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ABSTRACT 

 

This paper studies the effectiveness of incorporating co-operative co-evolutionary strategy into 4 
evolutionary multi-objective optimisation algorithms – MOGA, NPGA, NSGA and CNSGA – for 
continuum topology design. Apart from the co-operative co-evolutionary concept, the algorithms 
employ the elitism and crowding distance techniques to promote the diversity within the set of 
preserved non-dominated solutions. Three-related 2D heat conduction problems with two design 
objectives are used as the case studies. The proposed co-operative co-evolution is found to 
improve the optimisation effectiveness significantly. The species arrangements and sizes have some 
impacts; the use of moderately small species barely improves the search performances due to the 
interference from species coupling. As these effects depend on physical meanings of problems, it is 
more expedient to estimate the parameters in practice. 
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1. INTRODUCTION 

The genetic algorithm (GA) and computational mechanics have been combined for continuum structural topology 
optimisation. The topology design may be divided into 3 main categories – the discrete truss design, unit cell 
properties, e.g. orientation and porosity in composite materials, and the continuum structural design, which allows the 
creation of new boundaries [1]. The space that contains the structure is specified and divided into rectangular grids. By 
selective filling these grids or leaving spaces empty, different configurations are obtained. GA randomly generates a 
population within the solution space set which is evolved repeatedly toward structures that can perform superlatively. 
Since most design problems involve balancing functions and restrictions, the multi-objective optimisation is needed. As 
it is very rare that a single point in the solution space simultaneously optimises all objective functions jf , the concept of 
Pareto ranking is used instead. It gives a set of non-dominated solutions or the Pareto optimal set by comparing the 
domination of an individual against others. Given a set of possible solutions, an individual is said to be Pareto optimal 
if there are no other solutions in the set that can dominate the individual. In other words, the optimised solutions must 
be non-dominated and can be displayed together in the Pareto front in the objective function space. 
As in the single-objective optimisations, performances of algorithms usually degrade as the search space or problem 
size increases. Hence, the non-dominated solutions may deviate from the true Pareto front. Many strategies have been 
used to counter this problem including the elitism [2-3], diversity control [4] and co-evolution, that can be further 
divided into competitive and co-operative approaches in which sub-population can either compete or co-operate 
during the evolution [5]. It is the co-operative co-evolutionary strategy that is utilised in this paper. 
The resulting non-dominated solutions can be qualitatively measured and compared. Due to the randomly directed 
nature of GA, the comparison uses the averaged values of many runs. A solution set may be measured against another 
by the coverage C, which quantifies the domination of the solution set contents over the other. If the true Pareto front 
can be obtained, the quality of the solution set can be much better judged through parameters M1, M2 and 3M′  which 
respectively represents the average distance between the non-dominated solutions to the true Pareto optimal set, the 
distribution of the non-dominated solutions and the normalised absolute difference between the extent of the front 
described by the non-dominated solutions and the true Pareto optimal solutions [6-7]. 
As various evolutionary multi-objective optimisation algorithms (EMOAs) have been proposed with their strengths and 
weaknesses, it is necessary to study the effects of the co-operative co-evolutionary strategy upon several EMOAs. In a 
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previous study [7], 4 popular algorithms – the multi-objective genetic algorithm (MOGA) [8], the niched Pareto genetic 
algorithm (NPGA) [9], the non-dominated sorting genetic algorithm (NSGA) [10] and the controlled elitist non-
dominated sorting genetic algorithm (CNSGA) [11] – are chosen. The resulting procedures – CCMOGA, CCNPGA, 
CCNSGA and CCCNSGA – are collectively called the co-operative co-evolutionary multi-objective optimisation 
algorithms or CCMOAs. 
As the topology design are highly non-linear, discontinuous and the structure performances can be greatly affected be 
even a single well-placed connection, the true Pareto fronts may be generated only by exhaustive searches, an 
immersed feat even for a midsize two-dimensional problems, making the topology design not useful in the study of co-
operative co-evolutionary effects upon the EMOAs. Hence, ZDT benchmarks, consisting of 6 two-objective 
minimisation problems by Zitzler et al. [6], are instead used to test effectiveness of the co-operative co-evolution. ZDT1 
is a 30-dimensional problem with a continuous and uniformly distributed, convex Pareto front. The 30-dimensional 
ZDT2 has a non-convex Pareto front. ZDT3 is a 30-dimensional problem with five discrete Pareto fronts. The 10-
dimensional ZDT4 has 219 local fronts and is used to test the algorithm's ability to deal with multi-modality. ZDT5 with 
deceptive Pareto fronts is an 11-dimensional problem. The 10-dimensional ZDT6 has a non-uniform search space. 
It has been conclusively shown that the CCMOAs significantly outperform the EMOAs [7]. It is clear that the solutions 
from CCMOAs are superior to the corresponding EMOAs’ non-dominated solution set at the end of runs. Major 
solution improvements from EMOAs are observed for all ZDT test cases, making the strategy problem independent. For 
a given equivalent solutions, the CCMOAs can find them generations before EMOAs and hence distinctive accelerated 
findings of better solutions are observed [18]. The CCMOAs can capture the true Pareto fronts with the exception for 
ZDT5. In ZDT5, the incorporation of the co-operative co-evolutionary strategy appears to produce only a marginal 
improvement. The CCNPGA, CCNSGA and CCCNSGA are still unable to locate the true Pareto optimal solutions of 
the test problem ZDT5; nonetheless, it is enough to push the solutions from the best deceptive front to the true Pareto 
front in CCMOGA. It should be noted that the ZDT5 have probably proved to be so problematic such that some 
discard it when the ZDT test series are used [12-13]. 
With this assurance of co-operative co-evolution effectiveness, two-dimensional heat transfer problems with midsize 
grid division are used to test the topology design optimisation with EMOAs and CCMOAs for 3 related problems with 2 
design objectives. In this paper, the finite volume (FV) method is used to calculate the performance values of the 
evolving structures. Apart from the performance comparison between the EMOAs and CCMOAs, the effects of species 
arrangements and sizes in CCMOAs are also considered. 
In short, this paper is structured as follows. In the next section, the genetic algorithm integration and additional genetic 
operators for the co-operative co-evolutionary strategy is discussed. Then, the topology design test cases are described, 
the FV main procedures outlined. The results and its non-dominated solution fronts are shown; solution sets from 
EMOAs and CCMOAs and the effects of the species characteristics (arrangement and size) are compared through the 
coverage C. Finally, the conclusions of the effectiveness of the proposed CCMOAs are drawn. 
 
