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Abstract. Instantiating a digital human model (DHM) in a scene to simulate a 

manufacturing task typically requires specifying how to grasp the necessary tools. 
This study proposes a method to automatically extract grasping cues from 3D 
models of tools. These cues are to be used as the input to determine a plausible 
task-oriented grasp for a DHM. This article focuses on extracting grasping cues 
from pistol-shaped tools such as pistol drills and pistol screwdrivers. These tools 

are considered here as having multiple directions as opposed to hammers or 
screwdrivers. The proposed method uses the tool’s 3D geometry as the input. The 
geometry of the tool is analyzed iteratively to extract the main directions from the 
geometry. The main directions are the handle axis and the working (or body) axis. 
Once these main directions are obtained, the tool’s geometry is scanned along an 
optimal direction to precisely identify the push trigger region. This method classifies 
tools’ regions as their head, handle, and pistol trigger, thus reflecting each tool’s 

affordance. The grasping cues are extracted from these regions to be used for 

generating a task-oriented grasp. 
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1 INTRODUCTION 

Instantiating a digital human model (DHM) in a scene to simulate a manufacturing task typically 
encompasses specifying a variety of aspects, such as the virtual manikin anthropometry, the 3D 
work environment as well as the tools involved in the task. The manikin should also grasp the tools 
in a plausible manner for a given task. To this end, the specified grasp should account for the 

tool’s affordance as well as the task to simulate. The notion of object affordance is defined by 

Gibson [1] to refer to the actionable properties between the world and an actor (a person or 
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animal). In ergonomics, affordance makes it possible to make the use of an object or service 
"intuitive" to a user. Automatically specifying a plausible and task-oriented grasp remains a major 
challenge for digital human modeling. 

To instantiate a DHM in a scene with minimum user input, Dassault Systèmes has developed a 

new virtual manikin posture solver called the Smart Posturing Engine (SPE) [2]. The SPE is 
intended to simulate and validate task feasibility in an industrial environment, such as automotive 
assembly lines, by automatically positioning a virtual manikin in a 3D scene. The grasping module 
of the SPE will automatically generate a plausible grasp for a given hand-held tool. 

Tools have inherent affordance that lends to human action. Indeed, it is assumed that every 
tool possesses affordance features (or regions), such as a handle and a trigger (if any), that 
suggest how to interact with that tool for an expected task. Therefore, if one can analyze the tools’ 

geometry to detect these affordance features, grasping cues could be extracted from them to 

devise a plausible grasp. 

In our previous work (Macloud et al., [3]), we proposed a method to extract grasping cues 
from simple one-handed tools such as mallets, screwdrivers, pliers and straight drills. All these 
tools share the common characteristic of having one main direction, which is used when scanning 
the geometry to extract affordance features. We propose here a significant extension of this 

approach that allows the extraction of grasping cues from more complex geometries for tools that 
have multiple main directions, such as pistol drills and pistol screwdrivers, rather than a single 
direction. 

The proposed method exploits the concepts of geometric feature extraction to iteratively 
determine an optimal direction for scanning the geometry of pistol-shaped tools. The geometric 
properties that allow the geometry to be segmented are extracted from section scans. Regions 
that are most useful to determine a plausible task-oriented grasp, such as the handle, the head 

and the push trigger are identified. Grasping cues are extracted according to the region type and 
finally fed to the SPE to generate plausible grasps. 

The paper is organized as follows. We assess earlier works in this area in section 2, and detail 
the need for our approach. The proposed method is described in section 3. Section 4 presents an 
example and our validation results. Our conclusions are presented in section 5. 

2 PREVIOUS WORK 

Cutkosky and Howe [4] were amongst the first to classify the available approaches for grasping as 

analytical or data-driven. Analytical approaches refer to the methods that construct grasps by 
computing kinematic and dynamic equations of the hand and finger positions. Unfortunately, 
analytical approaches suffer from computational complexity, which prevents the resolution of task-
oriented grasps [5, 6].  

On the other hand, data-driven approaches open up new strategies by allowing detailed 
observations of either the object or human behavior [3]. According to Bohg & Kragic [7], data-

driven grasp synthesis based on object observation can be classified into three groups based on 
what is assumed to be known a priori about the query object. Hence, a “Known Object” is an 
object that has been encountered before and for which grasps have already been generated. A 
“Familiar Object” assumes that the query object is similar to a previously encountered object. An 
“Unknown Object” corresponds to a new shape never grasped before. In the present paper, tools 
are considered as Familiar objects since they belong to a family that is assumed to be known 
before launching the analysis. 

