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ABSTRACT 

 

We present a novel method to assess the fairness of class A surfaces. The fairness of class A 

surfaces are often assessed by reflection curves on the surfaces of a family of parallel straight 

fluorescent lights, namely reflection lines and highlight lines. Unlike reflection lines and highlight 

lines, where a family of parallel straight lines are used for the light sources, we propose to use 

concentric circles as light sources. In this way we can capture the surface fairness in all directions, 

whereas the conventional methods can capture the fairness only in one direction. Illustrative 

examples show substantial merits of this method over the conventional straight line light based 

surface interrogation methods. 

 

Keywords: class A surface, highlight lines, reflection lines, isophotes, surface fairing, surface 
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1. INTRODUCTION 

Free-form surfaces are used in the bodies of ships, automobiles and aircraft, which have both functionality and 

attractive shape requirements. Outside parts of many electronic devices as well as consumer products are also 

designed with aesthetic shapes, which involve free-form surfaces. These surfaces are called class A surfaces, and 

various interrogation methods have been developed to assess the fairness of these class A surfaces. 

Isophotes, reflection lines, and highlight lines are the first-order interrogation methods that are used in the 

automotive industry to assess the fairness of a surface [1. 6, 8, 11, 14]. Isophotes are curves of constant light 

intensity on a surface, created by a point light source at infinity with direction specified by the user. These curves can 

be used for the detection of surface irregularities [8, 14]. If the surface is MC  continuous then the isophote line will 

be 1−MC continuous. Reflection lines [8] simulate the mirror images of a family of radiating parallel straight lines on 

a smooth surface viewed from a fixed point. In this method, deviations of the surface from a smooth shape can be 

detected by irregularities of the reflection lines. These surface deviations are corrected by modifying the original 

surface so that the new surface has reflection lines without any irregularities. Choi and Lee [4] applied the Blinn-

Newell type of reflection mapping, which uses simple and physically acceptable mapping algorithm, to generate 

reflection lines on a trimmed NURBS surface. Choi and Lee [4] also provide a thorough review of this topic. Kanai 

[7] computed reflection lines of a chain of small circular light sources along straight lines to capture the surface 

fairness in all directions.   

Beier and Chen [1] introduced a simplified reflection line model called highlight lines, which is merely an orthogonal 

projection of a straight line onto a surface [12, 15], and hence it is viewer-independent. In other words, in the 

computation of highlight lines viewpoint location is not necessary in contrast to the reflection lines. Chen et al. [3] 

presented a method to update the control points of the NURBS surface [13] to a desired shape automatically via 

specifying the shape of highlight lines. Zhang and Cheng [18] studied a method to remove local irregularities of 

NURBS surface patches by modifying its highlight lines for real time interactive design. Recently, Yong et al.  [16] 

developed an interactive method that generates highlight lines dynamically on a locally deforming NURBS surface 

using a Taylor expansion technique instead of time consuming tracing processes. 

In this paper we extend the concept of highlight/reflection lines to circular highlight/reflection lines [10] by replacing a 

family of parallel light lines to concentric light circles so that we can capture the surface fairness in all directions. The 

paper is organized as follows: Section 2 introduces the circular highlight line method. Contouring methods for 

determining the pre-images of the circular highlight lines are given in Section 3. In Section 4 complexity analysis of 

the circular highlight lines are given. In Section 5 we show that the circular highlight line algorithm can be easily 
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applied to the computation of circular reflection lines. Illustrative examples are presented in Section 6. Finally 

Section 7 concludes the paper. 

 

2. CIRCULAR HIGHLIGHT LINE MODEL 

A circular highlight line is defined as a set of points on a surface such that the distance between a circular light source 

and an extended surface normal at the highlight lines is zero as shown in Fig. 1 (a). A parametric representation of 

the circular light source is given by 

( ) ( )bnAL θθθ sincos ++= R ,                                                                        (1) 

where A and R is the center point and the radius of the circular light source, respectively. The unit vectors n  and b  

lie in the plane that contains the circular light and are orthogonal. They form a frame (or trihedron) together with a 

unit vector t  such that bnt ×= , and hence t  is perpendicular to the plane that contains the circular light. We also 

assume that the surface of interest is a parametric NURBS surface r(u, v) where 1,0 ≤≤ vu .  Now let us define an 

extended surface normal vector E at a surface pointQ as 

( ) ΝQE ττ += ,                          (2) 

where  τ   is a parameter and N is the unit surface normal vector atQ  
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As illustrated in Fig. 1 (b), distance vector d directed from the line )(τE to the circle )(θL  is given by  

)()sin(cos NQbnAd τθθ +−++= R .      (4) 

