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ABSTRACT 
 

This paper proposes a Reconfigurable Mechanism for Application Control (RMAC) framework, 
which allows for mapping a mechanism into a device driver for direct control by an application like 
CAD/CAM. The RMAC paradigm is one of a mechanism device driver assigned to each 
mechanism class or model, which can be used by a CAD/CAM process planner to control the 
mechanism. Under the RMAC architecture, the traditional M & G code language is no longer 
necessary since motion entities (NURBS, lines, arcs, etc) can be passed directly to the mechanism 
through the device driver interface. The design strategy of using dynamic-link libraries (DLL) to 

form a mechanism device driver permits a mechanism to assume different operating 
configurations, depending on the number of axes, machine resolution, and the relevant device 
driver functionalities. For example, the machine can perform as a milling machine in one instant, 
and then, by loading a new device driver, act as a Coordinate Measuring Machine (CMM). The 
architectural framework is explained in detail and the methodology for control software 
reconfiguration into a device driver is presented. Finally, a device driver to connect a three-axis 
tabletop mill directly to CATIA is implemented. 
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1. INTRODUCTION 
The integration of computing advancements into manufacturing operations lags behind the hardware and software 
innovations. For example, parametric surfaces are now popular and are widely used in product design and 
manufacturing, such as the complex NURBS mathematical form. Unfortunately, current machine tools still rely on 
closed architecture controllers that process the same M & G code designed over fifty years ago for punch-tape 
controllers. Because the standard M & G code specification is limited in the motion forms supported, and in 
manufacturing intent, each machine tool vendor extends the standard for proprietary forms and process intent. This 
means that their adapted controllers are closed and proprietary, thus, making it difficult to interchange machine codes 
between different machine tool controllers. More importantly, the obsolete M & G code does not allow machine tools 
to easily adapt to new manufacturing demands or technology innovations. 
 
CAD/CAM systems and their part geometry and process instructions must currently be decomposed into the forms 
required for each machine’s controller. This requires that CAD/CAM vendors develop specific post-processing interface 
software for each machine tool. Indeed, this decades-old design strategy limits the model/process associativity with the 
actual manufacturing process. Ultimately, the factory floor cannot maintain pace with the revolution in software 
technologies. Both design and manufacturing are limited in their evolution. 
 
The RMAC architecture proposed in this paper overcomes these limitations by seamlessly integrating CAD/CAM 
applications to the mechanism control system. A device driver paradigm maps the mechanism configuration and 

capabilities to the manufacturing process intent of a CAD/CAM process plan. Machine tools are treated like part 

printing devices directly connected to CAD/CAM (or other) applications. The controller driver can be run-time loaded 
by CAD/CAM applications for directly controlling a particular machine. 
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2. BACKGROUND 
 

2.1 Related Research 
In the past decade there has been significant pressure from end users to open current closed and proprietary CNC 
architecture. This has resulted in a wave of so-called Open Architecture Control (OAC) system projects [5][7]. The 
goals are to develop standard components that can be integrated into different control systems to satisfy end users’ 
specific needs. 
 
More recently, with open-architecture control as a basis, some researchers proposed to develop reconfigurable machine 
tool controllers that will allow end users to have even more flexible control systems on their factory floors. In a 
European Union-sponsored report [1] in the early nineties, a strategy was outlined to ensure the long-term survival of 
the European machine tool industry. The report stresses the need for machine tools to be designed and built 
modularly, so that machine tool vendors can specialize in particular modules instead of complete systems. This strategy 
requires splitting a machine tool into a set of autonomous functional units that can be “plug-and-play” interfaced to 
form complete systems for particular customers’ needs. The European MOSYN (Modular Synthesis of Advanced 
Machine Tools) project [4] and the Reconfigurable Machining Systems [10] of the special research program (SRP) 467, 
sponsored by the German Research Foundation, are all aimed at developing modular and reconfigurable controllers 
that can be utilized on Reconfigurable Manufacturing Systems (RMS). 
 
Even though significant research has been done, these developed architectures are still insufficient for two reasons. 
First, these control architectures still rely on machine-dependent M & G codes. Therefore, these so-called open control 
and reconfigurable control systems are still not truly interchangeable, reconfigurable, or open to machine end users or 
any third party developers. Second, these control architectures do not maintain associativity between the CAD model, 
CAM system, and the CNC machine. This is a great deterrent to fully integrated CAD/CAM and sensor-based control. 
 
