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ABSTRACT 

 

Computer simulation of object deformation has wide applications in areas such as movies, 

computer graphics, computer games, etc. Numerous methods have been proposed to simulate 

deformable objects. A common practice of simulating deformable objects is to use physically-based 

approaches which include the mass-spring system and the finite element method (FEM). The mass-

spring system only gives a coarse estimation of object deformation whereas the FEM requires 

generating solid volumetric elements which is a tedious and time consuming process. The use of 

boundary element method (BEM) allows objects to be deformed without generating solid 

volumetric elements. 

 

In order to achieve real-time deformation, all these methods require time-consuming pre-

computation process. In this paper, a comparison is made between the FEM and the BEM 

techniques. We propose to adopt linear elements of boundary element technique for real-time 

applications. The method not only allows physically-based and real-time deformation, it also 

requires much shorter time for the pre-computation process. Experimental results show that the 

time required for the pre-computation process and real-time deformation can be enhanced 

significantly by adopting linear elements of BEM. 
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1. INTRODUCTION 

Techniques for simulating deformable objects have been widely studied in the context of computer graphics and used 

in movies, computer games and other activities. Over the past two decades, various approaches for object simulation 

have been introduced. However, it remains a great challenge in computer graphics because of the conflicting demands 

of accuracy and real-time deformation. One example is surgery simulation [1], [2] which requires both accurate 

deformation and real-time interactions. However, human organs and tissues have very complex form, modeling real-

time deformation is only possible using very simplistic models. Approaches for modeling object deformation can be 

divided into two categories: physically based and non-physically based. Non-physically based approaches such as free-

form deformation (FFD) employ purely geometric techniques for model deformation. Those techniques rely on the skill 

of the users rather than the physical properties of an object. In this paper, focus is put on real-time deformation using 

physically based approach. 

 

A good survey of various techniques in object deformation can be found in [3]. Physically-based modeling methods 

allow explicit deformation of objects according to their physical properties, which have been widely used for realistic 

simulation of deformable objects. Among the physically-based modeling methods, the most popular one is the mass-

spring system [4-6] because of its simplicity and capability to achieve real-time performance. The mass-spring system 

approximates an object model by modeling the domain as a set of mass points connected by springs. Despite the 

simplicity in the formulation of the mass-spring system, the method is not suitable for various applications like surgery 

simulation, gait physical therapy, etc. because a large number of nodes is required for accurate simulation. 

 

Nowadays, a substantial amount of work has been devoted to the use of FEM [7-10] which provides a more accurate 

physical simulation. However, the major limitations of this method are the complexity in implementing FEM and the 
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high computational cost of evaluating deformation. Besides, FEM requires generating solid volumetric elements which 

is a tedious and time consuming process. 

 

The BEM has very long history in engineering analysis applications [11], [12]. However, it is not widely used in 

computer graphics for simulating deformable objects [13], [14]. Actually, it takes advantages of both accurate 

deformation and computational efficiency. Instead of solving stresses and deformations of a volumetric model, BEM 

determines displacements and tractions of a boundary model. Thus, it leads to much smaller number of unknowns 

required to be solved while accurate deformation at the boundary of the model can be obtained. By adopting BEM, 

the same boundary mesh can be used for deforming and rendering an object. The boundary mesh can also be 

constructed easily with popular graphics packages. This eliminate the efforts on generating solid volumetric elements of 

FEM. James et al. [14] has demonstrated that deformable objects can be simulated in real-time and attained physical 

accuracy. For simplification, their calculations are based on the constant element case of BEM. However, a major 

drawback of using constant element is that accurate deformation results can only be achieved when the model is fine 

enough and with smooth surface. A fine model implies large mesh size of the model, this increases the computation 

time of the pre-computation process and the real-time simulation significantly. To reduce the computation complexity, 

decreasing size of the stiffness matrix is a direct approach. 

 

This paper compares FEM and BEM by considering the time required for the pre-computation process and the real-

time deformation process. Experimental results demonstrated that a fast and accurate real-time simulation of 

deformable objects can be achieved by adopting linear elements of boundary element technique because it requires 

the stiffness matrix in much smaller size than FEM and constant elements of BEM. The technique allows not only 

physically-based and real-time deformation, but also requires much shorter time for the pre-computation process. 