Also the squared distance function D is defined as 
2
)())sin(cos(),( NQbnAdd τθθθτ +−++=⋅= RD .     (5) 

 To compute the minimum distance, we need to evaluate the stationary points of the squared distance function, 

which satisfy the following two equations [11] 

0),(),( == θτθτ θτ DD .                        (6) 

 Using (5), these two equations can be rewritten as follows: 

τθθ =⋅+⋅+⋅− )sin(cos)( NbNnNQA R ,       (7) 

0)sin(cos)( =−⋅−− nbNQA θθτ ,        (8) 

 or in a matrix form  
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 Using Cramer’s rule, we obtain 

Det

nQANNQA ⋅+−⋅−−
=

))()((
cos

ττ
θ , 

Det

bQANNQA ⋅+−⋅−−
=

))()((
sin

ττ
θ ,  (10) 

 where Det is the determinant of the matrix of (9) given by  

bANQNbnANQNn ⋅−+⋅+⋅−+⋅= ))(())(( ττ RRDet .         (11) 

If we denote 

QAB −= , Nn ⋅=α ,  Nb ⋅=β ,  nB⋅=γ ,  bB ⋅=δ ,  NB ⋅=ε ,               (12) 

Equation (11) becomes 

)()( δβτβγατα −+−= RRDet .                                                           (13) 

Using the above notations (12) and substituting Equations (10) into 

1sincos 22 =+ θθ ,                                                                                              (14) 
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(a) (b) 
Fig. 1. (a) Definition of circular highlight line. (b) Definition of distance vector 

 

we obtain a quartic equation in  τ  

001

2

2

3

3

4

4 =++++ ccccc ττττ ,                                                                               (15) 

where 
22

4 βα +=c                                                                                                                                 (16) 

))()((2 22

3 εβαβδαγ +++−=c                                                                              (17) 

222222222

2 )()()(4)( βαδγβδαγεεβα +−+++++= Rc       (18) 

)))(()()((2
222222

1 βδαγβαεδγεβδαγ ++−+++−= Rc      (19) 

22222

0 )()( βδαγεδγ +−+= Rc .                                                                           (20) 

Using line geometry [15], it can be also shown that the degree of the problem is quartic. The roots of the fourth order 

polynomial equation was first solved by Ferrari (1522-1565) [17], a student of Cardano’s. A source code for solving 

quartic equation, based on a method by Hacke [5] (see Appendix A), is available through the internet [9]. In 

summary, given a point ),( vuQ  on a parametric surface ),( vur , we can compute τ  by solving the quartic 

equation (15) and then θcos and θsin  from (10), provided that Det is not zero, and finally the distance vector d  

from (4). Figures 2 (a) and (b) show some typical computational results of the quartic equations. The result in Figure 

2 (a) has four distinct real roots, while that of Figure 2 (b) has two distinct real roots and two complex conjugates. 

The root which provides the shortest distance will be selected as the solution. 

 

There are four cases when the determinant Det becomes zero, namely: 
1. N is parallel to t, i.e. t||N  (see Figure 3 (a)) 

Since t||N , we have 0=⋅=⋅ NbNn , and hence 0=Det . In this case the quartic equation reduces to 

a quadratic equation 0)( 2 =−ετ . Geometrically the distance computation between a line and a circle in 

3D is reduced to a distance computation between a point and a circle in 2D as shown in Fig. 3 (a). Thus 

the distance vector is given by 
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where NQ)(A ⋅−== ετ . 
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(a)                (b) 

Fig. 2. Roots of the quartic equation: (a) four distinct real roots, (b) two distinct real roots and complex conjugates 

 
2. N intersects t, i.e. tANQ ξτ +=+  (see Figure 3 (b)) 

Since 0=⋅=⋅ btnt , we have 0(( =⋅−+=⋅−+ bA)NQnA)NQ ττ  ( 0=−=− δβτγατ ), 

and hence 0=Det . Under these conditions, the quartic equation can be written as 

( )( ) 0)( 22222 =++−+−−− βαετβαετττ RRD ,           (22) 

where 

β
δ

α
γ

τ ==D
. Therefore the roots are 22

1 βαετ ++= R , 22

2 βαετ +−= R , and a double root 

Dτττ == 43
 as shown in Figure 3(b). Note that 

1ττ = ,
2ττ = are solutions to the governing equations 

(6), whereas the double root 
Dττ = , corresponding to the intersection point, makes the determinant 

become zero and does not satisfy (6). 

 
3. N is perpendicular to t, i.e. 0tN =⋅  (see Figure 3 (c)) 

With this condition, it is easy to show that 122 =+ βα , εβδαγ =+ , and hence the determinant reduces 

to )( ετ −= RDet . In this case the quartic equation can be written as: 

( ) 0)()()( 2222 =−−+−− Rδβτγατετ .                                                    (23) 

Apparently ετ =  is a double root, and with this root, the determinant becomes zero. However, unlike 

Case 2, the double root does satisfy (6). 

