

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

624

A Prototype of an Automated Feature Recognition Algorithm for

Aerospace Sheet Metal Parts

Seyedmorteza Ghaffarishahri1 and Louis Rivest2

1École de technologie supérieure, Université du Québec,
seyedmorteza.ghaffarishahri.1@ens.etsmtl.ca

2École de technologie supérieure, Université du Québec, louis.rivest@etsmtl.ca

Corresponding author: Seyedmorteza Ghaffarishahri, seyedmorteza.ghaffarishahri.1@ens.etsmtl.ca

Abstract. Automated feature recognition (AFR) makes it possible to abstract
semantic information from neutral CAD models. In an earlier work, we proposed an
AFR method for aerospace sheet metal (ASM) parts. In this new work, that

method’s implementation as an AFR prototype is outlined and the differences
between the prototype and the original proposal are pointed out. Then, streamlined
data structures are described and explained. They are used to organize the B rep
elements extracted from the ASM parts’ STEP models, classify and enhance them,
and structure the features recognized from the STEP models. Next, a few examples
of the algorithms that are implemented in the prototype to manipulate the B rep
elements and recognize features are represented and explained. The details of the

algorithms are presented in the appendices. To validate the AFR method and verify
its correct implementation, a collection of 26 real-world ASM parts was used to
create CAD models that were subsequently converted to STEP models. The STEP
models were processed to recognize their features, and the results show perfect
accuracy. A few of the output feature files are presented in detail. Our results
confirm great potential for further AFR method development for rather specialized

domains of application.

Keywords: aerospace sheet metal, automated feature recognition, feature models,
STEP models.
DOI: https://doi.org/10.14733/cadaps.2022.624-661

1 INTRODUCTION

Many commercial CAD solutions provide feature-based CAD tools to model generic sheet metal
parts. CATIA [1, 2] and NX 12 for Design [3] are two solutions that provide features that are
specialized for and commonly used in aerospace sheet metal (ASM) part design, including curved
flanges, joggles, and stringer cutouts, to name a few. The ASM models produced by commercial

CAD solutions are not exchanged in their native format, but rather via their boundary
representation (B-rep) using Standard for the Exchange of Product (STEP) model data [4].

http://www.cad-journal.net/
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
mailto:seyedmorteza.ghaffarishahri.1@ens.etsmtl.ca
mailto:louis.rivest@etsmtl.ca
mailto:seyedmorteza.ghaffarishahri.1@ens.etsmtl.ca

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

625

However, the specialized features cannot be exchanged via STEP. An ASM feature-recognition
method for STEP models—the B-rep model—could therefore significantly elevate the level of design
information exchanged via STEP. This research project aims to propose an automated method for
recognizing features from ASM B-rep models. Our overarching goal is to elevate the of information

available for downstream applications such as 3D model difference identification [5]. This way, it
becomes possible to indicate to the user, for example, how the length of a flange differs between
two models.

Automated feature recognition (AFR) is an established way to abstract semantics from neutral
CAD models. It dates back to the 1980s and has been investigated extensively since then [6]. AFR
can be approached by rule-based methods (like syntactic pattern recognition, state transition
diagrams and automata, logic rules and expert systems, the graph-based approach, the convex

hull volumetric decomposition approach, the cell-based volumetric decomposition approach, the

hint-based approach and the hybrid approach) or artificial neural network methods (like the graph-
based approach, face coding, the contour-syntactic approach and volume decomposition) [6]. It
seems that in the last decade AFR-related works have focused more on its application [7-12],
optimization [13-16] and implementation [16, 17] than on proposing new methods. A rather
inconspicuous application of AFR is sheet metal parts.

Although there is relatively little literature about AFR specific to sheet metal parts, there are
quite a few noticeable and inspiring works [12, 18-27]. While a few sheet metal AFR methods take
a comprehensive approach, such as the one proposed by Nnaji et al. [18], most can be
categorized as being for shear features, generic deformation features or freeform sheet metal
parts. Because freeform AFR methods [12, 26, 27] are not relevant to the scope of this paper, the
previous works on them are not reviewed in detail here. The sheet metal AFR solutions that are
currently on the market, i.e., FeatureWorks [28] and Sheet Metal Feature Recognition Library [29],

are implementations of AFR methods for generic sheet metal deformation features. Our proposed

AFR method [30] is unique as it was specialized for aerospace sheet metal part features.
Shear features are sheet metal part features that are created by shearing operations like blanking,
notching, piercing and cutting off. AFR methods for shear features can be based on geometric and
topological reasoning, like in the work of Jagirdar et al. [19]; profile offsetting for layout punching
tool path specifications, like in the work of Devarajan et al. [20]; or using a center-plane model to
calculate the shear layout, like in the work of Kannan and Shunmugam [21].

Sheet metal generic deformation features, on the other hand, result from either only
deformation operations or shear and deformation operations. Hence, there is always a deformation
footprint in their structures. Although the AFR methods proposed for sheet metal part deformation
features are essentially conventional rule-based AFR methods, they have evolved independently.
For example, Liu et al. [22] presented a fundamental study that addressed some of the main gaps
in prior works, including feature intersection and array features. Feature intersection occurs when

features intersect such that one is split or topologically impacted. An array feature is made up of

repeated features. Kannan and Shunmugam [21, 23] also made two significant contributions to
sheet metal AFR: 1) creating the method on STEP AP 203 that led to the promotion of its
applicability, and 2) proposing and using a calculation algorithm for a center-plane model. The
outcome of their proposal to use a center-plane model was twofold: it proved that a) a reduction in
topographical information improved computational performance, and b) said reduction did not
cripple the method. Prior to Kannan and Shunmugam, Jagirdar et al. [24] assumed that a sheet

metal model is represented by its center-plane equivalent and accordingly proposed an AFR
method. They considered “cross-bend” features (features that pass through a bend) as the only
cases of feature intersection in sheet metal parts and proposed a technique to identify intersecting
features. Subsequent studies omitted the problem of intersecting features entirely, making
Jagirdar et al.’s work quite unique. And most recently, Gupta and Gurumoorthy [25] proposed a
general solution for recognizing generic deformation features. In their paper, cylindrical, conical,
spherical and toroidal faces are considered transitive entities to characterize deformation. This

method is more geometrically general than the other methods set out in published works.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