2. GENETIC ALGORITHMS 

The co-operative co-evolution is integrated into the following 4 EMOAs. Firstly, brief descriptions of the algorithms are 
given, and then the integration with co-operative co-evolution and relevant operators are outlined.  
 

2.1 Evolutionary Multi-Objective Optimisation Algorithms (EMOAs) 

2.1.1 Multi-Objective Genetic Algorithm (MOGA) 

MOGA [8] seeks to optimise components of the objective function vector. Each solution in the solution set is optimal if 
no improvement can be achieved in any component of the objective vector that does not lead to degradation of one or 
more remaining components.  
Assuming a minimisation problem, an n-dimensional objective vector p is said to be dominating another n-dimensional 
objective vector q if, and only if, p is partially less than q (p p < q), i.e.  

 1,...,  : 1,...,  : i i i ip i n p q i n p q< ↔ ∀ = ≤ ∧ ∃ = <p q . (1)

By identifying the number of solutions in the solution set that dominates the solution of interest, a rank value can be 
assigned to the solution. The rank of an individual is the number of solutions in the solution set that dominates the 
individual. After a rank has been assigned to each solution, a fitness value can be interpolated onto the solution where 
GA is applied in the optimisation procedure. The description of the MOGA, including goal attainment and priority 
assignment strategies, can be found in [15]. 
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2.1.2 Niched Pareto Genetic Algorithm (NPGA) 

NPGA [9] employs a tournament selection without an actual fitness assignment. Two randomly selected individuals are 
compared against one another in a comparison set, which is randomly extracted from the population. If one candidate 
is dominated by the comparison set while the other is not, the latter is selected for reproduction. Otherwise, the winner 
is the individual with less niche count, which measures the distance between two individuals in the objective space and 
is obtained from the fitness sharing [16]. A higher value of niche count indicates the lower diversity, and vice versa. 
 