 

4. N passes through A, i.e. N||QA − (see Figure 3 (d)) 

Since Q)N(ANQA −⋅=− , we have εαγ =  and εβδ = , and hence the determinant reduces 

to ))(( 22 ετβα −+= RDet . The quartic equation becomes the same as (22). Therefore this is a 

special case of Case 2 and similar discussions can be made. 

 

3. CONTOURING METHOD 

The tangent vector of the circle is given by differentiating Equation (1) with respect to θ , yielding 

)cossin()( bnL θθθ +−= R& .                                                                  (24) 

Since  0=⋅Nd  and 0=⋅Ld &  by definition (see Figure 1 (b)), and we have 0)( =⋅× NLN &  and 

0=⋅× L)L(N &&  from the definition of the triple scalar product, we can conclude that the distance vector d is parallel  
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(a) (b) 

       
(c)                                                                                                                           (d) 

Fig. 3. Four cases when the determinant becomes zero: (a) N is parallel to t, (b) N intersects t, (c) N is perpendicular to t, (d) N 

passes through A 

 

to LN &× . A signed distance function ds [1] can be defined by taking the dot product with the unit vector 

( ) LNLN && ×× as follows: 

)(),(

)(),(
))),().(()sin(cos(),(

θ
θ

τθθ
LN

LN
NQbnA

&

&

×

×
⋅+−++=

vu

vu
vuvuRvud s .    (25) 

Circular highlight lines are points on a surface where the signed distance function vanishes. If we construct a signed 

distance surface (u, v, ds (u,v) ) by evaluating the discrete values of ds at the grid points in the uv parameter space, 

we can easily compute the pre-image of the circular highlight lines using the contour algorithm [2] where curves of 

zero height are computed through surface-plane intersection problems as illustrated in Figure 4. Although the 

accuracy of contouring algorithm depends on the choice of grid resolution, we employed the contouring algorithm 

for its simplicity and speed. A more realistic light source can be realized by replacing the circle with a torus of a given 

radius ρ , which is obtained by simply finding the points satisfying ρ=sd and ρ−=sd  (see Figure 4). These two 

curves are called circular highlight band boundary curves and form a circular highlight band [1]. 

 

In the contouring algorithm [2], each rectangular grid is divided into four triangles by adding a new grid point at the 

intersection of two diagonals. The height at the new grid point is assigned a value corresponding to the average 

values of the four height values at the grid points. Therefore for each rectangular grid, four triangles are constructed 

in the 3D space. These triangles are intersected by horizontal planes resulting in straight line segments, which form 

contour curves at the user specified contour heights. 
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Fig. 4. A graph of signed distance function 

 

4. COMPLEXITY ANALYSIS 

We will develop an analysis of the complexity of the circular highlight line algorithm. The computation includes three 

parts, time on computing the signed distance at each grid point (T1), the time on computing the contour lines (T2), 

and the time on mapping the pre-image of the circular highlight lines to the 3D space (T3). The time count on the first 

step (T1) is obviously O(N), where N is the total number of grid points. Although the circular highlight line algorithm 

requires computation of solving the quartic equation, it has a closed form solution (see Appendix), and hence the 

additional computational cost is very small comparing to the highlight line algorithm [1]. It is easy to find that the 

time costs on the second step (T2), as well as the third step (T3), are also O(N). Therefore, the overall complexity of 

the circular highlight line algorithm is O(N) as in the highlight line case [1]. 

We have implemented the algorithm on an Intel Pentium 4 PC running at 3GHz. Figure 5 shows the computational 

time obtained by using the clock() function which returns an approximation of processor time used by the program. 

The surface used for the measurement is a bicubic B-spline surface shown in Figure 1. The grid resolution varies from 

1010 ×  to 100100 × . We can observe from Figure 5 that the computational time is linear and verifies our analysis. 

 
 

Fig. 5. Performance of the Circular Highlight Lines 
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5. CIRCULAR REFLECTION LINE MODEL 

We can easily apply the techniques that we have developed for the circular highlight lines in Sections 2, and 3 for the 

computation of circular reflection lines. If we denote the eye position by E and the unit vectors 

( ) v)Q(u,Ev)Q(u,E −−  and ( )( ) ( ) v)Q(u,θLv)Q(u,θL −− by e and c as shown in Figure 6 (a), 

we have the following three equations for c as follows: 

αcos),( =⋅ vuNc ,             α2cos),( =⋅ vuec ,            1=c ,                                       (26) 

where ),(cos vuNe ⋅=α . Circular reflection lines can be computed by simply replacing the surface normal N in 

Sections 2 and 3 by the unit vector c obtained from (26). Figure 6 (b) shows circular reflection lines on a bi-cubic B-

spline surface. A point with a bold letter E indicates the position of an eye. Comparing to the circular highlight line 

algorithm, the extra amount of computing cost is the calculation of vector c, which has a closed form solution. 