626

We proposed in [30] an AFR method for ASM parts that was inspired by the recent focus on
AFR application in the literature. Features were identified by studying design guidelines and 168
different structural ASM fuselage and cockpit parts. A structural system is comprised of a thin-
skinned shell that is stiffened by longitudinal stringers that are supported by transverse frames to

form a semi-monocoque structure [31]. This structure is very efficient and has a high strength-to-
weight ratio. Brake-formed and hydro-formed parts—the parts studied to propose the AFR
method—are used to form frames, bulkheads, passenger and cargo floor structures [31], and
cockpit components.

Implementation of the proposed AFR method is not detailed in the literature. Instead, only the
programming language or solution, CAD platform, or kernel used in the implementation is
mentioned. The C++ programming language seems to be most popular because of its strong

object-oriented programming (OOP) package and the fact that it is the industry standard for

developing 3D modeling solutions, which makes it possible to use it with many CAD platforms [9,
22] and graphics kernels [13, 14, 26, 27]. Table 1 lists the programming languages or solutions,
CAD platforms, and kernels that have been used to implement AFR methods.
This template file contains all relevant information to process papers into the right format for the
journal CAD and Applications. Please do not change the preset styles. Either type your paper

directly into this file, substituting appropriate paragraphs and headings, or bring in your text in a
plain format and then change it to the appropriate style by simply selecting the intended style
from the menu in the MS-Word toolbar.

AFR implementation means References
C language [19, 24]
C++ language and ACIS™ kernel [13, 14]

C++ language and Rhino CAD platform

(and openNURBS functions)
[9]

C++ language and based on UGNX2.0 platform [22]
C++ language and OpenGL kernel [26]
C++ language and Open CASCADE kernel [27]
Java language [15-17]
MATLAB [12, 25]

Table 1: AFR implementation means used in the literature.

In this paper, we describe the implementation and prototyping of our AFR method that we
previously proposed for ASM parts in [30]. Some improvements were made to the original method,
and the feature taxonomy was changed to match the one detailed in a subsequent paper

proposing a semantic model difference identification method [5]. We provide details we believe will

be helpful for similar future endeavors. In addition, the prototype is used to validate our AFR
method by testing it with real-world samples.

2 DEFINITIONS AND METHODOLOGY

This section includes a short review of the definitions of the terms migrated from our earlier
publications and illustrations and explanations of the 26 sample parts selected to validate the AFR
method. These 26 parts cover all the features of all the parts studied in this research and are of

various complexity levels. The main steps of the AFR method that were modified during
implementation are briefly reviewed. Next, the data structure of the input STEP files, the
intermediate enhanced B-rep elements manipulated to recognize features and the features are
represented and explained. At the end, a few examples of the algorithms used to implement the
main steps of the AFR method are explained in detail and represented in flowcharts.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

627

2.1 Definitions

First, the definitions of the subtypes of the B-rep elements that were introduced in the original

paper [30] are listed. Next, the definition of the features recognized by the original method as well
as the features later modified in the work proposing the MDI method [5] are listed.

In the original method, it was detailed that faces are classified by their subtypes: trim_face,
sheet_face, bend_face, internal_face, wall_face, connect_face and detained_face [30].

• The trim_faces are related to the faces of an ASM part that are created by trimming, and
one of their dimensions is always equal to the part thickness.

• The sheet_faces are related to the faces of an ASM part that are not being trimmed, and
they constitute the two sides of an ASM part.

The sheet_faces are primarily classified as web_faces, bend_faces, wall_faces, detained_faces and
internal_faces.

• The planar sheet_faces with the two largest surface areas are called web_faces.
• The sheet_faces connecting web_faces and wall_faces via their face_outer_bounds are

called bend_faces.

• The wall_faces are the sheet_faces that are connected to each other or to web_faces by
bend_faces.

• The connect_faces are sheet_faces connecting bend_faces.
• The sheet_faces that are adjacent to web_faces and wall_faces via their non-

face_outer_bounds are called internal_faces.
• The detained_faces are intermediate sheet_faces that are reclassified as connect_faces or

wall_faces in the process of classifying sheet_faces by their subtypes.

In addition, edges are classified by their novel subtypes: trim_lin_edges, trim_nonlin_edges,
untrim_lin_edges and untrim_nonlin_edges.

• A trim_lin_edge is an edge that is shared between any subtype of sheet_faces and a

trim_face and is associated with a line.
• A trim_nonlin_edge is an edge that is shared between any subtype of sheet_faces and a

trim_face and is associated with any subtype of curve other than a line.

• An untrim_lin_edge is an edge that is not shared with any trim_face and is associated with
a line.

• An untrim_nonlin_edge is an edge that is not shared with any trim_face and is associated
with any subtype of curve other than a line.

The face_bounds are also classified by their subtypes: face_outer_bound, bead_bound,
internal_bound and hole_bound. The face_outer_bound are obtained from B-rep models.

• A face_bound that surrounds seven internal_faces is a bead_bound.

• A face_bound that is not a face_outer_bound and consists of edges associated with
distinguishable curves is an internal_bound.

