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Abstract. Small visible defects on the surfaces of products affect their appearance 
and sales. Machine vision is a common and effective detection method for detecting 
the defects. At present, visual detection based on deep learning has made a great 

breakthrough in terms of accuracy. However, this method is not suitable for the 

production of small-scaled products since it relies on a large amount of data to 
become effective and the training of the deep learning model usually requires a 
very long time. Typically, the production of a new design is limited to a small scale, 
and the initial sample is not sufficient for the evaluation function to predict small 
visible defects. To address this issue, a fast approach for small visible defect 

detection is developed based on a fusion of multiple features using a small sample 
of data, also a recursive scheme is developed to tune the coefficients of the 
evaluation function as the sample size increases during the production process. To 
validate the proposed approach, a set of experiments using a patch of 500 watch 
dials and 500 jewelry accessories were conducted. It is shown that this method can 
effectively improve the prediction accuracy of the evaluation function. 
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1 INTRODUCTION 

Small visible defects often appear on the surface of products during the manufacturing processes. 
Visible defects directly affect the sales of the products, especially for those items that are worn on 
human bodies (e.g., watches and jewelry accessories). At present, a common detection method is 

manual detection, which may lead to problems such as low detection accuracy, low efficiency, and 
high labor intensity of workers. Therefore, it is of practical significance to realize the automatic or 
semi-automatic detection of visible defects on the surface of small parts of small scale. 

Noncontact detection is widely used in the detection of surface defects of various products. The 
main technologies include eddy current detection [9,22,25], ultrasonic detection [6], radiographic 

detection [8], etc., but these methods are time-intensive and inefficient [18]. With the rapid 

development of computer vision technology, visual inspection has been widely used because of its 
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advantages of fast, high precision and noncontact. For example, Shanmugamani et al. [21] 
extracted texture features based on histogram and gray-level co-occurrence matrix from the 
segmented image for classification; Dubey et al. [7] analyzed the geometric features of the region 
and identified the defects by using the maximally stable extremal region technique; Anandan et al. 

[1] transformed the input image into the frequency domain and detected defects by analyzing the 
frequency feature; Li et al. [14] extracted Histogram of Oriented Gradien (HOG) features and used 
classification algorithm to identify workpiece defects. 

The above detection method requires a high degree of matching between features and defects. 
However, whether a defect is visible or not relies on people's subjective judgment, therefore it is 
difficult to objectively and effectively analyze the features of defects.  

In recent years, with the development of deep learning, defect detection based on deep 

learning have attracted more and more attention [11]. Using deep learning can effectively extract 

high-dimensional information in the image, which avoids the cumbersome image processing steps 
of traditional methods. Wei et al. [23] used deep neural network to detect and identify defects of 
parts and achieved a high recognition accuracy. Mei et al. [16] reconstructed image patches with 
convolutional denoising auto-encoder networks at different Gaussian pyramid levels, and 
synthesized detection results from these different resolution channels to generate final detection 

results. Maestro-Watson et al. [15] proposed a U-NET-based Full Convolutional Neural Network for 
semantic segmentation of surface defects. Chen et al. [4] proposed a convolutional neural network 
(CNN) and Naive Bayes data fusion scheme to detect crack defects in a single video frame. Yang 
[24] proposed a Feature Pyramid and Hierarchical Boostiong Network (FPHBN) for crack detection. 
Chen et al. [5] used deep convolutional neural network to locate and extract defects. Park et al. 
[17] detected scratches and other defects on the surface of parts by building several types of deep 
networks of different depths and layer nodes to select adequate structures. Ren et al. [19] used 

features transferred from a pre-trained deep learning network to obtain pixel-level prediction 

through convolution of input images. 

But using deep learning method requires a large amount of data to become effective. Typically, 
the production of a new design is limited to a small scale, and the initial sample is not sufficient to 
implement the deep learning method. In the actual production process, it is difficult to obtain 
enough defect samples due to the low production error rate. In addition, the training of the deep 
learning model also requires a very long time. 

In this paper, we proposed a fast detection method based on a small sample of data. The 
accuracy of our approach is guaranteed by using a fusion of multiple features of the defects. To 
further improve the accuracy of our approach, based on the initial evaluation function derived from 
the origin small set of data, we develop a self-learning mechanism to recursively tune the 
coefficients of the evaluation function, which is achieved by adjusting the coefficients of the 
function by using the prediction accuracy of new products. 

