  (<bi + ti+1>/2), for example. 

 

 
 

Fig. 7. The Interpolating Surface 

 

Finally, we replace each polygon (mi) in the polygonal complex Mj = (<t m b>i)j  by (m’i) obtained through 

transformation (2) above.  When subdivided, the final polyhedron obtained as such will result in a surface that 

interpolates the curves corresponding to (mi). Therefore, this surface will interpolate the original data points (see 

figures 6 and 7).   

 

Again here, the extra points obtained in this part of the process can be manipulated to satisfy user requirements as to 

the quality of the resulting surface. This is again related to the normal and curvature values at the specific points being 

interpolated. More details on this particular point can be found in [1]. 
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4. SUMMARY AND FURTHER WORK 

The approach outlined in this paper follows from a combination of several existing techniques: (1) slicing: to divide the 

main group of points into separate subgroups, (2) active contours (or snakes) to order each subgroup into a polygon, 

and (3) lofting (or skinning): to link these polygons into a single polyhedron whose subdivision will result in a surface 

interpolating the original control points. It is obvious that the quality of the resulting surface depends a lot on the 

relative position of the extra points added during the process. That is why plenty of care should be paid when selecting 

those points. Our approach comes equipped with useful tools for doing that.  

 

Finally, we point out another distinct possibility that is worth following. In fact, the slicing phase may perhaps be 

substituted by a process (similar to triangulation) so that the sequence of non-intersecting polygons obtained at the end 

of this phase directly forms a network. This will eliminate the need for active contours and for skinning. The remaining 

steps of the process will then follow what is prescribed in [2]. 
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