• A face_bound that consists of edges associated to undistinguishable curves is a

hole_bound.
The features considered in this paper are web, cutout, hole, stringer cutout, bend relief, corner,
lightening cutout, lightening hole, flange, lip, joggle, twin joggle, deformed flange, deformed web
and bead.

• A web is the planar portion of an ASM part with the largest surface area.
• Cutouts are features formed by removing a portion of their parent feature, provided that

the boundary of the parent feature is not changed.
• Holes are circular cutouts.
• Stringer cutouts are features formed by modifying the boundary of the parent feature and

splitting flanges or the deformed flanges resulting from a twin joggle. Stringer cutouts are

created to make room for a stringer to pass through.
• Bend reliefs are cutouts created to avoid immediate adjacency between flanges and

facilitate manufacturing.

• Corners are features formed by rounding off sharp convex corners.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

628

• Lightening cutouts and lightening holes are features created by removing a portion of the
parent feature and forming stiffening lips at the boundary of the removed portion.

• Flanges are features materialized on the external boundary of their parent feature and are
always the child of the web or another flange.

• Lips are features that are similar in shape to combined-open-immediate-stiffening flanges.
• Joggles and twin joggles are step-deformations that produce recesses on the web or

flanges.
• The recessed portions are either deformed webs or deformed flanges depending on the

parent feature of the joggle.
• Beads are features created by protruding a portion of the web.

The original taxonomy of the ASM part features was from a manufacturing perspective [30]. It was

restructured to represent features’ functionality, and a few features were also added [5]. Holes

were divided into attachment holes and tooling holes, and flanges are divided into stiffening flanges
and attachment flanges.

• Tooling holes are features created to facilitate manufacturing.
• Attachment holes are features created for attachment purposes. They are designed based

on different design tables.

• Attachment flanges are flanges that have attachment holes.
• Stiffening flanges are flanges that do not attachment holes.

2.2 3D Models of Sample Parts

The sample ASM parts were chosen from a pool of parts belonging to frames, bulkheads, the floor
and the cockpit of a Bombardier DHC-8-102. The parts were selected to satisfy the following

criteria:
• Presence of all design features of ASM parts

• Presence of a broad spectrum of design complexity
• Presence of adequately similar designs to test output consistency

The native models were stored in STEP AP 242 files. Figure 1 shows the CAD models of the sample
ASM parts.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

629

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

630

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

631

Figure 1: CAD models of the sample aerospace sheet metal parts.

2.3 Modified Steps of the AFR Method

The original AFR method was explained extensively in our previous paper [30]. Some modifications
were made when implementing it in the prototype to either facilitate implementation or fix minor
problems with the original method. Figure 2 highlights the major Steps 1 and 2 that were described

in our previous paper and displays the steps implemented in the prototype with the modifications
highlighted and denoted by the letters A to L. Also, each step whose algorithm is detailed in this
paper is tagged with the number of the figure or letter of the appendix in which the algorithm can
be found.

A. The B-rep elements are streamed from the STEP file and stored as C++ objects, which are
themselves stored in lists.

B. To take advantage of the abstraction and encapsulation capabilities of object-oriented

programming, the C++ objects storing the B-rep elements are enhanced by adding the
geometric information to the topologic elements and directly connecting it to various B-rep
elements via C++ pointers.

C. The web_faces are classified before sheet_faces and trim_faces are. This makes sense, as
web_faces are sheet_faces.

D. The bend_faces and internal_faces adjacent to the web_faces are classified in one step.

E. Parts that do not have flanges, like those modeled in Figures 1 (j), 1 (m) and 1 (n), have
all their sheet_faces classified by subtype (web_face and internal_face) by now and do not
require step F. For those parts that have flanges and therefore have sheet_faces that have
yet to be classified, step F is repeated until all their sheet_faces are classified by subtype.

F. The remaining sheet_face classification by subtype (wall_faces, detained_faced,
bend_faces or internal_faces) continues until all sheet_faces are classified.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

632

G. When classifying face_bounds, if the geometry of the non-lin edges is not identical, the
hole_bounds are identified as internal_bounds. This change prevents incorrectly
recognizing lightening cutouts like the one shown in Figure 1 (n) as lightening holes.

H. In the scope of this study, all joggles have faces that are adjacent to the web or a

deformed web; therefore, joggles, deformed webs, flanges and deformed flanges are all
recognized in one step performed after recognizing the web.

I. Although the stringer cutout recognition process is unchanged, bend reliefs are recognized
between the web, deformed webs, flanges and deformed flanges, and are limited to having
one non-lin edge between two of the above features.

J. A feature’s ID and parent features are defined when it is recognized, and feature objects
are instantiated accordingly. Its child features are also defined to complete its feature

associations, and its parameters are calculated and instantiated to complete its definition.

K. Lips are features that have many similarities with flanges, so they are initially recognized
as immediate-stiffening-open flanges. If any of said flanges have parameters that meet the
standards defining lips, they are converted to lips.

L. In the last step, the flanges and holes are evaluated to classify them as attachment or
stiffening flanges and attachment or tooling holes, respectively. Although these subtypes

did not exist in the feature taxonomy of the original method, they are implemented to pave
the way for the model difference identification applications intended for the output of this
prototype. Attachment flanges and attachment holes carry design intentions that are
pivotal for the semantic comparison of ASM parts.

At the end, the features are stored in a user-readable text file that we call a feature file. A couple
of examples of feature files are presented in the results section.

2.4 Data Structures

When the B-rep elements are read from the STEP files, they are stored in the memory as C++
objects that have identical member attributes as the B-rep elements. These C++ objects are stored
in lists implemented by C++ Vectors provided by the C++ Standard Template Library (STL). A
vector is a sequence container that stores elements. C++ vectors are specifically used to work with

dynamic data and can expand depending on the elements they contain. That makes them different
from a fixed-size array. C++ vectors can automatically manage storage. Also, they are efficient
when data is added and deleted often.

