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Abstract. Finite element (FE) models used in large-scale vehicle simulations are 
usually composed of high-quality FE meshes that comply with in-house meshing 
specifications. The meshing patterns, location, and resolution are strictly defined for 
specific free-form features, such as ribs and bosses, in the specifications. However, 

finding such free-form features on the given computer-aided design (CAD) models 
requires a great deal of manual operation. This study proposes a deep-learning (DL) 
approach to recognize free-form features on CAD models for the automatic 
generation of FE models to address this issue. This approach allows training a deep 
neural network on point clouds with reasonable recognition accuracy using a dataset 
with a large variety of free-form feature shapes represented by the point cloud. The 
dataset is generated from parametric CAD modeling. It classifies the types of the 

free-form feature shapes on an input product model and label local feature areas on 
them. The proposed free-form feature recognition method was experimentally 
verified using two types of complicated product models. First, models where multiple 
free-form feature shapes are located independently. Second, where multiple feature 
shapes are smoothly connected and interacted. The labeling verification showed 
excellent automatic identification of the feature locations and local feature areas on 

free-form feature shapes. These results suggest that the proposed DL approach for 
free-form feature recognition effectively generates FE models. 
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1 INTRODUCTION 

As the digitalization of automotive manufacturing increases and as its development process becomes 
streamlined, large-scale computer-aided engineering (CAE) has been significant in the ever-growing 
importance of its role. Finite element (FE) models used in large-scale CAE, such as vehicle crash 

simulations, pedestrian impact simulations, noise vibration, and harshness simulations, must be 
composed of high-quality FE meshes that comply with in-house meshing specifications. The meshing 
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specifications are usually defined according to the design policies and past experiences of vehicle 
manufacturers. The manufacturers and third parties engaging in outsourcing CAE must respect such 
specifications when creating FE models. 

The meshing patterns, location, and resolution are strictly defined for specific free-form features, 

such as ribs and bosses, in these specifications. For example, as Figure 1 shows, when FE meshes 

are generated for a cylindrical boss feature, the elements’ node points must be placed concentrically 

and evenly around a medial axis at a specified quantity. A boss or rib is a lightweight substructure 
that significantly helps maintain the strength and stiffness of the whole product. The load paths 

going through the feature should be estimated accurately to guarantee CAE accuracy. If the elements 
in FE meshes are not arranged neatly in these feature shapes, the simulated load path will differ 
considerably from reality, causing fatal design errors in the product. To avoid this situation, every 
manufacturer sets their in-house FE model specifications, prescribing how fine and neatly the node 

points or elements in FE meshes should be arranged and what kind of qualities the mesh should 
fulfill for a specific type of form feature. Features prescribed in the meshing specifications are not 
confined to bosses and ribs. Several other feature types exist that FE meshing patterns should be 

assigned for, such as holes, embosses, fillets, joggles, hemming, and gradually changing plate 
thickness. Hence, a “feature” in FE meshing specification is a local region on the CAD model whose 
meshing quality significantly influences the simulation accuracy and is critical to the analysis 
reliability from the manufacturer’s past experiences.   

 

 
Figure 1: Operations of the feature-compliant finite element meshing. 

 

As shown in Figure 1, feature-compliant FE meshing consists mainly of a series of the following 

operations: 

1. Extracting FE free-form feature shapes such as ribs from a given CAD model. 

2. Performing a segmentation of each feature shape into local areas, such as the top, side, 
and fillet. 

3. Generating FE mesh that complies with specific meshing rules defined by recognized feature 

shapes and areas. 

These operations that rely only on the engineer’s decisions become incredibly stressful, time-

consuming, and error-prone, especially for large and complex CAD model geometry. However, the 
automatic feature-compliant FE meshing for CAD models is not fully supported in commercial CAE 
software, requiring a great deal of manual operation, resulting in a high person-hour ratio for the 
entire CAE process. Such difficulty arises in automatic feature-compliant mesh generation due to the 
following: 

• The CAE model’s feature information cannot be exported to the standard file format from 
the commercial CAD system’s native file format. It cannot be imported to a commercial CAE 
preprocessor. Therefore, feature shape recognition from the CAD model is still needed for 
FE mesh generation. 
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Figure 2:   Proposed deep-learning (DL) approach for FE feature recognition system in CAE model 
generation. The first step is to detect the free-form feature regions from CAD models and label them 
as a point cloud using PointNet++. The second step is to automatically generate FE mesh, complying 
with the meshing specifications and procedures defined on each feature type and local feature areas. 