 

In this paper, we: 

• discuss the advantages of employing linear elements of BEM for object simulation in computer graphics 

applications; 

• and compare among FEM, constant elements of BEM and linear elements of BEM according to speed of the 

pre-computation process and deformation for real-time simulation. 

 

The remainder of this paper is organized as follows. Section 2 compares different boundary elements. The boundary 

element technique is discussed in section 3. Section 4 discusses the pre-computation process and the algorithm to 

achieve real-time deformation in this paper. Experimental results are given in section 5, and section 6 concludes the 

paper. 

 

2. COMPARSION OF BOUNDARY ELEMENTS 

Consider a 3-D model with boundary Γ, BEM discretize the boundary into a finite number of segments which are 

called boundary elements. The boundary elements are part of its external surface and are usually of two types: 

quadrilateral and triangular. The simplest and the most common type for deformable objects in computer graphics are 

triangular elements. In this paper, we assume the boundary of the objects is divided into triangular elements. These 

can be constant, linear, quadratic, or higher order. The points where displacements and tractions are considered are 

called nodes. Displacements and tractions, and nodes on the boundary are called boundary values and nodal values 

respectively. In the case of constant elements, the boundary is approximated by a triangular mesh. The node of an 

element is located at the centre of the triangle and the boundary value is assumed to be constant for this element. In 

the case of linear elements, the boundary is approximated by a triangular mesh and the nodes are located at the 

vertices of the triangles. The boundary values vary linearly between the nodal values. For the case of quadratic 

elements, each element has three nodes for each edge and the variation of the boundary values is quadratic. 

 

Among different types of element, quadratic or higher order elements allow more accurate interpolation of the 

boundary values over each element. Nevertheless, additional information is required to obtain the boundary values 

between the vertices which are always difficult to acquire in computer graphics. These extra boundary values increases 

the size of the stiffness matrix which increases the time for the pre-computation process and is undesired for real-time 

deformation. Since our research mainly focus on speeding up the pre-computation process and real-time deformation, 

quadratic or higher order elements are not adopted. 
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Considering the case of constant elements, nodes are located at the centre of each element. Deformations at each 

vertex are usually computed by averaging the nodal values that share the vertex. The calculation seems to be 

reasonable if the mesh is regular, however, problems exist for irregular mesh. Suppose the left face of a cube is fixed 

and a deformation is applied on the right face, undesired deformation occurs at the edge of the cube using constant 

elements (see Fig. 1(a)). Fig. 1(b) shows that the use of linear elements gives correct deformation result because nodes 

of linear elements are located at the vertices of an object. 

 

  
(a) (b) 

Fig. 1. Deformation of a cube with fixed left face using: (a) constant elements; (b) linear elements 

 

Constant element is also known as discontinuous element. Fig. 2 shows the approximation of a function by 

discontinuous constant elements. It is evident that discretization of the boundary using constant elements requires 

larger number of segments to maintain an accurate approximation. In spite of the fact that the deformation process 

can be speed up by using constant elements, deformation is not accurate as discussed above. Linear elements make a 

good balance between accuracy and real-time deformation. Linear elements are also known as continuous elements. 

Fig. 3 shows the approximation of a function by continuous linear elements. Comparing with Fig. 2, it can be easily 

seen that linear elements can approximate the exact function more accurately. For a 3-D boundary element mesh, the 

number of linear elements which is equal to the number of vertices of the model, is smaller than the number of 

constant elements which is the same as the number of triangular faces of the model. As a result, linear elements can 

achieve both higher accuracy and faster deformation comparing with constant elements. In the sections that follow, we 

will discuss the linear element case for modeling and deformation. 

 

 
Fig. 2. Approximation of the exact function by discontinuous constant elements 
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Fig. 3. Approximation of the exact function by continuous linear elements 

 

 

3. THE BOUNDARY ELEMENT TECHNIQUE 

For the boundary integral equation at the kth source point and omitting the body forces, the equation in matrix form 

can be simplified as 

∫∫ ΓΓ
Γ=Γ+ tduudtuc kkkk

** ,              (1) 

where the *

ku  and *

kt  represent the fundamental solutions of displacements and tractions. The smoothness coefficient, 

displacements and tractions applied at the kth source point are denoted by 
kc
, ( )t

kzkykxk uuuu ,,=  and ( )t
kzkykxk tttt ,,=  

respectively. The smoothness coefficient depends on the smoothness properties of the boundary at the source point 

[15]. In most cases, the smoothness coefficient does not require to be solved explicitly. It can be solved indirectly such 

as using rigid body consideration. 