Figure 3 shows the class diagram representing the B-rep elements of the STEP files and their
attributes and associations. Implementing the method based on the data structure of the STEP
files’ B-rep elements causes two issues: it is not possible to take full advantage of C++ class
member methods, and objects must be repeatedly searched for.

To avoid these issues, the following changes were made to the data structure of the STEP files’
B-rep elements:

1. The content of CartesianPoints, VertexPoints, Directions, Vectors, Axis2Placement3Ds,
EdgeCurves and LoopEdges were added as member attributes of their associated B-rep
elements.

2. B-splineCurveWithKnots, Circles, Ellipses and Lines were linked to OrientedEdges by raw
pointers.

3. B-splineSurfaceWithKnots, BoundedB-splineSurfaces, Planes, CylindricalSurfaces,
ToroidalSurfaces, SphericalSurfaces and ConicalSurfaces were linked to AdvancedFaces by
raw pointers.

4. Both FaceOuterBounds and FaceBounds were stored as FaceBounds; however,
FaceOuterBounds were signified by a true Boolean member attribute.

5. Faces, Bounds and Edges classes were added to manage AdvancedFaces, FaceBounds and

OrientedEdges, respectively.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

633

Figure 2: Flowchart of the modified method implemented in the prototype.

Figure 4 shows the class diagram representing the further abstracted and enhanced data structure.

This solution allows operations related to Edges, Bounds and Faces to be carried out via the classes
method, which is more compliant with the abstraction and encapsulation basis of OOP. Another
reason for this solution is to manage memory issues related to the use of raw pointers. When two
objects (A and C) are pointing to another object (B), if object A is deleted (for example, local

variable no longer in use), object B will also be deleted, and object C will have what is called a
"dangling pointer" because it is pointing to a memory address (object B) that is no longer valid.
This can cause several problems such as false results and lost data. C++ makes it possible to
manage the lifetime of objects and change their default behavior.

When using raw pointers, it is best practice to allocate the memory dynamically using the
"new" operator, and explicitly release the memory using "delete" and delete the object when the

object is no longer in use. However, in the data structure proposed in this work, AdvancedFaces,
OrientedEdges and FaceBounds are shared between different objects. For example, a pointer to a
FaceBound is shared between an OrientedEdge and an AdvancedFace, so it is crucial to manage

the memory and decide when each object should be deleted.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

634

Creating classes to represent the edges_list, bounds_list and faces_list makes it easier to
manage objects’ lifetime, since in C++, each object is created and deleted using special methods
(class member functions) that are called constructors and destructors, respectively. Each class has
a default constructor and destructor, so customizing these two methods makes it easy to manage

the memory.

Figure 5 shows the class diagram representing the features and their structure as well as their
parameters (like position or profile) that are implemented in C++ classes. In the proposed feature
data structure, all the features are inherited from a "Feature" class. This makes it possible to use
one code to define the behavior that is common to all the features. The "Feature" class is defined
as an abstract class. An abstract class is a class that cannot be instantiated; it is only used as a
base class in inheritance hierarchies. C++ abstract classes are defined by pure virtual functions. A

pure virtual function is a virtual function that has no implementation. For example, the following

feature_type function (the Feature class’s member function) is a pure virtual function:

Virtual std::string feature_type() const = 0;

This virtual function returns the feature type, for example, "Flange" or "Joggle”, and doesn’t have

an implementation in the base class, since the base class "Feature" is an abstract class. There is no
"feature" feature type, so it makes sense that the feature_type function is not implemented for the
Feature class. Since, the Feature class serves as a base class from which all the other features are
derived, it defines the behavior that is common to all the features.

2.5 The Algorithms

Here, we describe the main ideas in the algorithms designed to perform each step in classifying
faces and recognizing features. The algorithms to classify boundaries and edges are not discussed

due to their simplicity. The algorithm to identify sheet_faces and trim_faces is described in detail
and illustrated in Figure 6. The algorithm to recognize joggles on the web, on deformed webs and
on flanges is described in detail and illustrated in Figures 7 and 8. In the case of joggles on flanges,
the algorithm also recognizes their related flanges and deformed flanges. The rest of the

algorithms for further classifying faces and recognizing the other types of flanges are listed in
Appendices A to M.

Identifying sheet_faces and trim_faces starts from one of the web_faces. The web_faces are
the planar faces of the B-rep model with the largest surface area. Each web_face is stored in a list
called output1 or output2, both of which are instances of the Faces class. First, the normal vectors
of the web_face, which is initially the only face in the list, and each of its adjacent faces at a
shared point are evaluated for codirectionality. If the normal vectors of a face and an adjacent face

at a shared point are not codirectional, the adjacent face is classified as a trim_face and the next
adjacent face is evaluated. If, however, the normal vectors are codirectional and the adjacent face

is not already in the list of faces, it is classified as a sheet_face and added to the list. The
sheet_face and trim_face identification function is recursive. As a result, if a face is classified as a
sheet_face, before moving on to the next adjacent face, its own adjacent faces are evaluated for
codirectionality between their normal vectors at a shared point. Figure 6 shows a detailed
representation of the sheet_face and trim_face identification algorithm.