2.1.3 Non-dominated Sorting Genetic Algorithm (NSGA) 

NSGA [10] is derived from the concept of normal Pareto ranking [16]. In MOGA, the rank is used to determine the 
fitness of each individual by the domination of all members. In NSGA, the ranking procedure first identifies the non-
dominated individuals in the population. These individuals are given the first rank and subsequently removed from the 
population. The non-dominated members among the remaining individuals in contention are then identified and given 
the next rank. The process is repeated until all members are ranked. Then, fitness value is assigned to the individual 
such that a higher-rank individual is fitter than another with a lower rank. 
 
2.1.4 Controlled Elitist Non-dominated Sorting Genetic Algorithm (CNSGA) 

The CNSGA [11] is the most recent version of the NSGA which includes elitism and the controlled propagation of 
individuals of all ranks from one generation to the next. The elitist strategy merges the parent and offspring 
populations; fittest individuals are then extracted from the merged population, ensuring elitism across generations by 
comparing parents and their offspring together. The extracted individuals are selected from individuals of all ranks such 
that the ratios between the numbers of selected individuals across the ranks are kept constant. If the number of 
individuals in one rank is higher than the allowed survival number, individuals are chosen by the crowding distance 
selection to ensure that the individual with higher diversity has more chances of being selected. 
 
2.2 Integration of Co-Operative Co-Evolution  

The concept of co-operative co-evolution is integrated into the 4 EMOAs. The co-operative co-evolutionary concept is 
outlined and the two additional genetic operators – the crowding distance selection and the elitism – are described  
 
2.2.1 Co-Operative Co-Evolutionary Concept 

A co-operative, co-evolutionary search involves the evolution of multiple species together by the standard GA where 
population is split into a number of sub-populations or species, each representing a decision variable or a part of 
solution [17-18]. By partitioning the population into species in this manner, the search space that each sub-population 
has to cover is significantly reduced. 
Although the co-operative, co-evolutionary strategy is developed for single-objective optimisations, it has also been 
successfully embedded into an MOGA and is found to outperform the original algorithm using benchmark GA 
problems [19]. Later, the protocol is modified with crowding distance diversity control into 4 EMOAs [7]. In addition, 
the incorporation of co-operative co-evolution significantly increases the efficiency of optimisation search for 
maximised heat dissipation porous fin-structures [7], in contrast with the vague improvements from incorporating the 
physical meanings into the crossover operators [20]. 
With co-operative co-evolution (Fig. 1), the chromosome is divided into species which are initialised randomly. The 
preserved non-dominated solution set (PNSS) is originally created by combining different species together randomly 
and non-dominated solutions are selected into the set. Then, each species evolves one after another through 
generations. The objective vector of a species member is obtained by substituting the species into its location in an 
individual that is randomly extracted from the PNSS. If the complete chromosome obtained after combining the 
species of interest with other species is neither dominated by any solutions in the preserved set nor a duplicate of a 
solution in the preserved set, this complete solution is added to the preserved set and the dominated solutions in the 
set is expunged. It is noted that if the number of non-duplicated non-dominated individuals exceeds a prescribed 
number, the crowding distance strategy will be used to limit the PNSS size by eliminate the least diverse individuals 
from the elite individual set. After objective values have been assigned to every individual in all sub-populations, the 
evolution of every species is then commenced by one of the 4 EMOAs with main genetic operators summarised in Tab. 
1. The resulting co-operative co-evolutionary multi-objective optimisation algorithms (CCMOAs) are uniquely referred 
with co-operative co-evolutionary (CC) prefix as CCMOGA, CCNPGA, CCNSGA and CCCNSGA, respectively.  
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Fig. 1. Overall procedure of the co-operative co-evolutionary genetic algorithms. 