 

• Unlike machining features [5], the features prescribed in the meshing specifications mainly 
consist of free-form surfaces, having uniquely unshaped geometries, usually bounded by 
smooth and indistinct boundaries. Therefore, it is difficult to design and implement 

procedure-oriented or rule-oriented feature-extraction algorithms on a product’s CAD 
model. 

• Great diversity exists in the geometries of features for FE meshing. Even ribs and bosses 
vary substantially in shapes and boundary geometries. Therefore, different recognition 
algorithms or rules must be designed and implemented for different feature types, especially 
in procedure- or rule-oriented approaches. 

• If the CAD model of a product has product data quality (PDQ) problems, difficulty arises in 
automatically generating FE meshes, complying with the specifications and simulation 
accuracy requirements. Similarly, it becomes difficult for the feature shape recognition 
algorithm to automatically select from a CAD model’s boundary faces by relying only on the 
topological connectivity among faces. Consequently, fixing these poor-quality FE meshes 

involves substantial time and cost, using CAE preprocessors. 

Therefore, automated feature shape extraction and feature area recognition techniques that target 
feature-compliant FE meshing are strongly required. 

Although feature-extraction techniques from CAD models to generate FE meshes have been 
studied [10][14][16], the following issues still exist. 

• The feature-extraction algorithm does not work robustly when the CAD models have product 
PDQ issues, such as cracked or degenerated geometries. 

• The free-form features surrounded by complicated and smooth boundaries commonly found 
in cast or molded components are challenging to detect when using these techniques.  

• The extraction algorithm must be designed in an ad hoc way to work with different feature 
types and elements with similar shapes. Thus, it is not easy to apply previous feature-
extraction techniques when developing a new feature-compliant FE meshing.  

Our research group has proposed three-dimensional (3D) shape-descriptor-based FE feature-

classification [26] and feature-extraction [27] techniques that use dense point cloud representation 
to solve these difficulties. However, they offer solutions to only the first operations in the feature-

compliant FE meshing process. This study proposes a DL approach to recognize local feature areas 
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on free-form feature shapes for FE modeling from a product’s CAD model, unlike previous studies. 
PointNet++ [21], a popular multilayer perceptron (MLP) network for 3D point cloud classification 
and segmentation, was used to recognize free-form feature shapes and local feature areas in our 
study. 

Figure 2 illustrates how the proposed feature shape recognition method works as a part of the 
FE meshing process. First, the free-form feature regions that comply with FE models’ specifications 
are detected from CAD models. Then, these feature regions are automatically extracted and labeled 
using our deep neural network that functions directly on the point cloud. Finally, the feature-
compliant FE modeling method is applied to the labeled feature regions, generating FE meshes that 
comply with the FE modeling specifications in which the mesh resolution, node placement 
constraints, and analysis conditions are defined. However, this study only focuses on how the feature 

regions are extracted from a target CAD model. 

The advantages of the proposed feature shape recognition method are as follows: 

• Solid models are transformed into a point cloud with normal as a preprocessing, and it is 
used for free-form feature recognition based on deep learning (DL) on point clouds. This 
approach does not rely on any topological connectivity among the faces or edges on the 
solid models. Consequently, even if the original solid models have PDQ issues, such as 
cracked or degenerated geometries, point sampling on each triangle can still work, exerting 
little influence on the extraction process. It improves the stability of the feature recognition 

process for automatic FE model generation. 

• Sometimes, CAE engineers want to perform FE analysis from solid models generated by 
reverse engineering, where the solid models are generated from the point clouds or 
triangular meshes measured from the physical model. Here, the CAD (solid) models include 
more non-uniform rational basis spline surfaces with valuable PDQ problems, such as fine 

cracks between the surfaces, compared to when the models are generated initially by CAD 
systems. Conversely, the proposed recognition algorithm only relies on the sampled points 
on the tessellated meshes. Thus, the processing stability depending on the point sampling 
distance on the triangles does not degrade whether the model is created using CAD systems 

or reverse engineering and irrespective of the surface type.   

• PointNet++ used in the proposed method is an MLP network for 3D point cloud classification 
and segmentation. Thus, even if the types of feature shape to be extracted are increased, 
we only must train by the dataset including new type feature shapes and do not have to 
modify the recognition algorithm itself. 

Given the above-described reasons, the proposed feature shape recognition method can 
significantly improve the stability and versatility of the feature recognition for FE mesh generation. 