The main contributions of this paper include the following aspects: The statistical analysis 
method is used to quickly analyze a small amount of data and obtain the initial evaluation function, 
which can shorten the development cycle. The fusion analysis of multiple features ensures the 
accuracy of defect description. In the production process, the recursive tuning method is used to 
continuously optimize the initial evaluation model. This makes the predictive power of the 
evaluation model continuously enhanced. And this method can effectively prevent over-fitting, 
improve the evaluation accuracy and robustness. This advantage is particularly suitable for the 

defect detection of actual industrial productions. 

The remainder of the paper is organized as follows: Section 2 presents our proposed 
methodology, Section 3 validates our approach with a set of experimental results, and finally 
Section 4 concludes the paper with some discussion. 
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2 METHODOLOGY 

This paper takes the dial of a watch as an example to illustrate our method. However, our method 
is also applicable to the other products. There are visible defects and invisible defects on the 
surface of a dial (Figure. 1). In practice, invisible defects do not affect the appearance and the sale 

of the product, and thus invisible defects are allowed in qualified products. Visible defects will 
directly affect the appearance of the product, so it is necessary to detect visible defects in the 
production process. 
 

 
 

Figure 1: Visible and invisible defects on a dial. 
 

 

 

Figure 2: Flowchart of our approach. 

 

Figure 2 shows the flow of our detection method: 

1. Preprocessing the dial image to extract the ROI (Region of Interest, including visible and 
invisible defect regions). 

2. A statistical analysis is performed on the ROI to establish the evaluation function 

3. Using the new data obtained from the subsequent production process to recursively tune 
the coefficients of the evaluation function. 

2.1 Preprocess 

The role of preprocessing is to extract the ROI (Region of Interest, including small visible defect 
regions and invisible defect regions) of the dial image. Given a set of dial images and a standard 
dial image, we shall preprocess them as follows: (1) Extract the standard mask of the standard 
image; (2) match the standard mask and the dial image to mask the irrelevant regions of dial 

image, and then extract the ROI. 
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2.1.1 Extract the standard mask 

To extract the standard mask (with irrelevant regions) of a standard image (free of defects), it is 
necessary to extract the boundary edges of the irrelevant region. Canny edge detection has been 
widely used to extract the edge because of its fast calculation speed and accurate edge location 
[3]. Therefore, in the paper, the Canny edge detection is used to extract the edge of the standard 
mask. The steps to extract the standard mask are as follows: 

Step 1: Smoothing the input image. 

A smoothed image can be obtained by performing a convolution operation on Gaussian 

function ( )G x,y  and input image ( )f x,y . The smoothed image ( )sf x,y  can be expressed as Equation 

(2.1). 

 ( ) ( ) ( )sf x,y G x,y f x,y  (2.1) 

Step 2: Calculate the modulus and gradient direction 

Set ( , )M x y  as the modulus of the gradient, ( , )x y  is the gradient direction and the expression 

is as shown in Equation (2.2). 

 

2 2( , )

( , ) arctan( )

x y

x

y

M x y g g

g
x y

g

 (2.2) 

Where xg  and yg  are the first derivatives in the x  and y  directions, respectively. xg  and yg  are 

shown in Equation (2.3). 

 
( 1, ) ( , ) ( 1, 1) ( , 1) / 2

( , 1) ( , ) ( 1, 1) ( 1, ) / 2
x s s s s

y s s s s

g f x y f x y f x y f x y

g f x y f x y f x y f x y
 (2.3) 

Step 3: Non-maximum suppression  

The global gradient is not sufficient to determine the boundary edges, and ( , )M x y  needs to be 

refined by using non-maximum suppression to retain the local gradient maximum points, which 

ensure accurate edge positioning. 

Step 4: Double threshold processing and connectivity analysis  

Set a high threshold and a low threshold to extract edge pixels. First select the appropriate 
high threshold Th  and low threshold Tl . If ( , )M x y Th , then the point is considered to be on the 

boundary edge, else otherwise. If ( , )M x yTl Th , then we need to judge whether there is any 

pixel in the neighborhood of the point that is greater than the high threshold Th . If so, then that 

point is the edge point. Finally, the resulting point is the edge point of the standard mask. The 

boundary edges of the standard mask of the standard image extracted is shown in Figure 3. 
 

