

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 339-348

339

XML-based Representation in a CBR System for Fixture Design

Fan Liqing1 and A. Senthil Kumar2

1National University of Singapore, mpeflq@nus.edu.sg
2National University of Singapore, mpeask@nus.edu.sg

ABSTRACT

Fixture design is a complex process and largely relies on a designer's experience to solve current

problem. Case-Based Reasoning (CBR) provides a promising methodology for solving design

problems in this complex domain based on the idea that past problem-solving experiences can be

reused and learned from in solving new problems. In order to realize a CBR design system to assist

designers to solve fixture design problems in the Internet-enabled environment, case representation

is described using XML (eXtensible Markup Language) format in this paper. The XML-based

representation structure using UML (Unified Modeling Language) notation is illustrated and

discussed. A design process with an example is presented in the developed system applied with

XML-based representation. The Internet-enabled CBR system for fixture design is developed and

implemented in client-server mode architecture.

Keywords: Case-based reasoning, fixture design, case representation, XML, UML.

1. INTRODUCTION

Fixtures are devices which are designed to repeatedly and consistently maintain the orientation of a workpiece during

machining, assembling, welding, inspection, etc. [1]. They are an essential part of manufacturing production. As part

of manufacturing tooling, fixture design makes significant contributions to the production time and cost in daily

production. Flexible fixtures play important roles in modern flexible manufacturing systems (FMS) as well as computer-

integrated manufacturing system (CIMS).

Fixture design is a highly complex process because it must consider the workpiece, the cutting tools and the machining

environment. In addition to these aspects mentioned above, Senthil Kumar et. al. [2] illustrated all factors considered

in fixture design that are categorized into three basic constraints, including technical, economical and resource

availability.

Fixture design is also experience-based. Designers prefer to use previous designs because they save time and effort

and use the concepts have proven effective in previous situations. In the design of fixture, based on all the information

pertinent to the product as given by the engineering specification and the process sheet, a tool designer configures a

fixture setup appropriate to the workpiece depending on his/her experience of fixturing a similar product [3].

Meanwhile, the selection of surfaces on the workpiece and fixture elements for locating and clamping during

machining is flexible and largely relies on the prior experience of the designer.

In today's product development context, the design of products is sub-contracted out to other firms. This creates a

scenario where the designers and manufacturing engineers may be globally dispersed. Implementing distributed

manufacturing systems would offer rapid manufacturing capacity. An Internet-enabled manufacturing system which

has the ability to cooperatively design not only saves costs and time, but also creates a seamless collaborative

manufacturing environment to resolve problems in real-time. Therefore, to realize a collaborative functional fixture

design system, care must be taken such that the design activity can be performed on the internet.

For these reasons, a case-based reasoning (CBR) approach which organizes previous experiences as cases to solve

new problem is attempted in this work. Except CBR approach, a new paradigm in Computer Integrated Manufacturing

(CIM), namely Internet-based Manufacturing, is also adopted in this work. The objective of this research is to develope

a system where design of fixture is done in case-based reasoning environment over the Internet.

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 339-348

340

Case-based reasoning (CBR) is an artificial intelligence technique which is a general problem solving method using

past experiences to solve novel problem [4]. The major consideration in a case-based reasoning approach to design is

as following:

� Representation of design cases;

� Indexing and retrieving similar cases from case-base;

� Adapting the retrieved cases for current design.

Case representation is generally regarded as one of the most important issues and is crucial to success of case-based

reasoning system. In this distributed fixture design system, case representation is concerned with two areas of research.

First, as a fundamental aspect of the CBR paradigm, case is not only described as problem, solution and outcome in

fixture design domain, but also represented in a manner that allows efficient retrieval, easy maintenance and

transmission over network. Second, a case representation can be devised as an open standard in fixture design

domain and exchange information with other computer-aided manufacturing systems.

Although Case-Based Reasoning is a knowledge-rich methodology, there is no standard means of representing the

case in a case base. CASUEL, a Common Case Representation language, is developed in the INRECA project [5].