Data-driven approaches for object grasping for DHMs and robotics require the recognition of 
geometric features. During the past three decades, researchers have proposed different techniques 
to recognize geometric features, including segmentation-based approaches, neural network-based 
approaches, volume decomposition-based approaches and skeletonization [8]. All these methods 
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have their pros and cons and can be combined to leverage their respective strengths (as well as to 
compensate for their respective weaknesses). 

Researchers have developed segmentation methods to extract geometric information, such as 
edges and smooth regions, from scanned data. For grasping purposes, El-Khoury et al. [9, 10] 

suggested that it is more appropriate to break down the query object into a set of functional 
regions than to analyze the object as a whole. The 3D mesh of an object is thus segmented into a 
set of elementary superquadrics and the most optimal region for grasping is then sought. Huang & 
Menq [11] proposed a systematic approach to automatically extract geometric surfaces from 3D 
point clouds by segmenting meshes, thanks to sharp and smooth border detection. More recently, 
Li et al. [12] proposed a powerful segmentation method based on volumetric eigenfunctions of the 
Laplace-Beltrami operator. Segmenting an object with a free form surface remains challenging 

when edges have small variations or when regions are homogeneous. 

Artificial Neural Networks (ANNs) have been applied in the field of 3D feature recognition since 
the 1990s. Regarding grasping, Kyota et al. [13] proposed a method for point detection on 
geometric models. The detected points are then evaluated to determine if they are in a graspable 
portion or not by testing several candidate positions learned using a data glove. Prabhakar & 
Henderson [14] used ANN to recognize features from solid models. Schmidt et al. [15] presented a 

data-driven approach exploiting the Deep Convolutional Neural Network algorithm to resolve hand 
grasping posture for unknown objects. More recently, Zhang et al. [16] presented a novel 
framework of deep 3D convolutional neural network (3D-CNNs) called FeatureNet to learn 
machining features from CAD (Computer-Aided Design) models of mechanical parts. Overall, the 
use of neural networks requires a vast 3D geometry database, which limits the exploitation of 
machine learning for grasping. 

Another approach used in geometric feature extraction is mesh skeletonization. Skeletons (see 

[17] for a thorough survey) can basically be defined as centered curvilinear structures that 

approximate the topology and geometry of 3D volumes. Skeletonization is a process that is mainly 
applied on polygonal meshes and volumetric models to retrieve mesh skeletons [18], [19], [20]. 
There is a vast literature of curve skeletons, starting with the well-known medial axis [21]. Diaz et 
al. [22] presented a feature extraction process to obtain grasping points oriented mainly to 
disassembly cooperative tasks from medial axis transform skeletonization. Meanwhile, 
Vahrenkamp et al. [23] proposed a grasp planner technique that integrates curve skeletonization 

and segmentation to generate robust grasps on the query object shape. Their results show that 
the skeleton-based grasp planner is able to autonomously generate high-quality grasps but does 
not provide a good skeleton for sharp edge geometries. Overall, skeletonization is a time-
consuming process that sometimes lead to a lack of reliability due to the delicate balance between 
eliminating noise without overlooking small geometric details. 

Globally, data-driven solutions for object grasping may combine segmentation, machine 

learning and skeletonization in order to provide better results for grasping unknown geometries 

[24], [10]. 

However, few methods have been proposed in the literature to help a virtual manikin to 
automatically determine how to grasp tools in a manufacturing environment. The work presented 
in our previous paper used a data-driven method combining segmentation and skeletonization 
notions [3] to extract affordance features from simple one-handed tools such as mallets, 
screwdrivers, pliers and straight drills, which have one main direction, and extract grasping cues 

from those features. 

The present work proposes a method that allows extracting grasping cues from pistol-shaped 
tools that have multiple main directions, rather than a single direction. This paper presents two 
distinct contributions. First, it describes a method to determine the optimal scanning direction of 
the tool’s geometry in order to efficiently recognize specific features (or regions) on the tool. 
Second, it presents a method to recognize specific affordance features, such as push triggers, 

found on this type of tools. The proposed method is described in the next section. 
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3 PROPOSED METHOD 

3.1 General Approach 

The general approach for extracting grasping cues was presented by Macloud et al. [3]. It focused 
on tools with a single main direction such as mallets, regular screwdrivers, pliers and straight 
drills, and highlighted a five steps method for extracting grasping cues (Figure 1, left).  

 

 
 

Figure 1: General process for extracting grasping cues. 