 

 

Figure 3: The boundary edges of a standard mask. 
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2.1.2 Covering irrelevant region 

After obtaining the standard mask from a dial free of defects, we can remove the regions that do 
not require detection (metal parts, such as scales and marks) in the dial image. For this purpose, 
the standard mask and the dial image need to be matched. Figure 4 shows the main flow of 
covering the irrelevant regions.  

 

 

 

Figure 4: The main flow of covering the irrelevant region. 

 

To reduce the matching time, we applied a pyramid search strategy [10] as follows. Build a 

pyramid data structure. The pyramid data structure consists of 4 images. The lowest level of the 
pyramid is the original dial image. Subsequently, the image of the upper layer is obtained from a 
lower layer by low-pass filtering, and its resolution is also lower. 

When conducting the matching with the pyramid data structure, the standard mask is matched 
in a top-to-down fashion. In this process, the feature used for matching is the subpixel contour of 
edge. The Hausdorff distance is used to measure the matching rate. The closer the match, the 

smaller the Hausdorff distance value is. Suppose that the edge of the standard mask is composed 

of 
1, pA a a , and the edge of the dial image is composed of 

1, qB b b , then the 

Hausdorff distance is defined as Equation (2.4): 

 

( ) max[ ( ) ( )]

( )=max(min )

( )=max(min )
a A b B

b B a A

H A,B = h A,B ,h B,A

h A,B a - b

h B,A b - a

 (2.4) 

In the formula, ( )H A,B  is called the two-way Hausdorff distance, which is the most basic form of 

Hausdorff distance. ( )h A,B  and ( )h B,A  are called one-way Hausdorff distance from set A  to set 

B and from set B  to set A , respectively [12]. 

Finally, the exact translation and rotation parameters of the standard mask relative to the dial 
image is obtained. And then we can use Equation (2.5) to transform the standard mask to the 
right position in the dial image [13].  

 

' cos sin 0 1 0

' sin cos 0 0 1

1 0 0 1 0 0 1 1

u x u

v y v  (2.5) 

In the formula, ( , , )x y  is the translation and rotation parameters of the standard mask relative to 

the dial image. ( , )u v  is the coordinates of the pixel of the original standard mask, ( ', ')u v  is the 

coordinates of the pixel of the standard mask after the transformation. 

Refer to Figure 5 for an example, the dial images of each layer and the matching results are 
shown. From left to right, the image resolution and the matching accuracy become higher. 
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Figure 5: The process of matching, the green part of each image is the standard mask 

(transformed w.r.t the background image). 

 

After the matching process, the standard mask can be used to mask the irrelevant regions of the 
image. Refer to Figure 6, it can be seen from the figure that the irrelevant regions of the dial 

image are masked (shown in dark). 

 

 

 

Figure 6: The effect of the mask operation, and dark regions in the fight image indicate the 
masked regions that are not used for defect detection. 

2.1.3 Extraction of the ROI 

After masking the irrelevant regions of the dial image, the ROI can be extracted from the 
difference of image before and after the mean filtering, the calculation formula is Equation (2.6). 

 ( , ) | ( , ) ( , ) |D x y g x y f x y  (2.6) 

In the formula, ( , )D x y  is ROI. ( , )f x y  is the image before mean filtering, ( , )g x y  is the image after 

mean filtering. 

After the above processing, the ROI is extracted and part of ROI is shown in the Figure 7. Note 
that the pixels of irrelevant region (scales and marks, etc) are set as 0 (black color), which makes 
the gray level of the defects w.r.t the remaining regions more significant. 

 

 

 

Figure 7: ROI: (a) a visible defect, (b) an invisible defect. 
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2.2 Statistical Analysis 

After extracting the ROI, the multiple features of ROI is fused for statistical analysis to establish 

the evaluation function. 

In this paper, multiple regression analysis is performed on the multiple features of ROI 
extracted (by using preprocessing) from 40 images (the images are from the initial sample images 
obtained before the production process) to establish the evaluation function. In the evaluation 
function, features is input and defect type is output. The steps are as follows: 

2.2.1 Selection of features 

In order to improve the capability of the evaluation model, several features are combined for 

analysis. The initially selected variables are  1,2,3,4,5iF i , which are defined as follows: Area 
1F  

is the area of a defect; Convexity 
2 0 / cF F F , where 

cF  is the convex hulled area of the region, 

and 
0F  is the area of the region; Rectangularity 

3 / rF A A , where A  is the area of the region, and 

rA  is the area of the minimum enclosing rectangle of the region; length-width 
4 /l wF L L , where 

lL  and 
wL  are the length and width of the minimum enclosing rectangle of the region, respectively. 