Most of the feature recognition algorithms start from a list of faces that are evaluated to check
a few conditions and conclude whether or not a feature exists. These lists of faces could be the list
of faces on the outside of the part (called outside_faces), joggle_face_sets, or faces linked to the
shape of features. The outside_faces could be output1 or output2, depending on the summation of
faces’ surface area of which one is larger than the other one. For example, the algorithm to
recognize joggles and their related parent or child features (illustrated in Figure 7) starts with a

joggle_face_set. (The joggle_face_sets and their identification are detailed in [30].) Then, the
bend_faces in the joggle_face_set are checked to find out if any of them is adjacent to the

web_face, to assign true to a Boolean variable called cond1.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

635

The connect_faces in the joggle_face_set are also checked to find out if any of them is
adjacent to the web_face, to assign false to a Boolean variable called cond2. If cond1 is true and
cond2 is false, the joggle must be on the web, and if both cond1 and cond2 are true, the joggle
must be on a flange.

Figure 3: Class diagram representing the B-rep elements of the STEP files.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

636

Figure 4: Class diagram representing the further abstracted and enhanced data structure.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

637

Figure 5: Class diagram representing the features and their data structure.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

638

• If the joggle is on the web, the joggle is created with its associated sheet_faces. Then,
each of the wall_faces in the outside_faces list is checked to find the one that is adjacent to
one of the bend_faces and none of the connect_faces in the joggle_face_set. When found,
the deformed web is created with its associated sheet_faces.

• If the joggle is on a flange, the joggle is created with its associated sheet_faces. Then, two
temporary flanges are created. Note that this part of the algorithm is represented quite
abstractly in the highlighted steps in Figure 7 to save some space and then detailed in a
zoomed-in view in Figure 8. Next, the deformed temporary flange is identified and the
deformed flange is created based on the temporary flange.

To recognize the temporary flanges, the algorithm represented in Figure 8 first checks the
sheet_faces in the joggle_face_set to find the bend_faces. Then, the bend_faces are checked to

find their adjacent wall_faces that are not in the joggle_face_set and not adjacent to any of the

connect_faces in the joggle_face_set. When any of those wall_faces are found, a flange is created
and then its faces are added to it. Note that the parent-child relationships between features are
identified based on the relationships between the topological elements used in recognizing them.
For example, a deformed web is linked to its parent joggle based on the adjacency of the wall_face
used in its recognition and the bend_face of the parent joggle. Similarly, a hole is linked to a flange

or web based on the topological relationships between the hole_bound and wall_face or web_face.

Figure 6: Flowchart representing the algorithm to identify sheet_faces and trim_faces.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

639

Figure 7: Flowchart representing the algorithm to recognize joggles on the web, on deformed
webs and on flanges as well as the flanges and deformed flanges related to joggles on flanges.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

640

Figure 8: Flowchart representing the algorithm to create joggles and temporary flanges and
recognize the deformed flange from the temporary flanges (a zoomed-in view of the highlighted
steps in Figure 7).

3 RESULTS

The output of the prototype is a text file that is called a feature file. The feature file starts with the
name of the part, followed by its thickness and then its features. The features are structured by
parent features immediately followed by their children and are further indented as their level in the
feature hierarchy increases. Each feature is defined by its name, ID, Parent ID (except the web)
and parameters. For example, Figure 9 shows the content of the feature file for the part
represented in Figure 1 (a).

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

641

Figure 9: The content of the feature file for the part represented in Figure 1 (a).

Note that if a feature needs a position or profile to be defined and the position or profile is
successfully obtained from the B-rep model, “It has a position” or “It has a profile” holds the place
of the position or profile information. Otherwise, “It does NOT have a position” or “It does NOT
have a profile” indicates there is no position or profile information for the feature. The position and
profile information is quite low-level data, described in the class model represented in Figure 5, and

therefore not included in the content of feature files, which are supposed to be user readable.

We have selected three parts to represent the prototype’s results. Each of these parts has a
number of features, some of which highlight interesting points about the prototype’s output and
are therefore explained. In Figures 10, 11 and 12, each part is displayed annotated with its
features and followed by its feature file content.

To start with, Figure 10 (a) shows a rather typical design of a hydroformed ASM part that is
annotated with its features. It has a lightening hole, attachment holes on the web, and an

immediate flange deformed by a joggle with several attachment holes on the attachment flange
and deformed flange. Figure 10 (b) shows the content of the part’s feature file with “~ ~ ~” being
used to avoid a long list of features having the same parameters.

Figure 11 (a) shows another rather common design of a hydroformed ASM part that is
annotated with its features. It has tooling and attachment holes on the web, and immediate flanges
with several attachment holes on them. Due to the arrangement of the flanges, there are bend

reliefs between them. The corners are not annotated in Figure 11 (a) for simplicity. Figure 11 (b)

shows the content of the part’s feature file with “~ ~ ~” being used to avoid a long list of features
having the same parameters.

Figure 12 (a) shows a less common, more complex design of a hydroformed ASM part that is
annotated with its features. It has attachment holes on the web, which is deformed by a joggle,
and an immediate flange with several attachment holes and a stiffening flange on it. Due to the
arrangement of the immediate flanges on the web and the deformed web, there is a bend relief

between them. The corners are not annotated in Figure 12 (a) for simplicity. Figure 12 (b) shows
the content of the part’s feature file with “~ ~ ~” being used to avoid a long list of features having
the same parameters.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

642

Figure 10: A rather typical design of a hydroformed aerospace sheet metal part annotated with its
features (a) as well as the content of its feature file (b).

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

643

Figure 11: A rather common design of a hydroformed aerospace sheet metal part annotated with

its features (a) as well as the content of its feature file (b).

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

644

Figure 12: A less common design of a hydroformed aerospace sheet metal part annotated with its
features (a) as well as the content of its feature file (b).

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

645

4 DISCUSSION AND CONCLUSION

A factor that made prototyping challenging was that the original proposed method was for a set of
unprecedented features, ASM part features. This made the development work unique and hence
necessitated creativity in solving problems. Of all the ASM part features, joggle was the main

differentiator between the original method and similar literature. It was also pivotal to the
development effort. The uniqueness of the original method’s scope and by extension the
development effort motivated the authors to present this work at a level of detail not seen in the
existing literature.