 

Parameter EMOAs CCMOAs 

Chromosome representation Binary chromosome 

Fitness sharing Triangular sharing with the sharing radius estimated in the objective space [8] 

Selection operator Stochastic universal sampling or tournament selection (NPGA and CCNPGA) 

Crossover operator Uniform crossover with probability = 1.0 

Mutation operator Bit-flip mutation with probability = 0.025 

Chromosome length 100 100 with 20 or 10-bit species 

Population/Sub-population size 200 200 

Maximum size of PNSS - 50 

Maximum number of elite members 50 50 

Number of generations 250 Equal number of objective evaluations 

50 (20-bit species) or 25 (10-bit species) 

Number of repeated runs 30 (case 1,2) and 10 (case 3) 

Tab. 1. EMOAs and CCMOAs parameters. The fitness sharing, selection and elitist strategy are not used in CNSGA and CCCNSGA. 

 
2.2.2 Diversity Control by Crowding Distance Strategy 

In order to maintain the diversity within the PNSS, the crowding distance selection [3-4] is used to regulate the size of 
the preserved set. For every objective evaluation of species, the complete chromosome is compared with the PNSS. If 
it is non-dominated, the chromosome is added into the PNSS. The PNSS members are compared and those found 
dominated are expunged from the preserved set. However, this may lead to more individuals in the PNSS than the 
prescribed numbers since the new chromosome and the existing members of PNSS may be all non-dominated. This 
problem is substantially increased with enlarged search space or problem sizes. The crowding distance selection 
eliminates the extra chromosome with highest niche count. As the PNSS check after each objective evaluation, only 
one chromosome is eliminated at one time. Therefore, the procedure does not experience the difficulties where a large 
portion of the set needs to be removed.  
 
2.2.3 Elitism Strategy 

Elitism is important for the success of GA in multi-objective optimisation [3],[11] even though it is not used in the 
original propositions of MOGA, NPGA and NSGA. As in single-objective GA, the elitist strategy passes a number of 
individuals (of the same species) from one generation to the next with neither crossover nor mutation if the members 
under consideration are non-duplicated non-dominated. The prevention of using duplicated individuals as elite 
individuals promotes genetic diversity [21-22]. The main difference between this study and a previous study [7] is the 
elitism. During the normal EMOA evolution of each species in the CCMOAs, whole population of species extracted 
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from the PNSS is considered elite and, thus, passes through to the next generation unchanged by crossover or 
mutation. It is noted that this strong elitism is unsuitable for the ZDT5 problem with the deceptive front. 
 
3. TOPOLOGY DESIGN PROBLEMS 
3.1 Problem Descriptions of Test Cases 

2D heat transfer problems with convective boundary are used as the case studies. The unit-thick structure within a 
square domain is used to transport heat from a point source Q at the bottom left corner to a thin heating plate placing 
over the domain such that the temperature in the plate is evenly distributed as shown in Fig. 2a. It is also assumed that 
the air circulation is so good that the ambient temperature in close proximity to the structure remains unchanged. 
 

    

5
0
 m

m

thin heating plate

0°C ambient, 
conductivity
 = 2 W/mK (case 1,2)

heat transfer coefficient
 = 25 W/m K

k

h

k =  40 W/mK (case 3)

2

Q = 250 W  Double row (2r) Double column (2c) Single row (1r) Single column (1c) 

(a) Problem descriptions (b) Species arrangements 

Fig. 2. Problem descriptions and species arrangements of the test cases. 