CASUEL is a flexible, object-oriented frame-like language for storing and exchanging descriptive models and case

libraries in ASCII files. M. Marefat and J. Britanik [6] present an object-oriented model representation in case-based

process planning for 3D prismatic parts. The model consists of the feature-based part information model, the process

plan information model and tools knowledge concerned with process plan. These two are only developed on local

computer but not over network. Hayes et. al. [7] have developed an XML-based Case Mark-Up Language (CBML) for

e-commerce through Internet. This language allows user to make the formal definition of the structure of our cases

completely independent of the application code. CBML also makes system for industry extensibility, easy of reuse and

interoperability. Although CBML supports complex case representation, such as hierarchical cases and object-oriented

cases, as well as the commonly used flat vector format, it does not suit for Internet-based CAD applications in which

sometimes a large amount data are required to transfer over the Internet.

In fixture design domain, vast amount of research works is reported on developing computer aided system. Various

approaches have been attempted in fixture design, i.e. Rule-based expert system, Genetic Algorithm, Multi-agent

Approach, Machine Learning, Geometric Analysis. Some have been integrated and hybrid systems have been

developed. However, there is no information exchange between these systems and hence the fixture design output

information can not be shared with other manufacturing domain. Jerard and Ryon [8] developed Numerical Control

Markup Language (NCML) based on XML as data exchange format to permit buyers and sellers of custom machined

parts to conduct e-commerce over the Internet. In this language, information regarding workpiece, setups, tools, and

tolerance is provided to allow users to judge the manufacturability of a part. However, NCML does not provide any

information about fixture.

This paper is primarily focused on representing XML-based fixture design cases using Unified Modeling Language

(UML) [13] for the developing case-based reasoning system. XML is a description language that supports meta-data

description for particular domains and these meta-descriptions allow applications to interpret data marked up

according to this format. Besides being a recommendation of W3C, XML [12] is used in our work because it is neutral,

platform-independent, and flexible and allows structured data in Web applications. This means we can collect data

from various place and exchange structure rich data in various applications over existing network protocol. Today,

there is also ongoing development that will include a query language in the XML standard. UML was chosen because

it is a popular method for designing software and has proven to be valuable for data modeling [11].

2. XML-BASED REPRESENTATION USING UML

This section illustrated XML-based fixture design cases and modeling XML file represented in the UML. The graphical

UML notations that are used to represent XML model are summarized in Fig. 1. The UML depicts a class as a rectangle

with its name at the top and its attributes in the middle (Fig. 1a). Relationships between classes are depicted as lines

that link them. The inheritance relationship is identified by a hollow triangle at the end of line that indicates the

superclass (Fig. 1c), while the aggregation relationship is identified by a diamond at one end of line that indicates the

owning class and by an arrow at the other end (Fig. 1b). Multiplicity indicates how many instances of one class are

related to a single instance of another class at a given point in time. For example, Fig. 1c means one class whole has

many parts. The multiplicity notations are located at the end of a link. The meaning of them is shown in Fig.1d.

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 339-348

341

Class Name

Attribute

PartsWhole

*1

Super Class

Sub Class1 Sub Class2

1 *

Fig. 1 Unified modeling language notation

2.1 Case Structure

To identify the content of a design case, it is important to find out how design and design requirements are represented

in practice. Requirements for a fixture are the workpiece to be fixtured, manufacturing resources and fixture elements

provided. For modular fixture design, design outcomes are fixture planning that deals with overall design concepts and

fixture layout that produces a spatial layout of the fixture. Therefore, the representation of a case in fixture design is

divided into three parts: part representation, setup representation and fixture representation. A workpiece is described

using feature-based geometry and material properties. The machining features are grouped according to their

orientations and machining constrains into setups. In one setup, only one fixture is associated with it. By this way, the

three parts are linked (Fig. 2). The setup information including manufacturing resources and fixture plan is usually

provided by process planners who can access the system and co-operate with fixture designers, while fixture design

which includes fixture layout and fixture configuration is final solution for the requirement.

2.2 Part Representation

Part design is the input to the fixture design system. In case representation, its role is similar to the problem description.