The latter part of the paper is organized as follows. In Section 2, related works are reviewed, 

and issues are clarified. In Section 3, the details of the feature shape recognition algorithms are 

described. In Section 4, case studies’ results are shown. Finally, in Section 5, the conclusion and 
future work are presented. 

2 RELATED WORK 

This study is related to forming feature recognition in computer-aided design and computer-aided 
manufacturing (CAD/CAM), and part-in-whole shape recognition. Their outlines and drawbacks 
based on free-form feature recognition for FE meshing are discussed in this section. 

2.1 Form Feature Recognition 

There have been considerable research activities on feature-extraction techniques in CAD and 
manufacturing fields since the 1990s. Above all, machining feature-extraction from solid models has 

been intensively studied. An overview of machining feature-extraction techniques has been well-
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reviewed [5]. However, they deal with features, such as slots and pockets bounded by sharp and 
distinct edges. It could be difficult for these techniques to extract features that are surrounded by 
complex and smooth fillet-like boundaries, commonly found in bosses and ribs on cast or molded 
parts and are crucial features for FE meshing. 

Thus, free-form machining feature recognition from CAD models has been previously studied 
[2][4][25]. For example, a free-form machining feature recognition method based on a hybrid region 
segmentation algorithm was proposed by Sunil et al. [25]. In their algorithm, various protrusions 
and depressions such as bends, beads, and dimples on sheet metal parts can be extracted based on 
the triangular STL mesh model’s curvature properties generated from a B-rep CAD model. However, 
this approach requires a specific code in an ad hoc manner to fit specified feature classes to be 
recognized. Therefore, the recognition algorithm is not easily expanded when a new feature class is 

added. 

A rule-based machining feature recognition method from the tessellated B-rep model using the 
curvature-based region segmentation and region connectivity analysis on the adjacency graph was 
proposed in a previous study [31]. This method enables the recognition of several STEP-NC features 
from an unordered set of triangles. However, the technique only extracts features surrounded by 
sharp edges, such as depressions or protrusions. Also, the extraction ability of features surrounded 

by complex and smooth fillet-like boundaries is not thoroughly investigated. Moreover, in this 
method, the extraction algorithm must be implemented as a rule-based algorithm on the adjacency 
graph. The algorithm must be designed in an ad hoc way to work with different feature types. 

Recently, machining feature recognition methods using the heat kernel signature (HKS) have 
been proposed [6][22], evaluating the heat persistence similarity over the triangulated meshes of 
products. They can segment any potential machining feature regions from the meshes using a 
uniform extraction algorithm. Therefore, the methods offer more versatility for feature extraction 

compared to previous ones. However, they only show the recognition results of the simple-shaped 

features bounded only with sharp features, such as protrusions or depressions. Also, the recognition 
possibility of free-form features surrounded by complicated and smooth boundaries remains 
undiscussed. The most critical problem of this approach is that the feature shapes’ types are not 
directly identified and classified using only HKS. Therefore, the post-processing must be 
implemented in an ad hoc way to classify the feature types after the extraction. Since the meshing 
specifications of FE mesh vary by the kind of feature, the lack of feature-classification ability still 

deteriorates the versatility of the feature extraction in the HKS-based approach. 

Unlike machining feature-extraction techniques, few studies exist on the feature extraction 
aimed at FE meshing. However, recently, there have been increasing studies 
[1][10][14][16][29][30]. In most studies, graph- and rule-based approaches are used to derive 
features from a solid model [1][10][16][29]. However, in both approaches, the extraction algorithms 
or rules are elaborated for specific feature types. Furthermore, a new algorithm or rule must be 

designed if a new feature type to be extracted must be added. 

In contrast, feature-extraction and volume decomposition methods have been developed to 
automatically generate feature-oriented FE meshes [14][30]. The rule-based approach is used to 
extract swept features and volumes from a solid model, whose shapes are suitable for automatic 
hexahedral FE meshing. Furthermore, an automatic mesh generation algorithm using a surface 
segmentation method based on centroidal Voronoi tessellation has been developed [32][33], which 
can be applied to shapes with smooth boundaries. However, extraction rules are designed specifically 

for hexahedral meshing and highly rely on topological loop patterns and local geometric relationships 
with a solid model. Therefore, the extraction algorithm lacks flexibility and does not work robustly if 
the CAD model has PDQ issues.  