2.2 Step-NC 
A modernized machining code standard (ISO 14649), called STEP-NC, is being developed. STEP-NC extends the 
STEP geometric data exchange standard (ISO 10303), a neutral data exchange format, into the manufacturing 
domain by defining a two-way interface between CAM process planning systems and NC control systems. STEP-NC is 
a neutral data description language designed to be CAM independent and NC machine-tool independent; thus, the 
post-processing of process plans into M & G codes specific to each machine is no longer necessary. 
 
Currently, under the IMS project [8][9] called STEP-NC in Europe and Asia, and Super Model in USA, industrialists 
and academics are collaborating to deliver a new data model as an ISO 14649 standard for CNC machines and to 
develop STEP-NC controllers. Even though STEP-NC provides a better link between CAM systems and CNC machine 
tools, it has not taken the integration process far enough. It still requires the translation of the CAD process planned 
model into a STEP-NC file that is disassociated with the CAD model before it is processed by the controller. 
 
2.3 Direct Machining and Control (DMAC) 
Beginning in 1998, the Direct Machining And Control (DMAC) research group at Brigham Young University has 
developed an open-architecture controller [2][3][6] that directly interfaces to application software like CAD/CAM. The 
DMAC architecture is configured on a dual-processor platform.  Fig. 1 shows the current DMAC architecture. The top 
layer of the DMAC system is a non real-time Windows CAD/CAM application that runs on one processor. All real-time 
control applications, such as motion planning and servo-control loops, run on the second processor, with feedback 
between the motors and I/O occurring over a high speed digital network. The direct communication between 
CAD/CAM application and real-time application is through a Direct Machine Interface. The DMAC controller has been 
implemented to directly connect ParaSolids, Unigraphics, Alias, GibbsCAM, CATIA and PC-DMIS, a popular part 
dimensional inspection application. 
 
The DMAC architecture is fully software-based and can be configured to communicate directly with any CAD/CAM 
system, given the right interface functionality. This direct control architecture forms the foundation for building device 
drivers to connect various mechanisms directly to a CAD/CAM application. This is the subject of this paper. 
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Fig. 4. RMAC controlling steps 

3. METHODOLOGY 
 

3.1 Conventional controller vs. RMAC controller 
In a traditional CNC paradigm, one machine tool controller is dedicated to a particular CNC machine tool. The 
functionality of that controller cannot be changed by end users for controlling different machines.  
Fig. 2 shows the standard steps used to plan a process and conduct it on a machine tool: 

• Model a part using a CAD system. 

• Create tool paths using a CAM system. 

• Output a CL or APT file that contains tool path geometry data. 

• Post-process the CL or APT file to obtain an M & G-code file, which then is delivered to the machine. 

• Operate the machine until the part (or batch of parts) is made. 
 
CL and APT files are independent of any machine tool controllers, but the M & G file is machine specific and is not 
always interchangeable between different machines. 
 
Fig. 3 presents the RMAC paradigm. Under this new paradigm, machine tools are controlled similar to the way printers 
are controlled by a personal computer. All machine tools are directly connected to CAD/CAM applications through 
different device drivers. CAD/CAM users can select different machines to execute the process plans based on 
manufacturing process requirements. By calling a specific device driver, the CAM process plans and tool paths can be 
sent directly through the driver interface. The software driver can then enable the same reconfigurable controller for 
controlling the machine that is connected through this driver.  
 
3.2 RMAC control schemes 
The RMAC architecture developed in this research is generic, and therefore applicable to various control applications, 
such as machining, welding, robotics, etc. For these different applications, the control software must be flexible enough 
to accommodate different control schemes. 
 
3.2.1 Position and velocity control 

For most modern machine tools or robots, position 
and velocity control is the most widely used 
method. Fig. 4 shows how RMAC controls the 
position and velocity of a mechanism’s tool. The 

Fig. 3. RMAC paradigm 

Fig. 2. Conventional CNC paradigm 

Fig. 1. DMAC architecture 
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first step is to generate tool paths inside a CAD/CAM package. The process plan may also specify path following 
speeds and a spindle rpm. A Cartesian trajectory generator is used to interpolate the tool paths to generate the tool 
position as well as the orientation that the tool can follow. 
 