 
The available spaces are divided into 10 10×  grids of equal size. The problem is encoded using a 100-bit binary 
representation in the on-off style; the block insertion on a grid is represented by '1' whilst '0' signifies a void. As the 
chromosome has to be divided into species for the CCMOAs, the domains are simply divided by rows or columns as 
there are no distinct groups for each decision variables. In all, 4 different types of species are employed – double row 
or column, each with 20-bit species, and single row or column with 10-bit species, as shown in Fig. 2b. In CCMOAs, 
the numbers of evolved generations are calculated from those of the EMOAs such that both algorithms require the 
same number of chromosome objective evaluations, which use up such remarkable computational efforts that the 
objective evaluation becomes the bottle neck of the whole computational process.  
 

3.1.1 [ ,SD ]TT  Test Case 

In the first test case, two design objectives are maximised average temperature T  and minimised the standard 
deviation SDT in the heating plate. The value of conductivity k of 2 W/mK is used. 
 
3.1.2 [ ,SD ]TT T  Test Case 

This test is similar to the first but the second design objective of SDT minimisation is slightly modified to the quotient of 
the standard deviation SDT and the average temperature in the plate or SDT T . Here, k = 2 W/mK. 
 
3.1.3 [ ,SD ,high ]TT k  Test Case 

This test is similar to the first test case but with a higher value of conductivity k = 40 W/mK.    
 
3.2 Objective Evaluation by the Finite Volume Method 

The heat conduction of configurations is evaluated by a custom-made finite volume (FV) method [14] with the energy 
conservation with the Fourier’s law as the governing equation. The employed boundary conditions are prescribed heat 
flux and surface convection by the Newton’s law of cooling. The mathematical model is discretised by a cell-centred FV 
technique for arbitrarily shaped control volumes with future uses in shape and size optimisations in mind. The FV 
method is straightforward and does not require the finite element connectivity analysis [1] due to its superlative 
physical representation as control volumes with only one shared corner vertex are not physically attached [14].  
 
4. RESULTS AND DISCUSSIONS 

For each of the test case, 4 different EMOAs and their CCMOAs with 4 sets of species search for optimised solution sets 
using 30 or 10 runs (Tab. 1). For comparisons between EMOAs and CCMOAs, the same numbers of objective values 
are evaluated in each run instead of specifying the total CPU time for the runs. There are 2 reasons behind this 
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decision. Firstly, the time required for structural performance evaluations are problem dependent. For instance, in the 
given test cases, better solutions takes more computational efforts to evaluate, hence CCMOA runs takes more time as 
the accelerated findings yield better solutions much faster in the same number of generations. However, if the 
optimised objectives are reversed, the opposite situation occurs, making the comparison not universally applicable. 
Secondly, as GA is characterised by the evolutionary nature, the consideration of quality improvements should be 
measured across generations or have some equivalent measurement of evolutionary period. Besides, the frequent uses 
of random in GA operators cause each run to yield dissimilar searches and solutions. The use of equivalent run time 
may cut short the optimisation during the evolution between generations, rendering the comparisons less meaningful 
while the use of equal evaluation numbers forces the appearance of the same numbers of evolving members.  
Examples of non-dominated solutions from first 5 EMOA and CCOMA runs for the test cases are shown in Fig. 3 and 
are used to illustrate the results of practical design processes in which few runs are performed. It is clearly shown that 
for the same generation numbers, the CCMOAs, represented here by CCCNSGA, find significantly better solutions 
than EMOAs.  
All resulting sets of non-dominated solutions are then combined to produce the superset of results as shown in Fig. 4. 
For better visualisation of results, structures of selected individuals across the fronts of non-dominated solutions are 
displayed in Fig. 5.  
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Fig. 3.Comparison of merged non-dominated solutions from the first 5 runs using CNSGA and CCCNSGA with single row species. 
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(a) Superset of [ ,SD ]TT  (129 solutions). (b) Superset of [ ,SD ]TT T  (72 solutions). (c) [ ,SD ,high ]TT k  (54 solutions). 

Fig. 4. Resulting superset non-dominated solution for topology design problems. 