It is represented not only as a part stored in case base but also as a new case to be solved. Part representation contains

not only geometric shape but also material property.

The geometric information is composed of a set of features, their interactions, faces, points for clamping, locating and

supporting, as well as engineering information (tolerance, dimensions, etc.) pertaining to the features. Feature class

represents the complete machining area in a workpiece by showing the size and type of features present. The features

include the following classes, i.e. boss, pocket, hole, slot, step, and each class can be classified further. Fig. 3 shows the

part representation using UML notation.

Inheritance is exploited in representing the knowledge of the features. In Fig. 4, Feature class is an abstract class only

acting as interface for basic shape feature classes, i.e. Hole, Slot, etc. These subclasses inherit the common attributes

from Feature class and other features are created from basic shape features. For simplicity, subclasses of Tolerance

class and basic feature shape classes are not displayed in Fig. 3. However, in order to clarify the inheritance, the Hole

class and its subclasses are shown in Fig. 4. In Fig. 4, the classes in the third level refer to the implementation class; the

classes in the first two levels are Meta-class. In the class “Hole”, the class “Couterbore Through Hole” is inherited from

its super class “ThroughHole” which is inherited from metaclass “Hole”. The class “Counterbore Through Hole” not

only includes its own attributes “CounterDiameter” and “CounterDepth”, but also inherited the attribute “Diameter”

which represents the diameter of an inner hole from its super class “ThroughHole”.

(a) Class:
(b) Aggregation:

(c) Generalization (Inheritance): (d) Multiplicity of Association:

*

0

1

0..*

1..*

0..1

many

zero

one

zero or more (optional)

one or more

zero or one

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 339-348

342

Fig. 2. Case structure

Hole

Feature Name

Step

Feature Name

Slot

Feature Name

Pad

Feature Name

Pocket

Feature Name

Boss

Feature Name

Surface Finish

Part

PartID : Integer

PartName : String

Material : String

Hardness

Shape Type

Machine Type

Tolerance

FeatureFace

FaceID : Integer

<<include>>

Feature

Feature Name

FeatureID

Position

Normal

0..* 10..* 1

<<include>>

<<include>>

1..*

1

1..*

1
<<include>>

Fig. 3. Feature representation in UML notation

Workpiece

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature 6

Set-up 1

Set-up 2

Set-up 3

Fixture 1

Fixture 2

Fixture 3

Part Set-up Fixture

Case

Sub Case Sub Case Sub Case

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 339-348

343

ThroughHole

Feature Type

Diameter

BlindHole

Feature Type

Diameter

Depth

hole

Feature Name

SimpleThrough Hole

FeatureSubType

Counterbore Hole

FeatureSubType

CounterDiameter

CounterDepth

Countersink Hole

FeatureSubType

CounterDiameter

CounterDepth

SimpleBlind Hole

FeatureSubType

Blind Counterbore

Hole

FeatureSubType

CounterDiameter

CounterDepth

Blind Countersink Hole

FeatureSubType

CounterDiameter

CounterDepth

Fig. 4. Inheritance in the Hole class

2.3 Fixture Design Representation

A case obviously includes the solution to the problem. In fixture design domain, the solution is usually a complete

fixture layout configuration, which includes details on the work-piece, base plate, supporting surfaces, points and

elements, locating surfaces, points and elements and clamping surfaces, points and elements. This information can be

provided to fixture analysis and process planning. In the developing system, the focus is on modular fixture that inherits

from fixture. The modular fixture is composed of fixture elements that can be mainly categorized into four functional

units: Base plate, Locator, Support and Clamp class. Locating elements, supporting elements and clamping elements

are located and assembled on a base plate through “LocatorPointID”, “SupportPointID” and “ClampPointID”

respectively in a fixture. Accessory elements associated with the four functional units are assembled in a fixture if

necessary. These fixture elements contact with workpiece through assembling Faces. The detailed fixture design

representation is shown in Fig. 5.

2.4 Setup Representations

Set-up planning is one of the important issues in process planning and requires extensive experience. A set-up is

defined as a task of determining a sequence of features and the number of set-ups required in fixturing configurations.