Therefore, the overall complexity of the circular reflection line algorithm is also O(N). Note that this algorithm can be 

also applied to the conventional reflection line computation. 

 
(a)                                                                                                                (b) 

Fig. 6. (a) Definition of a circular reflection line. (b) Circular reflection lines on a bi-cubic B-spline surface.  

 

6. EXAMPLES 

The circular highlight lines are most effective when the surface under interrogation consists of mainly elliptic points. 

We can observe from Fig. 7 (a) that the resulting circular highlight lines on a surface with mainly elliptic points show 

the fairness of the surface more clearly than that of the conventional highlight lines (b). Figure 8 (a) shows circular 

highlight lines on a hood of an automobile, while Figure 8 (b) shows conventional highlight lines on the same surface. 

The bi-cubic B-spline has a knot multiplicity of two at knots 25.0=u , 75.0=u , and 25.0=v , and 75.0=v , where 

u≤0 , 1≤v , therefore the surface is 1C  continuous at those knots. If the surface is 1C  continuous, then the circular 

highlight line will be 0C . It is clear from Figure 8 (a) that the resulting circular highlight lines can detect second order 

discontinuities in both u and v  directions, while the conventional highlight lines are able to detect second order 

discontinuities only in u direction. Figure 9(a) and (b) depict circular reflection lines on a rear part of an automobile 

with different view points. 
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(a)                                                                                                            (b) 

Fig. 7. Circular highlight lines versus conventional highlight lines on a surface consisting of mainly elliptic points: (a) circular 

highlight lines, (b) conventional highlight lines 

 

                              
(a) (b) 

Fig. 8. A hood surface of an automobile with 
1C  continuity at knots  25.0=u , 75.0=u , 25.0=v , and 75.0=v , where these 

knots are depicted as iso-parametric lines in the figure: (a) circular highlight lines can detect second order discontinuities in both 

u and v  directions, (b) conventional highlight lines can detect second order discontinuities only in u direction 

           
          (a)                                                                                                      (b) 

Fig. 9. Circular reflection lines on a rear part of an automobile with different view points. 
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7. CONCLUSION AND RECOMMENDATION 

We have introduced a novel method for surface interrogation called circular highlight/reflection lines. Unlike the 

conventional first order surface interrogation methods such as, reflection lines and highlight lines, where a family of 

parallel straight lines are used for the light sources, concentric circle light sources are used for the newly proposed 

circular highlight/reflection lines to evaluate the surface fairness. In this way we can capture the surface fairness in all 

directions, opposed to the conventional methods that can capture the fairness only in one direction. The overall 

computational time cost of the circular highlight/reflection line algorithm is O(N), where N is the number of grid 

points. 
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Appendix: A solution of quartic equation based on Hacke’s algorithm [5]. 

The general quartic equation (15) can be reduced to the standard form 

024 =+++ rqxpxx ,                                                                                        (27) 

where 

43 4ccx += τ                                                                                                        (28) 

2

424

2

3 8)83( ccccp +−=                                                                                      (29) 

3

41

2

4234

2

3 8)84( cccccccq +−=                                                                       (30) 

4

40

3

413

2

42

2

34

4

3 256)25664163( ccccccccccr +−+−=                                 (31) 

Since we have 
22422 2)( yyxxyx ++=+ ,                                                                               (32) 

for any value of y, we obtain 

)()2(2)( 2222222 ryqxxpyyyxrqxpxyx −+−−=++−−−=+ ,  (33) 

by substituting for 
4x from (27). The right hand side of Equation (33) becomes a perfect square if the discriminant in 

x  is zero, which leads to the following resolvent cubic: 

0))(2(4 22 =−−− ryqyq ,                                                                              (34) 

04848 223 =−+−− qprrypyy .                                                                   (35) 

Let 1y be a real root of the resolvent cubic, then (33) becomes 

2222

1

2 2)( LKLxxKyx +−=+ ,                                                                        (36) 

where 

pyK −= 1

2 2 ,             ryL −= 2

1

2
,             qKL =2                                    (37) 

Thus, we have the following two quadratics 

01

2 =++− LyKxx ,               01

2 =−++ LyKxx .                                                     (38) 

The roots of the quadratics are given by 

2

)(4 1

2 LyKK
x

+−±
= ,         

2

)(4 1

2 LyKK
x

−−±−
= .                                     (39) 
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