In this work, we represented the successful implementation of an AFR method for ASM parts.
The AFR method was implemented by first developing a data structure for the B-rep elements and
a data structure for feature definitions. Then, algorithms were developed for classifying B-rep

elements and recognizing features. When implementing the AFR method, certain steps in the

originally proposed method [30] were changed to correct errors or make improvements. A
collection of 26 parts was modeled and converted to STEP models to validate the AFR method and
verify the accuracy of the AFR prototype.

The results from the AFR prototype show perfect accuracy in recognizing all the features of all
26 parts and confirm there is great potential for further development of AFR algorithms in rather

specialized domains of application. Although feature recognition from B-rep models has been
investigated for decades, it has not become an integral part of CAD solutions. The authors of this
paper believe that works on AFR have been too general to be feasible or accurate enough for
commercial solutions. A rather specialized approach like our originally proposed method whose
implementation is represented in this paper makes it possible to break down the AFR problem and
propose accurate specialized solutions.

Seyedmorteza Ghaffarishahri, http://orcid.org/0000-0001-9894-6539
Louis Rivest, http://orcid.org/0000-0003-0112-0090

REFERENCES

[1] CATIA 3DExperience 2017X, Dassault Systems.
[2] CATIA V5-R2016, Dassault Systems.
[3] NX for Design, Siemens PLM Software.

[4] Pratt, M. J.: Introduction to ISO 10303—the STEP standard for product data exchange,
Journal of Computing and Information Science in Engineering, 1(1), 2001, 102-103.

[5] Ghaffarishahri, S.; Rivest, L.: Feature-Based Model Difference Identification for Aerospace
Sheet Metal Parts, Computer-Aided Design & Applications, 18(3), 2021, 443-467.

https://doi.org/10.14733/cadaps.2021.443-467.
[6] Babić, B.; Nešić, N.; Miljković, Z.: A review of automated feature recognition with rule-based

pattern recognition, Computers in industry, 59(4), 2008, 321-337.
https://doi.org/10.1016/j.compind.2007.09.001.

[7] Wang, J.; Zhou, L.: Algorithm for automatic boss feature recognition and ejector sleeve
design, The International Journal of Advanced Manufacturing Technology, 97(1-4), 2018,
583-597. https://doi.org/10.1007/s00170-018-1918-9.

[8] Zubair, A. F.; Mansor, M. S. A.: Automatic feature recognition of regular features for
symmetrical and non-symmetrical cylinder part using volume decomposition method,

Engineering with Computers, 34(4), 2018, 843-863. https://doi.org/10.1007/s00366-018-
0576-8.

[9] Lai, J.-Y.; Wang, M.-H.; Song, P.-P.; Hsu, C.-H.; Tsai, Y.-C.: Automatic recognition and
decomposition of rib features in thin-shell parts for mold flow analysis, Engineering with

Computers, 34(4), 2018, 801-820. https://doi.org/10.1007/s00366-017-0574-2.

http://www.cad-journal.net/
http://orcid.org/0000-0001-9894-6539
http://orcid.org/0000-0003-0112-0090
https://doi.org/10.14733/cadaps.2021.443-467
https://doi.org/10.1016/j.compind.2007.09.001
https://doi.org/10.1007/s00170-018-1918-9
https://doi.org/10.1007/s00366-018-0576-8
https://doi.org/10.1007/s00366-018-0576-8
https://doi.org/10.1007/s00366-017-0574-2

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

646

[10] Li, Y. G.; Ding, Y. F.; Mou, W. P.; Guo, H.: Feature recognition technology for aircraft
structural parts based on a holistic attribute adjacency graph, Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(2), 2009, 271-278.
https://doi.org/10.1243/09544054JEM1634.

[11] Langerak, T. R.: Local parameterization of freeform shapes using freeform feature
recognition, Computer-Aided Design, 42(8), 2010, 682-692.
https://doi.org/10.1016/j.cad.2010.02.004.

[12] Gupta, R. K.; Gurumoorthy, B.: Automatic extraction of free-form surface features (FFSFs),
Computer-Aided Design, 44(2), 2012, 99-112. https://doi.org/10.1016/j.cad.2011.09.012.

[13] Sunil, V.; Agarwal, R.; Pande, S.: An approach to recognize interacting features from B-Rep
CAD models of prismatic machined parts using a hybrid (graph and rule based) technique,

Computers in Industry, 61(7), 2010, 686-701.

https://doi.org/10.1016/j.compind.2010.03.011.
[14] Kim, B. C.; Mun, D.: Enhanced volume decomposition minimizing overlapping volumes for

the recognition of design features, Journal of Mechanical Science and Technology, 29(12),
2015, 5289-5298. https://doi.org/10.1007/s12206-015-1131-9.

[15] Šormaz, D. N.; Tennety, C.: Recognition of interacting volumetric features using 2D hints,

Assembly Automation, 2010, https://doi.org/10.1108/01445151011029763.
[16] Venu, B.; Komma, V. R.; Srivastava, D.: STEP-based feature recognition system for B-spline

surface features, International Journal of Automation and Computing, 15(4), 2018, 500-512.
https://doi.org/10.1007/s11633-018-1116-0.

[17] Wang, Q.; Yu, X.: Ontology based automatic feature recognition framework, Computers in
Industry, 65(7), 2014, 1041-1052. https://doi.org/10.1016/j.compind.2014.04.004.