Set-up planning information enables the consideration of the fixture design configuration, positioning locators, clamps

and supports. Setup links the workpiece and its fixture designs together, and contains information that includes

machining features in workpiece, workpiece orientation, fixture planning, support faces, locating faces, and clamping

faces. One workpiece may require many set-ups, while each setup only requires one fixture (Fig. 6)

3. SYSTEM IMPLEMENTATION AND CASE STUDY

The developed system together with the representation described above is implemented in three-tier client-server

architecture and uses Java as the programming language, Java3D as the graphics API and XML as the information

exchange file format so as to provide the flexibility of interoperability on a variety of operating platforms. The system

consists of three main parts: the client, the server and the case library. The detailed implementation refers to [9].

Level 1

Level 2

Level 3

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 339-348

344

Fixture

FixtureID

number of Fixture

Location of Fixture

Clamping Sequence

Locator

LocatorName

LocatorID

LocatorPointID

Support

SupportName

SupportID

SupportPointID

Base Plate

BaseplateName

BaseplateID

Clamp

ClampName

ClampID

ClampPointID

Fixtureabili tyIndex

Accessory

PartName

PartID

ModularFixtures

Type of Modular Fixtures

*

1

*

1

<<include>>

0..*

1

0..*

1

<<include>>

1..*

1

1..*

1

<<include>>**

<<include>>

1
1

1
1

<<include>> <<is a>>

0..*0..*

<<include>>

FixtureElement

Material

Sti ffness

Position

Normal

Assembly Approach

<<is a>>

Workpiece

WorkpieceID

1
1..*

Face

FaceID : Integer0..*

0..*

1..*
1

0..*

0..*

Fig. 5. Fixture Design Representation Model in UML Notation

Fixture

FixtureIDFeature

FeatureID

Workpiece

workpiece ID

workpiece name

Setup

SetupID

fixture planning

support faces

locating faces

clamping faces

1

1

1

1
1

0..*

1

0..*

Face

face ID : Integer

normal

1

0..*

1

0..*

Fig. 6. Setups in UML notation

The server side consists of back-end CBR engine, Parasolid model kernel, server classes, data compression, and the

Remote Method Invocation (RMI) interface. The back-end CBR engine includes case indexing and case retrieval

module. When server side receives and processes the request from the client end, CBR engine searches and matches

new case with cases in Case Library, retrieves desired candidates, and sends them back to original client. Current

proposal is to perform CBR retrieval on the server-side, because case retrieval module including indexing, searching

and matching cases in case library can be computationally intense process, especially for a huge case library. We do so

in order to make high-end server to handle heavy computing.

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 339-348

345

The client application handles visualization, CBR front engine, RMI interface to server and XML parser. The front-end

CBR engine is composed of case selection, case storage, and case adaptation & repair module. It is integrated with 3D

solid modeling so that a user can visualize information from case-based reasoning via the models. Since a distributed

CBR system could potentially have many clients connecting simultaneously, case retrieval is computationally intense

process, and current PC performance at client-end is increasingly well, distributing as much work as possible to the

client side could possibly speed up the reply time for all users on the network. Under these circumstances, the trend

seems that the thin-clients are growing fatter or have the ability to put on the weight. So that, the front-end CBR engine

is put in client-side.

Case library developed using Apache Xindice XML server [10] includes fixture design, workpiece feature information

and manufacturing information which are in XML file format. The benefit of a native solution is that you do not have

to worry about mapping your XML to some other data structure. You just insert the data as XML and retrieve it as

XML. You also gain a lot of flexibility through the semi-structured nature of XML and the schema independent model

used by Xindice.

The proposed system using CBR is also following certain sequential steps; hence the user can follow the design stage

and interact with the system. The detailed work flow is shown in Fig. 7. The first three steps, new workpiece import,

feature extraction and setup information setting, are considered as design-problem specification. The setup information

may be provided by a process planner.