 

Note that the smoothness coefficient and the fundamental solutions are known in Eqn. (1). The physical properties of 

the models using BEM can be easily tuned by the user as it requires only two well-known material properties, the 

Possion’s ratio, v and the modulus of elasticity, E which can be easily found in many material handbooks. 

 

The idea of BEM is to employ a numerical approach to discretize the boundary of the model into a series of elements. 

In the mth element, displacements 
mu  and tractions 

mt  are approximated from the nth nodal displacements n

mu  and 

tractions n

mt  using the shape function Φ. The discretization of Eqn. (1) can be rewritten by converting the surface 

integrals into sums of integrals over each boundary element, which yields 

∑∑ ∫∑∑ ∫
= =

Γ
= =

Γ





 ΓΦ=





 ΓΦ+

M

m

N

n

n

m

n

k

M

m

N

n

n

m

n

kkk tduudtuc
mm 1 1

*

1 1

* ,            (2) 

where N is the number of nodal points in each element which is equal to one for constant elements and three for linear 

elements, and Γm is the surface of the m
th element. 

 

Grouping all the integrals with same node together, Eqn. (2) yields 

∑∑
==

=
L

l

lkl

L

l

lkl tguh
11

,              (3) 

where L is total number of nodal elements. 

 

Assembling all the elements together and using matrix notation, Eqn. (3) can be written as 

GTHU = ,               (4) 

where [ ]t
LzLyLxzyxzyx uuuuuuuuu L222111=U , [ ]t

LzLyLxzyxzyx ttttttttt L222111=T , 

H is a function of 
klh  and 

G is a function of 
klg . 



 

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 421-430 

 

425 

Evaluation of integrals of the fundamental solutions is the most crucial aspect in BEM because it exhibit singularities at 

certain points in the elements. Depending on the relative position between the source and the field points, the integrals 

can be classified into singular and non-singular types. 

• Non-singular integrals 

For the non-singular case, the source point and the field point lies in different node. The non-singular 

integrals may be evaluated analytically, however the process is very complicated and computationally 

impractical. Thus, numerical integration approaches like Gaussian quadrature [16-18] is commonly used 

which gives satisfactory result. 

 

• Singular integrals 

In this case, the source lies on the element where the integration is performed. Define r as the distance 

between the source point and the field points. There exists two types of singularities, the kernel 
klg  contains 

functions of order 1/r is weakly singular and the kernel 
klh  contains functions of order 1/r2 is strongly singular 

which only exist as Cauchy principal values [19]. Depending on the type of singularity, different techniques 

are used to evaluate the integrals. Numerical quadrature formulas for integration over triangles and squares 

with 1/r singularity presented by Pina et al. [20] and Cristescu and Loubignac [21] are simple and 

computationally efficient. For the evaluation of the strongly singular terms 
kkh , an indirect approach that 

considers rigid body movements of an object is commonly used in BEM. 

 

4. PRE-COMPUTATION AND REAL-TIME DEFORMATION 

After evaluation of the integrals, unknowns in Eqn. (4) are displacements and tractions of the nodes. Although in linear 

element case, the nodal displacements are continuous, a discontinuity in the traction still occurs at that node if the 

boundary of the model is not smooth. However object deformation in computer graphics requires only displacement 

to be determined, technique that used in FEM to determine object deformations is still applicable in BEM. Eqn. (4) can 

be expressed as 

 

TKU = ,                       (5) 

 

where K is the stiffness matrix. 

 

To achieve real-time simulation, pre-computation is an essential process in computer graphics. The pre-computation 

process is to determine the stiffness matrix, K and its inverse, 1−
K . Size of the stiffness matrix and its inverse are equal 

to the number of nodes of the model. They are usually very large in size and the pre-computation process is extremely 

time-consuming. To decrease time required for the pre-computation process, the only way is to decrease the number 

of nodes of the model. After K and 1−
K  have been pre-computed, those terms in the pre-computed matrices can be 

rearranged and used to determine the unknown displacements. 