A machine-learning approach based on the traditional neural network has been introduced in 
machining feature-extraction from CAD models [11][15][17][19][24]. Also, recently, Zhang et al. 
proposed a machining feature recognition method based on a 3D convolutional neural network [35], 

which learns the distribution of various manufacturing feature shapes across public 3D model data 

sets. Also, this approach can recognize particular types of manufacturing features from low-level 
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geometric data, such as voxels. As in other previous studies, the feature geometries considered in 
[35] are 2.5-dimensional, consisting only of simple planes and cylinders, and are bounded by sharply 
concave looped-edges on a B-rep CAD model. However, if the feature is designed on a cast or molded 
component, the geometry is defined by free-form surfaces. Moreover, the feature is usually bounded 

by smooth free-form fillet surfaces. Thus, it is doubtful whether previous methods would work well 
or not for free-form features. 

2.2 Part-in-Whole Shape Recognition 

Recently, 3D shape retrieval techniques have been researched in computer graphics and 3D mesh 

processing, as presented in review studies [9][28]. One of these approaches, part-in-whole matching 
among noisy triangular meshes, has been proposed [8]. This approach can find the local region of a 
target shape that best matches a reference shape using a probabilistic framework of the feature 

point and segment similarities. However, it does not necessarily work if the region of the target 
shape to be found is not congruent to the artifact and has a parametrically deformed relationship 
with the reference shape. This method can be ineffective in the domain of FE modeling for industrial 
product design because the method is specifically designed for finding artifacts from the measured 

noisy point clouds of ancient buildings’ walls.  

A surface reconstruction method has been developed to create product models of civil structures 
from laser-scanned point clouds [7]. Here, a part-in-whole matching approach was applied to find a 
set of representative parts that define major civil structures, such as bridge piers. However, this 
study only focused on civil structure objects whose shapes are represented by cuboids or cylinders. 
Thus, it is challenging to apply this method to recognize free-form features on industrial products 
dealt with in FE meshing.  

A similar subpart search technique for FE meshing on solid models has been proposed by 

Onodera et al. [16], which evaluates the geometric similarities between a reference feature shape 
and local regions on a target shape. Thus, the partial areas on the target shape, whose geometry is 
like the archived reference feature shape of proven FE models, are extracted from the novel designed 
CAD model. However, their subpart search mechanism strongly relies on the topological graphs of a 
solid model. Therefore, the approach does not work robustly when the CAD model has PDQ issues. 

This graph-matching approach also fails if two subparts are geometrically similar but have different 
topological structures. 

DL can be a novel and attractive approach for feature recognition in CAD. Recently, some 
researchers have studied DL on 3D point clouds [3]. As a part of this approach, several neural 
networks for object classification and part segmentation of 3D shapes represented by point clouds 
have been actively presented in previous studies [23][34][20][21]. These deep neural network 
approaches are effective for shape recognition for point clouds [3]. Among them, PointNet++ is one 

of the most popular and effective methods [21]. However, previous DL approaches, including 

PointNet++, dealt only with the classification or segmentation of simple-shaped objects, such as 
tables and chairs. Moreover, the methods’ effectiveness has not been fully verified when applied to 
classify or segment free-form features for FE modeling on industrial products. Furthermore, from 
the practical perspective, preparing many training examples of free-form features remains a 
significant issue in DL.   

3 RECOGNITION OF FREE-FORM FEATURE SHAPE AND LOCAL FEATURE AREAS 

3.1 Basic Concept 

Figure 3 outlines the proposed free-form feature recognition pipeline. It automatically labels local 
feature areas on each feature shape where the feature-compliant FE meshing is needed. In the 
pipeline, first, the training dataset composed of many point clouds representing feature shapes with 

feature area labels is generated from CAD models with size variations. These CAD models are 
automatically generated by parametric modeling of the reference feature shape in advance. Then, 
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MLP networks for feature classification and part segmentation are trained using the training dataset. 
Finally, using these trained MLP networks, the feature shapes, such as ribs and bosses, are extracted 
from an input CAD model, and the local feature areas on each extracted feature shape, such as top 
and side, are labeled. The targeted features include, but not limited to, free-form ribs and bosses in 

cast or molded parts. 

The proposed recognition method is designed and implemented based on the following concepts. 

• The product’s geometries are represented by a dense 3D point cloud with normal vectors 
generated from an input CAD model via triangular mesh for feature extraction. This 
geometric representation enables stable feature-extraction, even when an input CAD (solid) 
model contains PDQ-degraded geometries and when complex and smooth fillet-like 
boundaries surround the feature shapes.  

• The machine-learning scheme enables a uniform and portable implementation of the 
feature-extraction algorithm, regardless of the feature type. Adding a new recognizable 
category requires only preparing new training examples. It avoids an ad hoc and inefficient 
implementation of the algorithms for different types.  