Fig. 8 shows a workpiece whose shape type is prismatic is loaded in the system and the machining features are

extracted. The feature information is shown in XML file. We can know the part name is “model3” from

<PARTNAME> tag and part id is 32 from <PARTID> tag. The feature information is provided in the <FEATURE>

tag. Fig. 8 also shows Slot class, its subclass and its attributes in the <FEATURE> tag.

Fig. 9 shows XML schema for the imported workpiece setup information. The XML file may be retrieved and displayed

on the Internet Browser. For this workpiece, only one setup is applicable; we can know that the setup ID is “101” from

<SETUPID> tag, the fixture planning is “3-2-1” from <FIXTUREPLANNING> tag, and the machine type for

manufacturing operation “Mill, Drill” is “Vertical Machine” from <MACHINETYPE> tag.

Fixture Design

Case Base

Case Indexing

Case Retrieval

Workpiece Import

Case Selection

Case Adaptation

Case Storage

Server

Client

Feature Extraction

Setup Info. setting

Control Flow

Data Flow

XML/HTTP

RMI/HTTP

XML/

HTTP

Fig. 7. Work flow of CBR on fixture design

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 339-348

346

The process of case indexing and case retrieval including case similarity matching and ranking reside in server. The

input part compares with the models in the case-base. The compared models are ranked based on the similarity values.

The ranked cases are returned back to client and the fixture designs are displayed on the client for selection (Fig. 10). A

desired design can be chosen from ranked list for adaptation. After the selected design case is adapted, the new design

case shown in Fig.11 is directly stored to the case library in case storage process.

Fig. 11 shows the complete fixture design and its corresponding XML file describing the detailed fixture design. From

<SELECTEDWORKPIECENAME> tag, we can know the workpiece name is model4. The locator information is in

the <LOCATOR> tag. The name of one of the locators in the fixture design is BJ400-12050 and its associated face ID

with workpiece is 267.

4. CONCLUSION

Case representation is one of the most important research issues in developing case-based reasoning system. This

paper mainly discusses the case representation in XML format in the Internet environment. XML-based representation

developed in fixture design domain is illustrated in the aspect of part representation, setup representation, and fixture

design representation using UML notation respectively. Through the case representation, the new problem and the

solution in the area of fixture design are described in XML schema. One reason XML schema is adopted to represent

case is that it can facilitate network transmission, case retrieval and case storage over the Internet. Another reason is

that it can be regarded as open standard to exchange manufacturing information with other CAD/CAM systems. Based

on this XML-based representation, the distributed CBR system for fixture design is implemented and developed.

5. REFERENCES

[1] Nee, A.Y.C., Whybrew, K. and Senthil Kumar A. (1995). Advanced fixture design for FMS, Springer-Verlag,

c1995.

[2] Senthil Kumar, A. and Nee, A.Y.C. (1995), “A framework for a variant fixture design system using case-based

reasoning technique”, Manufacturing Science and Engineering; ASME, MED, Vol. 2-1, pp. 763-775.

[3] Nnaji, B.O. ; Lyu, P. (1990), Rules for an expert fixturing system on a CAD screen using flexible fixtures,

Journal of Intelligent Manufacturing, Volume 1, Issue 1, 1990, Pages 31-48

[4] Kolodner, J. L. (1993). Case-Based Reasoning. Morgan Kaufmann.

[5] INRECA consortium (1994). “CASUEL: A Common Case Representation Language”, at

http://wwwagr.informatik.uni-kl.de/~bergmann/casuel/

[6] Marefat, M.; and J. Britanik. (1997), Case-based process planning using an object-oriented model

representation, Robotics & Computer-Integrated Manufacturing 13(3):229-251.

[7] Hayes, C. & Cunningham, P. (1999) Shaping a CBR View with XML. Proceedings of the Third International

Conference on Case-Based Reasoning, ICCBR’99, Seeon Monastery, Germany. LNCS Vol. 1650. Althoff, K.-

D., Bergmann, R.,Branting, L.K. (Eds.) Springer-Verlag Berlin/Heidelberg 1999, pp.468-481

[8] Robert B. Jerard and Okhyn Ryon, "NCML: A Data Exchange Format for Internet Based Machining," 2002

Japan USA Symposium on Flexible Automation (JUSFA), July 15-17, 2002 Hiroshima, Japan.