Compactness 2
5 11,{ / 4 }F max e F , where e  is the peripheral length of the defect region. However, 

the relationship among these variables is unknown. Therefore, these variables should be further 
screened to distinguish the significant ones. 

2.2.2 Determination of defect types 

In the evaluation function, the defect type (visible or invisible) is the output of the function. 

Therefore, when building the evaluation function, we also need to manually determine the type of 
defect which is used to generate the evaluation function. 

The method to manually determine the type of defect is as follows: Three inspectors with 
normal vision are assigned the same set of defect samples with the 40 images. For the same 

suspect region, if two or more inspectors think the region is a visible defect, the region can be 
regarded as a visible defect. 

2.2.3 Establishment of evaluation function 

We use the stepwise regression method to further screen the variables. The idea of stepwise 
regression is to add the variables one by one. We use the F-test (p<0.1) to judge whether a 

variable is significant. With the above processing, only 1F , 2F , 
2

1F  and 
2

2F  are significant.  

The least square method was used to calculate the coefficients in the evaluation function, and 

the software Minitab 19 (Minitab Inc., USA, version 19.2-64 bit) was used for calculation. 

The evaluation function can be expressed in Equation (2.7). 

 
2 2

1 2 1 20 02527 17 0 000103 9 82 6 88Y . F F . F . F .  (2.7) 

In the equation, where Y  is the evaluation value. If the response value 0.5Y , the region is 

considered to be a visible defect, else otherwise.  

In addition, the accuracy of the evaluation function can be evaluated by Equation (2.8). 

 

2
2

2

( _ _ )
1

( _ _ )

Y actual Y predict
R

Y actual Y mean
 (2.8) 

A high value of 2R  indicates a strong correlation between the variables and the value of Y . 
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2.3 Recursive Tuning 

The original evaluation function can be further optimized by tuning the coefficients using the new 

data obtained from the subsequent production process. More precisely, in Equation (2.7), the 

coefficient 
1 0.02527k , 

2 17k , 
3 0.000103k , 

4 9.82k , and 
5 6.88k  need to be tuned. 

The method of recursively tuning is used to optimize the evaluation function. The main idea is 

that after the original evaluation function is obtained, the original evaluation function can be used 
to detect the defects in images during the production process. At the same time, the coefficients 
are tuned by using new data. When the evaluation function is optimized to a user-defined target, 
the recursively tuning optimization process is completed.  

According to each region r  extracted (during the preprocessing) from 50 images (the images 
were taken from the production process), we shall calculate its correction value (Equation (2.7)) 

by following steps: 

To evaluate the difference between the evaluated value (Equation (2.7)) and the actual value 
(1 or 0, visible or not, observed by the users), we define the loss function in Equation (2.9). 

 
( ) ( ) ( )* 21

Cos [ ( ) ]
2

r r rt Y Y  (2.9) 

where ( )rY  is calculated from Equation (2.7), ( )*rY  is the actual value of region r . ( )x  is the 

activation function for transforming the value of ( )rY  into a range of [0, 1] (since the value of ( )*rY  

is either 0 or 1), and can be expressed in Equation (2.10).  

 0.5

1
( )

1 x
x

e
 (2.10) 

By taking the partial derivative of the loss function, the correction value 
(r)( 1,2,3,4,5)mk m  of the 

value 
( )r
mk  can be calculated in Equation (2.11). 

 
( ) *ost ost ( )

( ( ) ) '( )
( )

r
m k

m m

C C Y Y
k Y Y Y V

k Y Y k  (2.11) 

where  is the step size, kV  is the values of variables. 

The correction value 
(r)( 1,2,3,4,5)mk m  is calculated from a single region r . However, the 

correction value of a single region cannot reflect the characteristics of all regions, and therefore we 
use the average of the correction values of all regions for this purpose. More precisely, we 

calculate the actual correction value ( 1,2,3,4,5)mk m , which is the average of the correction 

values of all regions extracted from 50 images, and its formula is shown in Equation (2.12). 

 
1

n
(r)
m

r
m

k

k
n

 (2.12) 

Therefore, the value of mk  in Equation (2.7) is updated by Equation (2.13). 

 m m mk k k  (2.13) 

The iteration process terminates as the change of loss between two iterations is less than a user-

defined threshold (e.g., the change rate of loss is less than 0.001% for our case). Through 12 
iterations on 50 images, the update evaluation function is obtained in Equation (2.14). 