• Using PointNet++ [21], a DL scheme on point sets can effectively classify and segment 3D 
point clouds. General and unified machine-learning procedures can be applied to extract 

free-form feature shapes and to label local feature areas on them. 

Figure 3 illustrates the proposed feature recognition method. The recognition pipeline involves 
seven steps. Steps 1–3 generate the training sets composed of many point clouds expressing feature 
shapes generated from parametric CAD modeling. Step 4 trains MLP networks for classification and 
segmentation. Steps 5–7 extract the feature shapes from an input CAD and label the local feature 
areas on each feature shape. The following subsections describe the details of the pipeline. 

 

 
Figure 3: Proposed free-form feature recognition pipeline. Steps 1–3 generate the training dataset 
composed of many feature shape point clouds, converted from CAD models of feature variants 

generated by parametric modeling. Step 4 trains MLP networks for feature classification and 
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segmentation. Steps 5–7 extract the feature shapes from the CAD model and label the local feature 
areas on each feature shape. 

3.2 Step 1: Generating Solid Models of Feature Shapes Using Parametric CAD Modeling 

For feature recognition based on DL, an extensive training set of feature shape variants must be 
prepared to ensure recognition accuracy. However, this study targets the recognition of relatively 
small feature types, such as ribs and bosses, often appearing in forged or cast automotive parts.  

Therefore, the training feature shapes with many size variations using parametric CAD modeling 
were augmented. A set of solid models can quickly be generated with different size variations in this 

approach only by changing a set of size parameters defined on a reference shape model. Herein, the 
reference shape models of rib and boss were prepared (Figures 4 and 5). 

Thus, the typical rib and boss shapes on solid models of existing forged and cast automotive 
parts were observed and analyzed to identify their local feature areas and size parameters, defining 
feature shapes. Next, many solid models of feature instances with different parameter settings were 
generated using the parametric deformation function in a CAD system. Each face of these solid 
model instances is marked with a local feature label (Figure 6). These local feature labels are taken 

over the point cloud via the triangular mesh in the next step.   

3.3 Step 2: Generating a Triangular Mesh of a Feature Shape from the Solid Model 

A feature instance’s solid model must be finally converted into a 3D point cloud for learning and 
recognition. Thus, the solid model was first converted into a triangular mesh using a commercial 

CAE preprocessor. The preprocessor assigns the normal vector and the local feature area label to 
each vertex of the mesh by referring to the surface information created in step 1 and generates a 
point cloud for learning and recognition. 

3.4 Step 3: Generating a Point Cloud for Training Dataset from the Triangular Mesh 

For the DL on point sets, the position and size of the labeled point cloud of the feature variant should 

be normalized, so the point sets’ centroid is translated to the origin, and the maximum length of its 
axis-aligned bounding box is scaled to one. Finally, the labeled point cloud with normal vectors is 
generated as a part of the training dataset of PointNet++[21]. Steps 1–3 were repeated for various 
feature types of bosses and ribs (Figure 5) to prepare the complete training dataset of point clouds 
of feature variants. 

3.5 Step 4: Training for PointNet++ 

PointNet++ [21] is a deep neural network for classifying and segmenting 3D point clouds. It achieves 
well-regarded performance using the local feature-learning architecture in which a hierarchical 

neural network applies PointNet [20] recursively. The training dataset of point clouds of feature 
variants was used to train PointNet++ and to build two deep neural networks in the training step. 
The classification network was used to extract feature shapes, and the segmentation network was 

used to label local feature areas on each extracted feature shape. 

3.6 Step 5: Extraction of Feature Candidate Regions  

For extracting the feature shape and local feature area, a subset of point clouds belonging to a 
specific feature class must be first found from an input CAD model’s surface. Because a CAD model’s 

surface includes many feature shapes, it is important to extract the local feature candidate regions 
from the surface and identify their feature types.  

For extracting these feature existence regions, an object detection method commonly employed 
in image processing was applied. First, the input CAD model size was normalized. Next, a dense 
point cloud from the CAD model was generated using the same operations as steps 1–3. Afterwards, 

an extensive collection of multi-scale bounding boxes was generated over the dense point cloud, 
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and a collection of point cloud subsets was cut out from the original dense point cloud with these 
boxes. For an original point cloud, 8732 multi-scale bounding boxes were generated. Figure 7 
illustrates an example of these bounding boxes. 