To follow the desired Cartesian tool path, position, velocity, and acceleration setpoints must be found for each 
individual joint. This requires a mapping between a mechanism’s Cartesian space and its joint space. Inverse 
kinematics is used to map a mechanism’s Cartesian state to its joint state. The inverse Jacobian is used to map a 
mechanism’s Cartesian velocity to its joint velocity. The equation Θ’= J-1(Θ)υ relates the joint speed vector to the 
corresponding tool speed vector, where Θ’ denotes the joint speed vector and υ, the tool speed vector. J-1(Θ) denotes 
the inverse Jacobian matrix, reduced to a square independent form. The inverse kinematics and the inverse Jacobian 
are machine-dependent. Therefore, each mechanism requires a specific inverse kinematics and inverse Jacobian 
algorithm. The motion planner [6] is responsible for generating all these motion setpoints. 
 
Once the actuator setpoints are determined, they are passed to the servo controller [2]. Based on certain servo control 
algorithms, the servo controller computes the torque value to command the motors to move to those desired setpoints. 
The servo control algorithms may be machine-specific as different mechanisms may require different servo control 
algorithms based on the machine tolerance or customer requirements. 
 
Finally, a digital motor and I/O interface is necessary to handle the connections to the digital motor drives and external 
I/O sensors. 
 
3.2.2 Force or hybrid force/position control 

While position and velocity control are widely used in machine tools and robots, there are other occasions when 
position control alone may not suffice. For robotics assembling, or friction stir welding, the contact force or a 
combination of force and position may need to be controlled. 
 
Fig. 5 shows a hybrid force/position control scheme 
applied to a three-axis kinematics structure. This 
mechanism has three prismatic joints directed along 
X, Y, and Z. The X and Y prismatic joints are free 
to move, while the Z axis is force constrained 
 
The solution to this hybrid force/position control 
problem is to control joints X and Y with a position 
controller while simultaneously controlling the 
contact force along the Z axis with a force 
controller. Joints X and Y are processed within the 
motion planning loop as described in section 3.2.1. 
The Z axis is out of the motion planning loop. Fd is the desired contact force that needs to be controlled. The actual 
force (F) is measured by a force sensor, which is attached to the Z axis. This value is fedback to the force controller for 
adjusting the necessary control effort for joint Z. 
 
As illustrated, these control schemes are quite different in terms of their control characteristics and the control methods 
utilized. To take advantage of these control methods and to integrate them into RMAC, a flexible software architecture 
must be developed, allowing for easy reconfiguration of these different control methods. 
 
3.3 Software architecture 
Fig. 6 shows the RMAC architecture. The software system is composed of the following six different programs:  

• CAD/CAM system creates 3D representations of physical models and generates the manufacturing process 
plans. 

• Device driver manager maintains a device driver database relevant to a collection of different mechanism 
devices and their driver DLLs. Meanwhile it provides interface APIs for CAD/CAM users to query for a proper 
machine and then locates a driver DLL for that machine. 

• Device driver connects a physical mechanism directly to a CAD/CAM application and processes the CAD/CAM 
function calls to enable easy reconfiguration of the DMAC controller necessary for direct control. 

Fig. 5. Hybrid force/position control 
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• DMAC_Config interface directs the configuration commands from a device driver to the DMAC controller to 
allow the reconfiguration of the motion planner, servo controller, and the underlying digital control interface. 

• DMAC_CAM interface directs the motion and control commands to DMAC, receives the machining feedback 
information, and sends it to a device driver software. 

• DMAC open-architecture reconfigurable controller interpolates motion and control commands to generate the 
necessary torque values to drive each individual motor. 

 

Fig. 6. RMAC overall architecture 

The remaining of this section describes each part of the software system as displayed in Fig 6. In addition, the flow of 
information among these different programs and the interface APIs enabling this information flow is also discussed. 
 
3.3.1 CAD/CAM 

CAD/CAM systems are computer-aided engineering tools that are widely used to assist product design and 
manufacturing. Fig. 7 shows a Ford GT top surface being modeled and process planned in CATIA. Traditionally, these 
manufacturing process plans must be post-processed into the ASCII APT and M & G files to be executed on a 
machine. To overcome this limitation, a device driver is developed for each individual machine to be connected 
directly with CAD/CAM systems. Whenever CAD/CAM users generate the manufacturing process plans and are ready 
to execute them on a machine, they will first select a machine to perform the process. CAD/CAM software will 
automatically load a relevant device driver and then pass the process plans directly to that machine through the device 
driver.   
 