[18] Nnaji, B. O.; Kang, T.-S.; Yeh, S.; Chen, J.-P.: Feature reasoning for sheet metal

components, International Journal of Production Research, 29(9), 1991, 1867-1896.
https://doi.org/10.1080/00207549108948055.

[19] Jagirdar, R.; Jain, V. K.; Batra, J. L.; Dhande, S. G.: Feature recognition methodology for
shearing operations for sheet metal components, Computer Integrated Manufacturing
Systems, 8(1), 1995, 51-62. https://doi.org/10.1016/0951-5240(95)92813-A.

[20] Devarajan, M.; Kamran, M.; Nnaji, B. O.: Profile offsetting for feature extraction and feature
tool mapping in sheet metal, International Journal of Production Research, 35(6), 1997,

1593-1608. https://doi.org/10.1080/002075497195146.
[21] Kannan, T. R.; Shunmugam, M. S.: Processing of 3D sheet metal components in STEP AP-

203 format. Part II: feature reasoning system, International Journal of Production Research,
47(5), 2009, 1287-1308. https://doi.org/10.1080/00207540701510063.

[22] Liu, Z.; Li, J.; Wang, Y.; Li, C.; Xiao, X.: Automatically extracting sheet-metal features from
solid model, Journal of Zhejiang University-Science A, 5(11), 2004, 1456-1465.

https://doi.org/10.1631/jzus.2004.14.
[23] Kannan, T. R.; Shunmugam, M. S.: Processing of 3D sheet metal components in STEP AP-

203 format. Part I: feature recognition system, International Journal of Production Research,
47(4), 2009, 941-964. https://doi.org/10.1080/00207540701510055.

[24] Jagirdar, R.; Jain, V. K.; Batra, J. L.: Characterization and identification of forming features
for 3-D sheet metal components, International Journal of Machine Tools and Manufacture,
41(9), 2001, 1295-1322. https://doi.org/10.1016/S0890-6955(01)00006-2.

[25] Gupta, R. K.; Gurumoorthy, B.: Classification, representation, and automatic extraction of
deformation features in sheet metal parts, Computer-Aided Design, 45(11), 2013, 1469-
1484. https://doi.org/10.1016/j.cad.2013.06.010.

[26] Sunil, V.; Pande, S.: Automatic recognition of features from freeform surface CAD models,
Computer-Aided Design, 40(4), 2008, 502-517. https://doi.org/10.1016/j.cad.2008.01.006.

[27] Zhang, C.-j.; Zhou, X.-h.; Li, C.-x.: Automatic recognition of intersecting features of freeform
sheet metal parts, Journal of Zhejiang University-SCIENCE A, 10(10), 2009, 1439-1449.

https://doi.org/10.1631/jzus.A0820705.

[28] FeatureWorks, Dassault Systems.

http://www.cad-journal.net/
https://doi.org/10.1243/09544054JEM1634
https://doi.org/10.1016/j.cad.2010.02.004
https://doi.org/10.1016/j.cad.2011.09.012
https://doi.org/10.1016/j.compind.2010.03.011
https://doi.org/10.1007/s12206-015-1131-9
https://doi.org/10.1108/01445151011029763
https://doi.org/10.1007/s11633-018-1116-0
https://doi.org/10.1016/j.compind.2014.04.004
https://doi.org/10.1080/00207549108948055
https://doi.org/10.1016/0951-5240(95)92813-A
https://doi.org/10.1080/002075497195146
https://doi.org/10.1080/00207540701510063
https://doi.org/10.1631/jzus.2004.14
https://doi.org/10.1080/00207540701510055
https://doi.org/10.1016/S0890-6955(01)00006-2
https://doi.org/10.1016/j.cad.2013.06.010
https://doi.org/10.1016/j.cad.2008.01.006
https://doi.org/10.1631/jzus.A0820705

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

647

[29] Sheet Metal Feature Recognition Library, HCL Technologies.
[30] Ghaffarishahri, S.; Rivest, L.: Feature Recognition for Structural Aerospace Sheet Metal Parts,

Computer-Aided Design & Applications, 17(1), 2020, 16-43.
https://doi.org/10.14733/cadaps.2020.16-43.

[31] Niu, C.: Airframe structural design: practical design information and data on aircraft
structures, Conmilit Press Limited, Hong Kong, 1999.

http://www.cad-journal.net/
https://doi.org/10.14733/cadaps.2020.16-43

Computer-Aided Design & Applications, 19(4), 2022, 624-661
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

APPENDIX A

The algorithm for classifying sheet_faces adjacent to web_face starts with checking if each of the
faces adjacent to the web_face is a sheet_face. If the sheet_face is adjacent to the web_face
through its outer_bound, it is classified as a bend_face, otherwise it is classified as an internal_face

and all its adjacent faces that are sheet_faces are also classified as internal_faces.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

649

APPENDIX B

The algorithm for classifying the remaining sheet_faces as wall_faces, bend_faces, internal_faces
or detained_faces starts with the outside_faces list. Some of these sheet_faces are already
classified by their subtypes and will be used to classify their adjacent sheet_faces. If a face is

adjacent to only one bend_face, it is classified as a wall_face, and if it is adjacent to more than one
bend_face, it is classified as a detained_face. Once all the faces in the outside_faces list have been
checked to classify those that are adjacent to a bend_face, the second round of the algorithm
starts. In the second round, each face in the outside_faces list is checked to determine whether it
is adjacent to a wall_face. If a face is not adjacent to a wall_face but is adjacent to a
detained_face, it is classified as a bend_face. This condition and its associated step are missing

from the originally proposed method and highlighted in the flowchart below. If a face is adjacent to

a wall_face through its outer_bound, it is classified as a bend_face, otherwise it is classified as an
internal_face.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