 
The PNSS superset of first test case [ ,SD ]TT  shows a large front of non-dominated solutions with two competing 
optimisation characteristics (Fig. 4a and Fig. 5a). At the maximised T  end on the right, the optimised structures 
maximise the T  by entirely filling the available spaces in order to minimised the convective heat loss to the 
surrounding by limiting the surface area and ensuring the lowest possible temperature profiles at the boundary. These 
solutions, however, have relatively high SDT due to the unequal distances from the heat source to different positions of 
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the heating plate. On the other hand, the evolution minimises the SDT by evolving tortuous structures that direct 
towards the domain centre before separating into branches, all heading towards various locations of the heating plate. 
This strategy indeed lowers the SDT by dissipating as much energy as possible into the environment in order to hold 
the temperature, and subsequently its standard deviation, down. This phenomenon indicates that the use of absolute 
values of SDT as an objective is not appropriate and the design procedure is absolutely free of human bias such that 
any ingenious or ludicrous designs are equally possible. 
As the objective SDT is modified into the normalised SDT T  in the second test case, the average temperature T  are 
given prominence and the high values of T  are desirable in both objective functions. Hence, the PNSS front becomes 
much shorter as shown in Fig. 4b. From Fig. 5b, the available space is still entirely filled to minimise the heat loss to the 
surrounding at the maximised T  end as in the first test case. However, holes are less desirable in this problem as their 
presences facilitate heat loss and reduces the T . Therefore, in order to smooth the temperature profiles across the 
heating plate, only few small holes are placed in the top left corner to hinder the direct vertical heat flow from the heat 
source so the temperature on the left side of the plate drops and get closer to that of the right side. Some structures also 
show the trimming of the bottom right corner as the secondary trait. In short, the evolution overwhelmingly favours 
densely packed structures while the temperature profile is levelled by tactfully inserting few gaps that disrupts the heat 
flow and disperse heat flux out of the domain.  
The test case 3 is identical to the first except for the material properties. As the value of the conductivity k is increased 
20 folds, the heat can travel in the structure much easier. Hence, the temperature distributions in the structures and 
planes are of higher value and more even. At the maximised T  end on the right of Fig. 4c and Fig. 5c, the optimised 
structures still maximise the T  by entirely filling the available spaces. But for minimised SDT, the left end of the non-
dominated solution set are truncated such that the structures occupy a lot of the available space as the heat dissipation 
strategy is not as effective for the given 10 10×  grid as in test case 1 due to the higher heat conduction rate. 
 

     

I [0.040°C, 0.000°C] II [5.030°C, 0.048°C] III [12.348°C, 0.101°C] IV [20.167°C, 0.467°C] V [28.837°C, 1.956°C] 

(a) selected [ ,SD ]TT  results which are denoted by block circles in Fig. 4a. 

     

I [10.974°C, 0.0067] II [15.191°C, 0.0096] III [20.225°C, 0.0231] IV [24.542°C, 0.0395] V [31.428°C, 0.0744] 

(b) selected [ ,SD ]TT T  results which are denoted by block circles in Fig. 4b. 

     

I [23.01°C, 0.011°C] II [26.41°C, 0.014°C] III [33.42°C, 0.019°C] IV [40.84°C, 0.069°C] V [45.12°C, 0.152°C] 

(c) selected [ ,SD ,high ]TT k  results which are denoted by block circles in Fig. 4c. 

Fig. 5. Selected non-dominated structures of test cases which are denoted by block circles in Fig. 4. 