The idea of the multi-scale bounding boxes is like the “default box” of the single-shot multi-box 

detector (SSD) [12][13]. However, the multi-scale bounding boxes generated over the normalized 
point cloud were only used to clip point cloud subsets as feature candidate regions. Then, the point 
cloud subsets, where the number of points reduced and over the threshold were discarded because 
any feature was unlikely to exist in those areas. These subsets of the feature candidate region were 
provided for the feature type classification and local feature area labeling of steps 6 and 7. 

3.7 Step 6: Detection of Feature Location and Classification of Feature Types 

Here, the subsets of point clouds included in each bounding boxes generated in step 5 to the feature-

classification network were input and estimated the subsets’ feature types, consisting of “rib class” 
and “boss class.” The non-maximum suppression (NMS) [18] was used to eliminate the close overlap 
among the subsets and adopt the subset point clouds with the highest estimation probabilities. 
Finally, the selected subsets by the NMS are provided to the segmentation network. 

3.8 Step 7: Labeling of Local Feature Areas 

Finally, the local feature areas on the subsets of point clouds selected in step 6 are identified using 
the segmentation network. In the rib features, top, side, fillet, and other areas are identified in each 
subset of point clouds (Figure 8).  

First, each subset of point clouds is input to the segmentation network, and the network assigns 
a local feature area label to each point in the subset of point clouds. Sometimes, there are 
intersecting points among the subsets of point clouds because slight overlaps among the subsets of 

point clouds are allowed in the NMS of step 6. Here, multiple feature area labels might be assigned 
to a point. The feature area label with the highest estimation is finally adopted to mediate a conflict 
of these label assignments to the point.  

Referring to the point-wise local feature area labels, mesh generation software can identify which 

meshing specifications should be applied to the feature and automatically generate FE meshes 
compliant with the specifications. 

4 EXPERIMENTAL VERIFICATIONS OF THE FEATURE RECOGNITION 

4.1 Recognition Performance of Single Rib and Boss 

This verification confirms how well the proposed feature-classification and segmentation networks 

function for recognizing single free-form features. The trained networks’ classification and 

segmentation performances were evaluated using the datasets, including the rib and boss instances 
with different size parameters generated from the reference models shown in Figures 4 and 5. A 
total of 4188 variants with different sizes were generated with various size parameter settings, such 
as the width and height. Figure 6 shows examples of the local feature areas labeled on these feature 
models: 3385 and 803 variants were used as the training and testing models, respectively. This 

dataset was used for verifying both the classification and segmentation networks.  

 

Figure 4: Feature instance examples of ribs and bosses with different parameter settings. 
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Figure 8 shows a part of the recognition results of the single ribs and bosses. The mean intersection-
over-union (mIoU) evaluated per local feature areas of the rib and boss classes were 0.988 and 
0.997, respectively, and the total achieved was 0.992. The results showed that both proposed neural 
networks provided sufficient recognition accuracy for recognizing free-form feature shapes and local 

feature areas when the feature exists as a separate entity.  

 

 
Figure 5: Feature shapes used for the training and verification: The simple feature shapes were 

used for the training in Section 4.1.3, as "simple" training sets. Both the simple and the 
complicated feature shapes were used for the training in Sections 4.1, 4.2.1, and 4.2.2, as 
"complicated" training sets. The recognition performances’ differences were compared when using 
“simple” and “complicated” training sets, in Section 4.2.3. 

 

Figure 6: Local feature areas for the rib and boss types. 

 

Figure 7: Example of the multi-scale bounding boxes to clip the point cloud subsets.  

 

Figure 8: Recognition examples of feature shapes and local feature areas. 
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4.2 Recognition Performances of Multiple Ribs and Bosses on a CAD Model 

This verification investigates how the proposed feature recognition method works when multiple rib 

and boss features exist in a CAD model. Two complicated models, including ribs and bosses, were 
used for feature recognition. In the first model, different ribs and bosses were located separately on 
a CAD model. The second model was more challenging than the first one, where ribs and bosses 
were smoothly connected and interacted on a model. 

To improve the feature recognition accuracy at these two complicated models, the number of 
feature shapes in the training dataset was increased by adding more feature shape variants than in 

Section 4.1 using parametric CAD modeling. Also, the point cloud density on the CAD model was 
increased ~three times. Consequently, the number of models in the new training dataset reached 
22380 and was used to retrain the classification and segmentation networks. In the dataset, 17904 
and 4476 models were used for training and testing, respectively. The mIoU of feature recognition 

using this training and test sets reached 0.970. The result sufficiently shows the potential of the 
point set-based DL approach for free-form feature recognition. 