 

Denoting 
KU  as displacements of the elements where deformation is applied, 

KT  as tractions at the free elements, 
UU  

and 
UT  as displacements and tractions of the elements that are going to be determined. Rearranging the terms, K can 

be divided into four sub-matrices and Eqn. (5) becomes 

 









=

















U

K

K

U

T

T

U

U

KK

KK

1110

0100 .                     (6) 

 

Since tractions at all free elements are zero, displacements of unknown elements can be determined by 

KU UKKU 01

1

00

−−= .                   (7) 

 

Given the boundary constraints and displacements at certain elements of the model, displacements of unknown 

elements can be computed by Eqn. (7). By determining the unknown displacements, objects can be deformed 

accordingly. 
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To perform deformation at interactive frame rates, Eqn. (7) has to be updated within one-tenth of a second. The 

bottleneck of computation is on updating the inverse of sub-matrices of stiffness matrix which are usually very large in 

size. In the case of specified boundary conditions, displacements and tractions of unknown elements are fixed. Storing 

the computed matrix [ ]01

1

00KK
−−  allows real-time deformation to be possible as it includes simply a matrix vector 

multiplication process. However, boundary conditions usually change and create other contact points with the model. 

The dimension of 
UU  and 

UT  will vary depending upon the number of contact points which prescribe 
KU  and 

KT . 

This requires reevaluating 1

00

−
K . 

 

If the number of known displacements is larger than the number of unknown displacements, 1

00

−
K  is computed using 

Eqn. (7). Otherwise, special technique is used to achieve fast computation by updating 1

00

−
K  based on the sub-matrices 

of 1−
K . Assuming K and 1−

K  are pre-computed, IKK =−1  can be expressed in terms of their sub-matrices, such that 

 









=

















I

I

DD

DD

KK

KK

0

0

1110

0100

1110

0100 .               (8) 

 

Eliminating 
01K , we have 

10

1

110100

1

00 DDDDK
−− −= .              (9) 

As seen from Eqn. (9), 1

00

−
K  can be computed from the sub-matrices of the pre-computed 1−

K . The size of matrix 
11D  is 

determined by the number of known displacements whereas the size of matrix 
00K  is determined by the number of 

unknown displacements. If the number of known displacements is less than the number of unknown displacements, 

the size of 
11D  is smaller than 

00K . Since the time for computing matrix inverse dominates the computation time of the 

deformation process, speed of evaluating deformation is enhanced by computing 1

11

−
D . 

 

Considering a model with N elements in which there are n elements with known displacements. Since the time 

complexity for evaluating the inverse of a MM ×  matrix is ( )3
MO , the time complexity for evaluating 1

00

−
K  and 1

00

−
D  are 

thus ( )( )3
nNO −  and ( )3nO  respectively. Therefore, if N >> n, Eqn. (9) is preferred. 

 

5. EXPERIMENTAL RESULTS 

In this section, we compare performances of FEM and BEM using a cube model. This experiment was divided into 

three parts. In the first part, the time required for the pre-computation process was compared among FEM, constant 

elements of BEM and linear elements of BEM. The performance of real-time deformation using Eqn. (9) to update 
1

00

−
K  among FEM, constant elements of BEM and linear elements of BEM was compared in the second part. In the 

third part, the performance of real-time deformation with and without using Eqn. (9) to update 1

00

−
K  was compared. 

Linear elements of BEM were applied to deform the model. In order to study the relationship between different 

number of known displacements and the performance of the method, different percentages of known displacement 

were assigned for each part of the experiment. In our experiment, a computer with a Pentium4 3.2GHz CPU and 2G 

Bytes memory was used. 

 

5.1 Comparing Time Required for the Pre-computation Process 

This experiment compares time required for the pre-computation process using FEM, constant elements of BEM and 

linear elements of BEM. The pre-computation process includes computing the stiffness matrix and its inverse. The 

setup of this experiment is described as follows. A set of cubes with different number of vertices were first generated. 