 
Without the true Pareto fronts, which may be obtained only by exhaustive searches, the coverage C is used to compare 
quality of dominance between two sets of results. Given two decision vectors X and Y, X covers Y if and only if X 
dominates Y or the objective vector of X is identical to that of Y. The function C(X, Y) computes the percentage of 
decision vectors in Y that is covered by solutions of X such that 0 1C≤ ≤ . Hence, if the value of C(X, Y) is higher than 
C(Y, X), the solutions in set X is considered more valuable than Y.  
The EMOAs and CCMOAs are compared by the coverage distributions in Fig. 6 which clearly shows that the solution 
sets obtained from the EMOAs coverage over CCMOAs (top row) is lower while the sets of non-dominated solutions 
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obtained from the CCMOAs cover the solution sets generated from the corresponding EMOAs (bottom row) quite well 
in all test cases. These results lead to the conclusion that search performances of the EMOAs is worse than those of the 
proposed CCMOAs as the CCMOAs can find more valuable solution sets with the same number of objective 
evaluations (Fig. 3), an important advantage in the topology design problems in which most of the CPU time are spent 
on the numerical simulations. The much better coverage in test case 2 is due to the less difficult nature of the search 
problem in which a single parameter T  is influential to both objectives. 
In addition, the much better coverage in test case 2 may be further aided by the shorter non-dominated solution front 
since the number of solutions in the superset is merely 44% more than the prescribed number of PNSS maximum size. 
Meanwhile, the size of superset solutions of the first [ ,SD ]TT  test case is more than 2.5 times the prescribed PNSS 
sizes, making the full domination between two solution sets much less likely due to the inability of the PNSS to contain 
all non-dominated solutions. However, the coverage of CCMOAs over EMOAs of the third [ ,SD ,high ]TT k  test case is 
slightly better than the first even though the solution superset contain only 54 results. This is due to the search difficulty 
taking the precedence and the scarcity of the solutions during the runs that the preserved set of non-dominated 
solutions, PNSS, can not be fully filled to the prescribed value during the runs. Besides, the lesser number of runs 
further aggravates the comparison; the overall solution trend is more susceptible to few, or even one, freak runs with 
bad solutions.  
It may be noted that for the comparison between CNSGA and CCCNSGA for the third [ ,SD ,high ]TT k  case in Fig. 6, 
the superiority of the CCCNSGA is not be as good as other pairs. This is due to the much improved effectiveness of the 
latest version of the NSGA series as well as the lower number of runs that are used for comparisons. 
 

    
C(MOGA, CCMOGA) C(NPGA, CCNPGA) C(NSGA, CCNSGA) C(CNSGA, CCCNSGA) 

    

C(CCMOGA, MOGA) C(CCNPGA, NPGA) C(CCNSGA, NSGA) C(CCCNSGA, CNSGA) 

Fig. 6. Box plots of coverage C(X, Y which is covered by X) indices for each pair of EMOA and CCMOA. The scale is 0 (no coverage) 

at the bottom and 1 (total coverage) at the top. Left-side plot sets show [ ,SD ]TT  test case, the middle plots the [ ,SD / ]TT T  and the 
right plot sets the [ ,SD ,high ]TT k . For each test case, plots from left to right are double row (2r), double column (2c), single row (1r) 
and single column (1c). 