Finally, this retrained neural network was applied to recognize features with multiple ribs and 

bosses located on two complicated models. These results are summarized in Sections 4.2.1 and 
4.2.2. Also, the effect of the point sampling densities and feature shape complexities of the training 
data set and the DL network structure on the recognition performance was investigated in Section 
4.2.3. 

4.2.1 Recognition of multiple ribs and bosses located separately 

To verify complex features’ detection performance, an input model (model A) was created (left of 
Figure 9), where eight bosses and a rib were arranged independently. For simplicity, multi-scale 
bounding boxes’ heights to generate the feature candidate region were fixed constant because all 
features in this model were arranged on the same plane. In the extraction of feature candidate 

regions (step 5), 8732 bounding boxes used for object detection of images by SSD [13] were 
generated to clip point cloud subsets. Moreover, point cloud subsets where the number of points 
reduced and exceeded the threshold were removed because of the unlikeliness of any feature 
existence in such areas. 

The feature recognition result is illustrated in Figure 9. The result showed that all feature shapes 
were detected, and local feature areas were almost labeled with enough accuracy. The mIoU 
evaluated per local feature areas of this feature result was 0.915. This verification confirmed that 

the proposed point set-based DL approach works well for recognizing independently arranged free-
form features on the model. 

 

Figure 9:  Recognition results of multiple ribs and bosses located separately: Original solid model 
on which the bosses and rib features are located separately (Left). Point cloud subset’s feature 
detection results clipped from the original model (red: rib feature type, blue: boss feature type) 
(middle). Result of local feature area labeling (light blue: top of a boss, blue: side of a boss, dark 

blue: fillet of a boss, green: hole of a boss, red: top of a rib, orange: side of a rib, and purple: fillet 
of a rib) (right).  
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4.2.2 Recognition of smoothly connected multiple ribs and bosses 

Finally, the complex feature detection performance was verified where the feature shapes are closer 
to actual forged or cast parts. Two CAD models (models B and C) were created in which the feature 
shapes are smoothly connected and interacted (Figures 10 and 11). To clip point cloud subsets like 

the model of Section 4.2.1, 8732 bounding boxes were generated and used.  

The feature recognition results from these models are shown in the middle and right of Figures 
10 and 11. The mIoUs evaluated per local feature area reached 0.626 and 0.588, respectively, in 
models B and C, confirming that the proposed feature recognition method also works for the models 
where feature shapes are smoothly connected. 

The recognition accuracies of models B and C were worse than those of model A (Figures 10 and 
11). Significantly, the recognition accuracy near the boundaries between features degraded (Figure 

12) due to the improper selection of the bounding boxes’ size and arrangement. The recognition can 

be improved by choosing the bounding boxes’ size variations more suitable for the features and the 
input model. 

So far, the feature recognition pipeline ends up assigning the labels of local feature areas to 
each point of the dense point clouds of the product. However, if the assigned labels are projected 
onto the solid model’s face at each point, the feature type of each face on the CAD (solid) model can 

be determined using the voting scheme. The projection ensures that the feature boundary shape 
coincides with the face boundary shape on the CAD model. Therefore, if the point cloud’s labeling 
accuracy is reliable to some degree, the feature area boundaries on the dense point clouds do not 
have to be detected smoothly and precisely. 

The verification results show that the proposed free-form feature shape recognition method 
worked to some degree effectively for automatic FE model generation. However, it can still be 
improved when feature shapes are smoothly connected. This improvement remains to be solved in 

our future work. 

 

 

Figure 10: Feature recognition result of the product model B. 

 

Figure 11: Feature recognition result of the product model C. 
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Figure 12: Example of poor recognition accuracy areas around boundaries between feature shapes. 

 

4.2.3 Comparison with different training datasets and different deep neural networks 

Generally, object recognition performance using deep neural networks is influenced by selecting 

training datasets and the network structure. Because sampled point clouds represent the feature 
shape in our algorithm, the choice of point sampling densities used in the training datasets might 
also affect recognition performances.  

Considering these factors, the feature recognition performances were compared when selecting 
four training datasets with different point sampling densities and feature shape complexities (Table 
1 (1)–(4)). We also compared the performance with that derived from the DL network other than 
PointNet++. The same CAD models (models A, B, and C), as in Sections 4.2.1 and 4.2.2 were used 

for the performance comparison. 