Because many different machines exist that are feasible for 
executing a manufacturing process plan, a configuration dialog box 
(see Fig. 8a) is designed as a plug-in user interface to CATIA to 
assist users in selecting the best machine tool. This dialog box allows 
CAD/CAM users to see the different machines, and provide users 
with enough information to select the proper machine to perform 
the process. To better assist CAD/CAM users, the device driver 
manager has a built-in search engine, enabling them to narrow 
down their selection to a few machines, based on various machine 
filter schemes. Fig. 8b shows two selected machine tools classified as 
5-axis mills, with working volume greater than 100x100x100 mm. If 

CAD/CAM users want more information about a particular 
machine to make a better decision, they can click the machine 
characteristics button to open a new dialog box, as shown in Fig. 
8c. 
 
3.3.2 Device driver manager 

The device driver manager (see Fig. 9) is a DLL running independently from CAD/CAM systems. The functions of the 
device driver manager are as follows: 

• Maintain a device driver database relevant to a collection of different machines and their driver DLLs. 

• Provide built-in database search engine to assist CAD/CAM users to narrow down their selected machines based 
on various search schemes. 

• Provide interface APIs to communicate with CAD/CAM applications. 
 

Fig. 7. CATIA process plan 
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3.3.2.1 Device driver database 

The device driver manager maintains a database called the device driver database. Tab. 1 displays part of the database 
for demonstration purposes. This database contains the minimum amount of information relevant to a mechanism and 
its device driver. Its purpose is to allow CAD/CAM users to inquire about a mechanism and its device driver to assist 
their evaluation and selection of a machine tool. 
   

  
 

 
 

 
 
 
 

Fig. 8(a) Machine configuration user interface,  (b) Selected machine tools,       (c) Machine characteristics dialog box 

Fig. 9. Device driver manager 

Tab. 1. Device driver database 
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The design form for the database is Microsoft Access, a low-end relational database widely used on small and medium 
sized databases. The device driver manager uses the structured query language (SQL) statements to query this 
database to search for proper machines upon users’ request. 
 
Since a manufacturing organization may have hundreds of different machines for CAD/CAM users to choose from, by 
using this search engine, CAD/CAM users can easily narrow down their selection to a few machines.  For instance, if 
CAD/CAM users wish to find a 5 axis mill classified machine, with a working volume greater than 150x150x150 mm, 
and a mechanism spindle greater than 5 hp, one SQL query in the database will narrow their selection to a single 
machine: TarusXYZCA, (see Tab. 1). This search and selection process reduces the need for CAD/CAM users to review 
every available machine before finding one capable of performing the manufacturing process. Once the device driver 
manager obtains this machine and device driver information, it can pass this information back to the CAD/CAM user. 
 
3.3.2.2 Interface to CAD/CAM 

The device driver manager is designed as a DLL and is a stand-alone program; thus, it must expose some interface 
APIs to enable communication with CAD/CAM systems. The interface APIs are separated into two groups: functions 
that allow CAD/CAM systems to access the device driver database, and functions that return the selected machine 
information back to CAD/CAM. 
 
CAD/CAM applications call the first group of interface APIs to operate on a device driver database. The sequence for 
operating this database is: (1) open the database; (2) use SQL statements to query the database; (3) return the query 
results; and (4) close the database. 
 
CAD/CAM applications call the second group of interface APIs to obtain information related to a selected machine. 
This machine information will then be displayed to CAD/CAM users, as described in section 3.3.1, for proper machine 
evaluation and selection. 
 
3.3.3 Device driver 

A device driver (see Fig. 10) must be developed to connect a mechanism device directly to CAD/CAM. It may be 
useful to think of a complete mechanism device driver as 
a container for a collection of methods and classes. These 
methods and classes can be called by CAD/CAM systems 
to perform various operations on the connected 
mechanism device and to read back the mechanism 
operational parameters, such as current feedrate, spindle 
speed, joint value, current torque, etc. Each device driver 
must be able to entirely determine a particular 
mechanism’s behavior and understand exactly how to 
make the mechanism work for the user. Specifically, the 
device driver should be designed with the following 
functions: 

• Apply a self-contained device database to expose the details of a mechanism device. 