Then, two cases were considered. For the first case, displacements of 10% nodes were known and a certain value of 

displacement was assigned. Displacements of 30% nodes were assigned to a certain value for the second case. In each 

case, FEM, constant elements and linear elements were applied for pre-computation. 
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(a) 

 
(b) 

Fig. 4. Comparing time required for the pre-computation process using Eqn. (9) with known displacements of: (a) 10%; (b) 30% 

 

Fig. 4 compares the time required for the pre-computation process using FEM, constant elements of BEM and linear 

elements of BEM. As seen from Fig. 4., the time required for the pre-computation process using FEM is a little bit 

shorter than constant elements for objects with small number of vertices. As the number of vertices increases, the pre-

computation time required using FEM increases rapidly. Much longer time is required for constant elements for cubes 

with more than 1000 vertices. However, linear elements demonstrated a very good performance on pre-computing 

small and large number of vertices of the cube. On the other hand, linear elements take less than 200s for pre-

computing the model with 1000 vertices whereas FEM and constant elements spent around 30 minutes! Time required 

for the pre-computation process is approximately the same for 10% and 30% of known displacements. This agrees 

that time required for the pre-computation process is independent with the number of known displacements. 

 

5.2 Comparing Time Required for Real-time Deformation 

In this part, performance of interactive simulation using FEM, constant elements of BEM and linear element of BEM 

were compared. Suppose a set of cubes with different number of vertices were first generated. Then, two cases were 

introduced. For the first case, displacements of 10% nodes were known and a certain value of displacement was 

assigned. Displacements of 30% of nodes were assigned to a certain value for the second case. In each case, FEM, 

constant elements and linear elements were applied to deform the cube and Eqn. (9) was used to update 1

00

−
K  during 

deformation. 
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(a) 

 
(b) 

Fig. 5. Comparing time required for real-time deformation using Eqn. (9) with known displacements of: (a) 10%; (b) 30% 

 

From Fig. 5, performance of real-time deformation is similar to the simulation results as in the first part of the 

experiment. The time required for interactive simulation using FEM is less than constant elements for a cube with 

vertex number less than about 950. As the number of vertices further increases, the time required for real-time 

simulation for constant elements becomes less than the FEM. Besides, linear elements demonstrated a very good 

performance on real-time simulation for small and large number of vertices of the cube. For a cube with 1000 vertices, 

the time required for real-time simulation using linear elements is only 0.1s which is around one-fifth of the time 

required for FEM and constant elements! However, as the number of known displacements increases, the time 

required for real-time simulation for FEM and BEM increases significantly. 

 

5.3 Comparing Performance With and Without Using Eqn. (9) 

To test the performance of real-time deformation, Fig. 6 compares the time required for computing 
UU  with and 

without using Eqn. (9) to update 1

00

−
K  using linear elements of BEM. A set of cubes with different number of vertices 

were first generated. In order to study the relationship between different number of known displacements and the 

computational time, 10% and 30% of total number of nodes were randomly selected, and their displacements were 

assigned to a certain value. Linear elements were applied for real-time simulation. 
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(a) 

 
(b) 

Fig. 6. Performance with and without using Eqn. (9) for real-time deformation using linear elements with known displacements of: (a) 

10%; (b) 30% 

 

Fig. 6 shows the comparison of performance for real-time deformation under 10% and 30% of nodes with known 

displacements respectively. As shown in Fig. 6, the computational time required to compute 
UU  using Eqn. (9) is very 

small. Real-time performance can thus be achieved. However, as the percentage of nodes with known displacements 

increases, the computational time using Eqn. (9) increases, whereas the computational time decreases without using 

Eqn. (9). 

 

6. CONCLUSION 

In this paper, a comparison between FEM, constant elements of BEM and linear elements of BEM for real-time 

simulation has been demonstrated. Several experiments that compare speed of the pre-computation process and 

real-time deformation have been performed. Employing linear elements, speed of the pre-computation process 

and deformation for real-time simulation can be enhanced significantly. Moreover, an accurate deformation can be 

achieved using BEM because deformations are based on the physical properties of the object. Besides, boundary 

model for BEM analysis can be easily constructed with popular graphics packages. In order to allow interactive 

simulation, emphasis is put on speeding up the matrix inversion process. Experimental results showed that speed of 

the matrix inversion process are enhanced significantly using Eqn. (9). 
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