As for the point sampling densities, the training dataset of "dense" and "sparse" point clouds 

was created, where the average point-to-point distance in sampling was set to 1 and 3mm, 
respectively. Whereas for the feature shape complexities, two training datasets using six simple and 
ten complicated feature geometries were created (Figure 5). The "simple" training set is only 
composed of the simple features in Figure 5. The "complicated" training set is composed of the 

simple and complicated feature geometries, in Figure 5. The recognition results were compared 
among the following four cases: dense and complicated, dense and simple, sparse and complicated, 
and sparse and simple. Under the four cases, the features from models A, B, and C introduced in 
Section 4.2 were extracted and validated. 

Table 1 summarizes the difference in the recognition performances among the four cases. As 
expected, the result in the first case (“dense” and “complicated”) provided the best results. Also, 
the differences in the recognition performances at different point sampling densities were generally 

not negligible. However, the results of Model C showed that the dense sampling density was not that 
critical in improving the recognition performance and the change in the feature shape complexities 

significantly affected the performance than that in the point sampling densities.  

Overall, it was found that training the network with denser point sampling and more complicated 
feature shapes provide better recognition results. Since the recognition examples introduced in 
Sections 4.2.1 and 4.2.2 were performed under the first case, the results in those sections offered 
the best among the four cases. Of course, the detailed dependency of the feature recognition 

performances on the sampling point density of the CAD model should be more investigated but 
remain as our future work. 

However, since our feature-extraction method uses a deep neural network (PointNet++[21]), 
the choice of the deep neural network structure might influence the recognition accuracy. It is fair 
to compare the recognition result with that from other deep neural networks. Therefore, we replaced 
PointNet++ with the original PointNet [20] and compared their recognition results. PointNet++ 

improved the recognition accuracy of local shapes of PointNet by introducing the hierarchical 
structure network. By comparing columns (1) and (5) in Table 1, the recognition performance 

(mIoUs) obtained from PointNet ++ were significantly better than those of PointNet. Of course, 
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although there are still other state-of-the-art deep neural networks, this comparison indicates that 
the proposed method using PointNet++ works better than the other one using a different deep 
neural network from PointNet++. 

 

Setting (1) (2) (3) (4) (5) 

Training 
conditions 

Point 
sampling 
densities 

Dense Dense Sparse Sparse Dense 

Feature 
shape 

complexities 
Complicated Simple Complicated Simple Complicated 

Deep neural 
network 

PointNet++ PointNet++ PointNet++ PointNet++ PointNet 

mIoU 
results 

Model A 0.915 0.831 0.887 0.660 0.564 

Model B 0.626 0.400 0.560 0.386 0.477 

Model C 0.588 0.527 0.585 0.472 0.507 

Table 1: Comparison of recognition performance with different training datasets and different deep 
neural networks: For the point cloud densities, the average point-to-point distance was set to 1 mm 
for the "Dense" point cloud and 3 mm for the "Sparse" point cloud. For the feature shape complexities, 

the "simple" was trained the neural networks using only the simple features in Figure 5, and the 
"complicated" was trained using both the simple and complicated feature geometries in Figure 5. 

5 CONCLUSIONS 

This study proposed a DL-based free-form feature recognition method to develop an intelligent FE 
model generation system. The proposed feature recognition method uses the dense point set 
representation of an original CAD model and feature shapes and DL on point sets for feature 

classification and labeling. The training dataset was effectively generated using parametric CAD 
modeling. Two neural networks of feature type classification and local feature area labeling based 
on PointNet++ were trained and used for feature recognition. The bounding boxes and NMS 
techniques were combined with the networks for feature detection and labeling. The verification 
results of several examples showed that the proposed free-form feature shape recognition method 
functioned effectively for automatic FE model generation. However, it can still be improved when 
feature shapes are smoothly connected and when the accuracy degrades close to the boundary 

between features.  

In future work, we will attempt to improve recognition accuracy around the boundary between 
different features. Also, the dependency of the feature recognition performances on the sampling 
point density of the CAD model will be more investigated, and we will determine the guidelines for 
the best sampling density to achieve the best recognition accuracy. We will also compare our method 
with any rule-oriented feature-extraction algorithm. 

Moreover, we will develop an integrated pipeline for the automated feature-compliant FE model 

generation. First, we will inherit the feature type and local feature area labels of the faces on an 
original CAD model from the labeled point clouds. We will also create the feature-compliant FE mesh 
from the labeled solid model by selecting the proper FE meshing operations according to the 
company-specific meshing specifications. Then, we will develop a method to automatically set up 
constraints and contact conditions based on the labeled CAD model. These developments remain as 
our future works. 
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