• Expose functions required by CAD/CAM.  

• Communicate directly with the DMAC reconfigurable controller. 
 
The device driver is designed as a DLL. Under the RMAC paradigm, each device driver is assigned to a mechanism 
class. The functionality of a DLL makes it the perfect form for a mechanism device driver. By using DLLs, the 
machine-specific software modules can be designed, linked, and debugged independently. These DLLs are separate 
executable files and are completely independent of all other software. If the functionality of a mechanism device driver 
needs to be updated or enhanced, the driver developers only need to update this device driver DLL. 
 
3.3.3.1 Device database 

Each device driver has a self-contained device database, as shown in Tab. 2. The primary purpose for developing this 
device database is to allow CAD/CAM users to easily access any machine information prior to selecting a particular 
machine to execute the manufacturing processes. The secondary purpose is to allow the device driver to correctly 
configure the DMAC controller based on information contained within the device database.  

Fig. 10. Device driver 
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As shown in Tab. 2, the device database contains three categories of information that are relevant to a mechanism 
device: 1) primary machine characteristics, such as the number of axes, etc; 2) machine operational parameters, such 
as mechanism maximum feedrate, spindle maximum RPM, etc; 3) machine-specific motion planning and servo 
controlling capabilities, such as kinematics, servo control law and servo gains used on each axis, joint to actuator 
mapping, etc. 

Tab. 2. Device database 

 
 
3.3.3.2 Interface to CAD/CAM 

The communication between the device driver and CAD/CAM systems are through a set of device driver interface 
APIs. The interface APIs are divided into three groups: 1) functions that allow CAD/CAM systems to access the device 
database, 2) functions that return this specific machine information back to CAD/CAM, and 3) functions that instruct 
the DMAC open-architecture controller to set up correct operational parameters and configure the motion planning 
and servo controlling algorithms that are specific to this mechanism. The first two groups of APIs are similar to that of 
the device driver manager’s interface APIs described in section 3.3.2. CAD/CAM applications use the third group of 
interface APIs to correctly configure DMAC prior to executing a manufacturing process plan. 
 
3.3.3.3 Interface to DMAC 

A device driver connects CAD/CAM applications to DMAC. It receives process instructions from CAD/CAM and then 
passes them to DMAC. The device driver software uses two COM interfaces, DMAC_Config and DMAC_CAM, to 
communicate with the DMAC controller. It uses the DMAC_Config interface APIs to instruct DMAC to correctly set up 
machine parameters and to map mechanism-specific motion planning and servo controlling algorithms into its 
controller software. Once the device driver software finishes reconfiguring DMAC, it then uses the DMAC_CAM 
interface APIs to pass process instructions to DMAC. The device driver software contains an instance of the 
DMAC_Config and DMAC_CAM objects. As a result, the interface APIs contained within these two COM interfaces are 
directly available to the device driver. 
 
3.3.4 DMAC_Config and DMAC_CAM interfaces 

To connect any control input to DMAC, multiple COM-based 
control plug-ins have been developed. These COM-based control 
plug-ins act as the interface between DMAC and an external control 
source. Fig. 11 shows a few existing COM interfaces that have been 
implemented. It also shows a newly developed COM interface that 
allows for reconfigurable control. 
 
The DMAC_Config interface contains well-defined function calls 
that allow a device driver to instruct DMAC to reconfigure its motion 
planner, servo controller, and digital control interface, which, in 
turn, is necessary to control a particular mechanism. 
 
After a device driver instructs DMAC to reconfigure its control software components, the DMAC controller is ready to 
take motion and control commands for direct machining. Once control commands have been accepted by the device 
driver software, they are ready to be passed to DMAC. The device driver communicates with DMAC through a COM 
interface called DMAC_CAM. DMAC_CAM is directly interfaced with the motion planner, and allows the device driver 
to pass motion commands to DMAC as well as to send and receive other control information. 
 
The interface APIs defined within the DMAC_CAM COM interface are divided into two groups. The first group is used 
by the device driver to instruct DMAC in executing process plans. The second group allows the device driver to obtain 
current operational parameters, such as the current spindle speed.  
 