 
2 2

1 2 1 20.0252717 17 00 0.000159397 9 82 6 88Y F . F F . F .  (2.14) 
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3 EXPERIMENTAL ANALYSIS 

In order to evaluate the accuracy of our method under the condition of small samples, we conduct 
experiments on 500 dials (Before that, 40 images were used to generate the evaluation function 
(Section 2.2) and 50 images were used to optimize the evaluation function (Section 2.3)). We also 

conduct experiments on 500 small jewelry accessories (Before that, 40 images were used to 
generate the evaluation function and 50 images were used to further tune the coefficients of the 
evaluation function). .For all these products, their appearances significantly affect their sale, and 
therefore they require a fast defect detection during the production processes. Refer to Figure 8 
for an example of the jewelry accessory, which is very common in China for girls to ornament their 
ears. Convolutional neural network (CNN) is a classic deep learning method, which is widely used 
in defect detection, image recognition and other fields [2,20]. We also compare our proposed 

method with CNN to further validate our approach. Particularly, in order to adapt the CNN model to 

the condition of small samples, we used Transfer Learning. The CNN model trained in this paper is 
a pre-trained CNN model, i.e., the CNN model has been trained on a large industrial image dataset 
and can serve as a good starting point for training our own model, based on which we further 
trained the CNN model with 40 sample images. The CNN and our method are used to predict the 
type of defects of the ROI (obtained by preprocessing). If all ROI of an image is correctly predicted, 

the image is considered correctly predicted. For fair comparison, the samples used in the training 
CNN model are the same as those used for generating the evaluation function in our method. 

 

 

 
Figure 8: Jewelry accessory examples. 

 
The HALCON 18.11 development kit was used to implement our algorithm. Hardware devices 
required for the experiment are a camera (HIKVISION MV-CE050-30UC) and a backlight (LOTS 
LTS-FT). 

Table 1 summarizes the measurement accuracy and average measurement time of two types 
of parts by using two methods. 

 

Detected object and its 

corresponding method  
accuracy(%) time(ms) 

Dial (CNN) 86.6 292.204 

Dial (Our method) 95.8 317.809 

Jewelry accessory (CNN) 84.2 324.915  

Jewelry accessory (Our method) 94.8 350.498 

 
Table 1: Comparison of sour method with CNN. 

 

Figure 9-10 shows example images and their prediction results. 
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Figure 9: Results of example defect images of dial. 

 

 

 

Figure 10: Results of example defect images of jewelry accessory. 

 

It can be seen from the result that our method can detect the defects successfully. Moreover, in 

the case of such small samples, the accuracy of our method is better than the CNN method. Note 
that the accuracy can be further improved by using more data as the production goes on. From the 
perspective of average measurement time, there is not much difference between the two methods. 
The accuracy advantage of our method lies in the fuse of multiple features and the use of recursive 
tuning method: After the evaluation function is derived based on a small number of samples, it is 

then continuously refined by the fed data during the production process. 

Our method has no fixed time of accomplishing a full cycle. It takes less time to generate the 

evaluation function in the early stage, the overall time of one full cycle mainly depends on the time 
of evaluation function optimization: The longer the optimization process is, the higher the 
detection accuracy will be. For CNN method, the early marking data, adjusting parameters of 
model and training model is very time-consuming, which makes it unsuitable for defect detection 
of small-scale products. In terms of the programming skills required by the user, our algorithm can 
be realized easily since it only involves a few critical math formulas (e.g., Equation (2.7) and 

Equation (2.14)). However, the method of CNN requires higher programming ability of users. 

4 CONCLUSION 

Fast visible defect detection is of critical importance for screening unqualified products. To ensure 
detection accuracy and shorten the development cycle, we proposed a method of generating 
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evaluation function based on a fuse of multiple features and a continuous tuning scheme for 
refining the evaluation function as the production goes on.  

The experimental results show that our method can continuously optimize the evaluation 
function with small samples, and improve the evaluation accuracy. Compared with the CNN 

method, the detection accuracy of our method is higher under the same condition. In addition to 
the watch dial, we have shown that our method can also be extended to other applications. 
However, the initial evaluation of the truth still requires the intervention of users. How to 
automatically finish this efficiently is worthy of future research. In future research, we shall 
consider how to speed up the detection process with accuracy guarantee; and refine the approach 
of determining the evaluation function. 
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