[9] Fan, L.Q.; A. Senthil Kumar and F. Mervyn; “The Development of a Distributed Case-Based Fixture Design

System”, 2004 Japan USA Symposium on Flexible Automation (JUSFA), July 19-21, 2004, Denver, Colorado,

USA.

[10] Xindice, (2002), The Apache Software Foundation, at http://xml.apache.org/xindice/

[11] David Carlson, (2001), Modeling XML applications with UML: practical e-business applications. Addison-

Wesley, c2001.

[12] http://www.w3.org/XML/

[13] http://www.uml.org/

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 339-348

347

Fig. 8. Loaded workpiece and its feature XML schema

Fig. 9. XML schema for setup

<?xml version="1.0" ?>
-<PARTDOCUMENT>

-<PART>

 <PARTNAME>model3</PARTNAME>
 <PARTID>32</PARTID>

 <ShapeType>Prismatic</ShapeType>

 <Material>Cast Iron</Material>
 <HeatTreatment>Normalizing</HeatTreatment>

 <MachineType>Vertical Machine</MachineType>

 +<ProfileSize>
 +<ProfileFace>

 </PART>

.

.

.

- <FEATURE>
 - <Feature>

 <FeatureName>Slot</FeatureName>

 <FeatureType>ThroughSlot</FeatureType>
 <FeatureSubType>Rectangular</FeatureSubType>

 </Feature>

 -<Dimension>
 <Width>0.03</Width>

 <Depth>0.015</Depth>

 </Dimension>
 + <Position>

 + <Normal>

 + <FeatureFace>
 </FEATURE>

+ <FEATURE>

Slot

 <?xml version="1.0" ?>

 <!DOCTYPE DOCUMENT (View Source for full doctype...)>

- <DOCUMENT>

- <SELECTEDWORKPIECE>

 <SELECTEDWORKPIECENAME>model3</SELECTEDWORKPIECENAME>

 <SELECTEDWORKPIECEID>32</SELECTEDWORKPIECEID>

 </SELECTEDWORKPIECE>

- <SETUP>

 <SETUPID>101</SETUPID>

 <FIXTUREPLANNING>3-2-1</ FIXTUREPLANNING >

 <MACHINETYPE>Vertical Machine</MACHINETYPE>

 <MACHINEOPERATION>Mill, Drill</MACHINEOPERATION>

 - <LOCATINGFACE>

 <FACE>

 <FACEID>267</FACEID>

 + <NORMAL>

 + <FACECENTER>

</FACE>

+ <FACE>

+ <FACE>

</ LOCATINGFACE >

+ <SUPPORTINGFACE>

+ <CLAMPINGFACE>

</SETUP>

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 339-348

348

Fig. 10. The new workpiece and fixture designs of its similar parts

Fig. 11. The final fixture design of the new workpiece and its XML schema

- <SELECTEDWORKPIECE>
 <SELECTEDWORKPIECENAME>model4</SELECTE

DWORKPIECENAME>

 <SELECTEDWORKPIECEID>32</SELECTEDWORKP
IECEID>

 </SELECTEDWORKPIECE>

- <BASEPLATE>
 <BASEPLATENAME>BJ010-4050-

12</BASEPLATENAME>

 <BASEPLATEID>126</BASEPLATEID>
 <BASEPLATETHICKNESS>0.05</BASEPLATETHICK

NESS>

.

.

.

- <LOCATOR>
 <LOCATORNAME>BJ400-12050</LOCATORNAME>

 <LOCATORID>471</LOCATORID>

 <LOCATORPOINTID>13</LOCATORPOINTID>
+ <LOCATORPOSITION>

- <WORKPIECE>

 <WORKPIECEID>32</WORKPIECEID>
- <FACE>

 <FACEID>267</FACEID>

 + <NORMAL>
 + <FACECENTER>

 </FACE>

 </WORKPIECE>
 </LOCATOR>

Locator