 

Fig. 11. COM-based plug-ins connected to DMAC 



 

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 557-566 

 

565 

3.3.5 DMAC 

To allow reconfiguration of the DMAC controller for controlling different mechanisms, some additions and 
modifications must be made to DMAC’s existing architecture, as shown in Fig. 12. As described in section 3.2 and 
3.3.3, any machine-specific module is designed and linked separately 
into a DLL. This module must first be mapped into DMAC before 
CAD/CAM applications can send down process plans to DMAC for 
direct machining. The software module is mapped into DMAC through 
a configuration system, as displayed in Fig. 12. 
 
The configuration system is directly interfaced with the DMAC_Config 
COM interface so that it can receive configuration commands from this 
interface. Based on these different configuration instructions, the 
configuration system will do one of two operations. It will either set up 
a correct machine operational parameter, such as machine joint limits; 
or load the corresponding DLLs and then map any mechanism-specific 
module, such as the machine kinematics object, into DMAC. 
 
After the configuration system finishes all of these configuration 
processes, the DMAC controller is dynamically reconfigured for a 
particular mechanism. CAD/CAM applications can then pass the 
manufacturing process instructions to DMAC for direct machining. 
 
4. IMPLEMENTATION 
A device driver was developed to connect a three-axis tabletop mill directly with CATIA. The controller runs on a 
Dual-Pentium 1GHz computer. One processor runs Windows XP, under which CATIA operates; the second processor 
uses VentureCom’s Real-time Extensions (RTX) for Windows XP. 
 
Each mill axis is controlled by a digital torque drive developed by Semifusion, Inc. These digital torque drives send 
and receive digital data via two fiber-optic cables that connect them to the computer. The controller software uses 
these digital torque drives as torque slaves, sending commanded torque to the motors and receiving actual position, 
speed, torque, current, and errors as feedback, all as digital information. 
 

5. EXPERIMENTAL RESULTS 
An experiment was arranged using a scaled 3D CAD model of a car headlight, similar to data that would typically be 
used in production at GM. Tool paths for the surface were generated in CATIA and sent to a three-axis tabletop mill 
that was directly connected to CATIA through a three-axis mill device driver, called DMACXYZ.dll. A customized direct 
machining tool bar was embedded into CATIA (see Fig. 13). The computer runs dual Pentium III processors at 1 GHz. 
The non real-time CATIA application runs on one processor while the real-time applications run on the second 
processor.  
 
The headlight surface was machined directly out of CATIA, as shown in Fig. 14. The same process was also completed 
by using a conventional Tarus three-axis mill utilized at GM. The processing time comparison between the direct 
reconfigurable machining process and the traditional M & G method is shown in Tab. 3. As this table shows, it took 
four steps for the direct reconfigurable machining process to create a physical part from a 3D CAD model. However, it 
took eight steps and seventeen more minutes to create a part from the same CAD model through the conventional M 
& G code method.  
 
The resulting decrease in processing time does not come from a reduction in actual machining time, but from a 
decrease in the time required for tool path post-processing and file handling. The direct reconfigurable machining 
method eliminates unnecessary intermediate files, generated for the conventional controllers, and unnecessary process 
steps used on the conventional machining method. Therefore, it greatly simplifies the traditional design-to-
manufacturing processes. 

Fig. 12. Modified DMAC architecture 
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6. CONCLUSIONS 
This paper describes a new control architecture that allows mapping of each mechanism into a device driver and uses 
this device driver to reconfigure a DMAC open-architecture controller. This provides CAD/CAM users with greater 
flexibilities to fulfill different manufacturing operations. Under this RMAC control paradigm, CAD/CAM users can 
search for an optimal machine tool based on the needs of the current manufacturing process. A mechanism device 
driver will then be automatically loaded to connect the selected machine tool directly to a CAD/CAM application. 
Experiment shows that a machine device driver can be run-time loaded by a CAD/CAM application for controlling a 
selected machine tool. It also demonstrates that a great amount of manufacturing process time can be saved by 
eliminating unnecessary process steps used on the traditional machining methods. 
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Fig. 13. Direct machining tool bar 

Tab. 3. Direct reconfigurable machining process vs. conventional process 

Fig. 14. Direct machining a car headlight 