 
For the study of species effects on performances of CCMOAs, Fig. 7 shows the coverage comparison between different 
species. The species are arranged by rows or columns which show up perpendicular to each others in Fig. 2b, 
presenting different coupling characteristics. The upper plots, from left to right, show the coverage functions of C(2r, 
2c), C(1r, 1c), C(2r, 1r) and C(2c, 1c) while the lower plots exhibit the reversed coverage of C(2c, 2r), C(1c, 1r), C(1r, 
2r) and C(1c, 2c). In short, the effects on search performances by horizontally and vertically arranged species are first 
compared, followed by the species sizes. When coverage plots from the solution sets from horizontal and vertical 
species – C(2r, 2c), C(1r, 1c), C(2c, 2r) and C(1c, 1r) – are compared, the overall performances are not that much 
different. There is almost no difference for the second [ ,SD ]TT T  and third [ ,SD ,high ]TT k  test cases as the problem 
favours comparatively packed structures with few gaps. If the domain is totally filled, there are no differences between 
the choices of row or columns species at all. 
For the first test case, the use of row species shows slightly improved results, probably due to the physical natures of 
heat flows from the heat source on the bottom left corners in the left fronts where T  approaches zero. The solutions 
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exhibit complicate structures at the bottom half, whose main function is to dissipate as much heat as possible, aided by 
the relatively high temperature gradient between the structure and the surrounding environment from proximity with 
the heat source. Hence, the heat flows in the horizontal direction is marginally more important and the horizontally 
arranged species gain a small edge over the vertical ones. Perhaps, the optimisation performances may be slightly 
improved by capturing heat flows through the structures.  
The effects of different sizes of species on the search performances are also investigated. In this paper, lengths of 
species are simply chosen to be 20 or 10-bit, equivalent to each chromosome comprising of 5 or 10 species, 
respectively. If there is no coupling between species at all, the search space in CCMOAs would be drastically reduced 
from 100 302 1.27 10≈ ×  to 20 65 2 5.24 10× ≈ ×  and 10 410 2 1.02 10× ≈ ×  for 20-bit and 10-bit species, respectively. The use 
of species produces best performances when there is no coupling between different species at all. However, if there are 
coupling between species, the search performances of the CCMOAs would be deteriorated with the coupling strength. 
In topology designs, it is clear that coupling between species are inevitable as each control volume connects with the 4 
adjacent blocks and each species has at least one, usually 2, adjacent species. Shorter species may have a much lower 
search space, but the interferences from adjacent species become stronger as the species can not contain a physically 
meaningful features in the short data string and vice versa. Fig. 7’s coverage plots – C(2r, 1r), C(2c, 1c), C(1r, 2r) and 
C(1c, 2c) – show that results from chromosomes with smaller 10-bit species are marginally better than those of 20-bit 
for the first two cases in most comparisons, i.e. the specific reduction in search space somewhat outweighs the 
interference/coupling effects of adjacent species. The situations for test 3 are reversed except for CCCNSGA runs.  
 

    

    

CCMOGA CCNPGA CCNSGA CCCNSGA 

Fig. 7. Box plots of coverage distribution C(X, Y which is covered by X) indices for different pairs species types. The scale is 0 (no 
coverage) at the bottom and 1 (total coverage) at the top. Left-side plot sets show [ ,SD ]TT  test case, the middle plots the [ ,SD ]TT T  

and the right plot sets the [ ,SD ,high ]TT k . For top rows, plots from left to right are C(2r, 2c), C(1r, 1c), C(2r, 1r) and C(2c, 1c) while 
plots on bottom rows are reversed coverage or C(2c, 2r), C(1c, 1r), C(1r, 2r) and C(1c, 2c). 

 
5. CONCLUSIONS 

This paper describes the incorporation of co-operative, co-evolution into 4 EMOAs – MOGA, NPGA, NSGA and 
CNAGA – becoming CCMOGA, CCNPGA, CCNSGA and CCCNAGA for continuum topology designs of heat transfer 
structures. The non-dominated solution set gives a series of solutions for designers to choose for further shape and 
sizing optimisations. The resulting non-dominated solution sets help understanding and interpreting the physical 
phenomena underlying the performances of the structures as well as identifying key characteristics that confer superior 
functionalities. In stead of a single field of bitmap-type chromosomes in EMOAs, the division of chromosomes into 
smaller species reduces the search problems into a combination of smaller ones.  
Three related test cases with slightly different objective functions are studied. It is clear that even with slight adjustments 
on the objective and parameters, the resulting solutions sets greatly differ in terms of favourable design characteristics. 
For the same number of objective evaluations, the CCMOAs accelerate the searches significantly for all 4 different 
algorithms. The arrangements and sizes of the species in CCMOAs also affect the search efficiency; comparatively small 
species and alignment to the heat flows help improving the search performances. However, these two factors show the 
characteristics of problem dependency; the alignment requires a prior insight into the physical meanings of the to-be-
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identified optimised structures while the choice of species length depends upon an even more elusive quantity, the 
strength of coupling and interferences between species. Even though these effects may be investigated numerically for 
specific problems, the results do not directly translate to others, making the efforts counterproductive in practices such 
that it may be more effective to simply guesstimate both parameters instead. 
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