650

APPENDIX C

The algorithm for changing eligible bend_faces to connect_faces starts with the outside_faces list.
If a face is a bend_face and is also adjacent to more than one other bend_faces, it is re-classified
as a connect_face. The outside_faces list is rechecked until no new connect_face is identified.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

651

APPENDIX D

The algorithm for changing eligible detained_faces to connect_faces starts with the outside_faces
list. If a face is a detained_face and is surrounded by bend_faces and wall_faces so it does not
have any adjacent trim_face on its outer_bound, it is re-classified as a connect_face. The condition

of being surrounded by bend_faces and wall_faces is missing in the original method and
highlighted in the flowchart below.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

652

APPENDIX E

The algorithm for changing eligible detained_faces to bend_faces or wall_faces starts with the
outside_faces list. If a face is a detained_face and is adjacent to a connect_face, it is re-classified
as a bend_face. If a face is a detained_face and is not adjacent to a connect_face but is adjacent to

a bend_face, it is re-classified as a wall_face.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

653

APPENDIX F

The algorithm for changing eligible wall_faces to bend_faces starts with the outside_faces list. If a
face is a wall_face adjacent to more than one other wall_faces, it is classified as a bend_face.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

654

APPENDIX G

The algorithm for recognizing twin joggles starts with the the_features list. If a feature is a
deformed flange, the other deformed flanges in the list are checked to determine whether they
represent the same deformed flange. They are checked by verifying whether they are linked to the

same wall_face as the original deformed flange. If they are, a twin joggle is created based on the
joggles that were the parents of these deformed flanges, and the twin joggle is made the parent of
one of the deformed flanges (in the flowchart below, it is referred to as feature2). Also, a flange is
created based on the flanges that were the original parents of the joggles that were combined to
create the twin joggle. This new flange is made the parent of the twin joggle. At the end, the
deformed flange that was NOT made the child of the twin joggle, the original joggles (NOT the

newly created twin joggle) and the original flanges (NOT the new flange created based on the

original flanges) that were the parents of the original joggles are all deleted from the the_features
list.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

655

APPENDIX H

The algorithm for recognizing the remaining flanges starts with the outside_faces list. If a face is a
web_face or wall_face that has an adjacent bend_face that is not included in a previously
recognized flange, deformed flange or joggle_face_set, a new flange is created. If the face is a

web_face, make the web the parent of the newly created flange. If it is not a web_face, therefore
a wall_face, and it is included in a previously recognized flange, the previously recognized flange is
made the parent of the newly created flange. If the face is not a web_face and is included in a
previously recognized deformed web, the previously recognized deformed web is made the parent
of the newly created flange.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

656

APPENDIX I

The algorithm for recognizing combined flanges starts with the outside_faces list. Each of the
bend_faces in the list is checked to determine whether any of its adjacent faces is a wall_face that
is included in a previously recognized flange. Such adjacent faces are counted. Also, the face’s

adjacent faces that are not wall_faces are checked to determine whether they are connect_faces
that are not included in a joggle_face_set. If such an adjacent connect_face is found and the
number of adjacent wall_faces included in previously recognized flanges is 2, a new flange is
created by combining the previously recognized flanges, and the face and its adjacent connect_face
are added to the newly created flange.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

657

APPENDIX J

The algorithm for recognizing stringer cutouts and bend reliefs can be divided into two parts. The
first part starts with the outside_faces list and a web or deformed web. Each sheet_face of these
features that is a web_face or wall_face is checked to make a list of trim edges in its outer_bound

that are between two edges that are each shared with a flange or deformed flange. If the flanges
or deformed flanges have identical supporting geometries and the number of edges in the list is
more than 2, a stringer cutout is created based on the list of edges. If the stringer cutout is
between two flanges, they are merged into one, and if the stringer cutout is between two deformed
flanges, they are merged into one, their parent joggles are merged into one twin joggle, and the
joggles’ parent flanges are merged into one flange. If the flanges or deformed flanges do not have
identical supporting geometries, there is only one edge in the list, and the edge is a non-lin edge

that is not G1 continuous with its adjacent edges, a bend relief is created based on the trim edge.

The second part starts with the the_features list and a flange. Each wall_face of the flange is
checked to make a list of trim edges in its outer_bound that are between two edges that are each
shared with a child flange, a deformed flange or a bend_face that is adjacent to its parent feature.
If the child flange, the deformed flange or the parent feature do not have identical supporting
geometries, there is only one edge in the list, and the edge is a non-lin edge that is not G1

continuous with its adjacent edges, a bend relief is created based on the trim edge.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

658

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

659

APPENDIX K

The algorithm for recognizing corners starts with the outside_faces list. The edges in the
outer_bound of each wall_face in the list are checked to determine whether they are trim non-lin
edges and G1 continuous with their adjacent edges. If an edge is both a trim non-lin edge and G1

continuous, a corner is created based on the edge.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

660

APPENDIX L

The algorithm for recognizing holes, cutouts, lightening holes, lightening cutouts and beads starts
with the outside_faces list. Each bound of each web_face and wall_face in the list is checked to
determine whether it is an outer_bound. If a bound is a bead_bound, a bead is created based on it.

If a bound is a hole_bound and is made of trim edges, a hole is created based on it, or if it is
instead made of non-trim edges, a lightening hole is created based on it. If a bound is an
internal_bound and is made of trim edges, a cutout is created based on it, or if it is made of non-
trim edges, a lightening cutout is created based on it.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 19(4), 2022, 624-661

© 2022 CAD Solutions, LLC, http://www.cad-journal.net

661

APPENDIX M

The algorithm for recognizing lips starts with the the_features list. Each feature that is a combined-
open-immediate-stiffening flange is used to create a lip based on it and then deleted.

http://www.cad-journal.net/