 

First, a section scan was carried out on the 3D geometry of the tool to extract a series of sections, 

similar to the slicing described by Minetto et al. [25]. The scanning direction was obtained directly 
from the main direction of the oriented bounding box of the query tool [3]. The specific properties 
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were then extracted for each section. At the segmentation step, variations of sections’ geometrical 
properties were analyzed so as to successively organize them into zones, segments, and regions. 
Next, the regions were classified and specific regions that influence the grasp, such as the handle, 
were identified. Finally, grasping cues were extracted from the identified regions, including the 

head of the tool that provides a working direction related to the task, as well as the handle or lever 
trigger, if any. Finally, these grasping cues were passed to the Smart Posturing Engine (SPE) to 
generate task-oriented grasps.  

3.2 Pistol-Shaped Tools 

Our method for extracting grasping cues from tools starts with the tool’s 3D geometry. A wide 
variety of tools can be found on production lines. These tools generally have different geometries. 
The general approach described in Macloud et al. [3] and summarized above yielded excellent 

results for the tools in Figure 2, left. The present paper focuses on proposing an extended version 
of this approach for pistol-shaped tools, such as the drill shown in Figure 2, right. 

 

 
 

Figure 2: Tool types according to their main directions. 

 

The tools belonging to the second type share two important characteristics: 1) their general shape 
is that of a pistol; and 2) they feature a push trigger. We consider here that the push trigger is a 

key affordance feature as it determines the position of the index finger on the tool. Hence, the 
proposed approach aims at identifying the trigger, as well as the other features mentioned above, 
of pistol-shaped tools.  

However, push trigger detection remains challenging, as there is no specific criterion allowing 
it to always stand out from the rest of the segmented regions. This challenge is overcome by 
looking for the most typical region first. For example, in the ‘mallet’ family of tools, the most 

typical region was the head; therefore, for mallets, the head region was identified first. Hence, a 

predefined classification sequence is established for each tool family [3]. For pistol-shaped tools, 
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the identification sequence of affordance features is the following: Head → Handle → Trigger, as 
detailed later in this section. 

The general approach presented above assumes that the direction of the scan performed in 
step 1 matches the main direction of the tool’s bounding box. However, pistol-shaped tools do not 

satisfy this criterion. These tools are categorized here as ‘tools with multiple main directions.’ In 
this paper, pistol drills and pistol screwdrivers are considered. As illustrated in Figure 3, the overall 
shape of pistol drills and screwdrivers precludes direct use of the bounding box as an optimal 
scanning direction to precisely identify the trigger. In such a case, a series of steps, numbered P1 
to P3 in Figure 1 (right), are used to determine the optimal scanning direction for identifying the 
push trigger. 

 

 
 

Figure 3: Oriented Bounding Box for pistol-shaped tools. 

3.3 Optimal Scanning Direction 

As mentioned above, a major key in determining a plausible grasp is to retrieve the push trigger. 
As explained in section 3.1 (General approach), the 3D geometry of the tool is scanned in order to 
identify the affordance features. The optimal scanning direction with which to identify the push 

trigger within pistol-shaped tools is perpendicular to the body axis, or working axis (Figure 2, 
right). This allows a significant change in face area to be generated at the transition from the 

handle/trigger regions to the tool body. This optimal scanning direction is obtained in three steps, 
P1, P2, P3, illustrated in Figure 4. 

3.3.1 Step P1: determining the first main direction 

For pistol-shaped tools, the first main direction corresponds to the handle axis. Hence, the first 
step, P1, searches for an approximate handle axis from the main axis of the bounding box. This 
handle region can be distinguished from the drill body thanks to its typical handle width, smaller 
than the body width. As per the general approach, a section scan is first performed along the main 

direction of the oriented bounding box and the properties are extracted for each section. Some 28 
sections are set by default. When a face is included in another face, the inner face is removed. 
When two distinct faces are found in the same section, they are unified with the convex hull of the 
two faces. Sections are then organized in regions according to their area and GC (Geometric 
Center) variations. An approximate handle is then searched for among these regions by 

performing recognition tests, starting with the region of greatest height. The tested region 
parameters are compared to the values in Table 1. Since the orientation of the bounding box axis 
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is not assumed to be collinear with the handle axis, the properties of the regions are sometimes 
greater, and hence, the values associated with an approximate handle are larger than those of the 
actual handle (in Table 1). Moreover, in order to distinguish the handle from the body, we consider 
that the approximate handle region cannot be the one with the largest width of all the segmented 

regions, since the body is typically wider than the handle. Once the approximate handle region is 
identified, a singular value decomposition is used to generate an approximation of the handle axis 
passing through the average of the CGs of this region, arranged in a matrix of coordinates. 

 
Figure 4: Illustration of steps P1, P2, P3 to determine the optimal scanning direction for push 

trigger detection. 

 

3.3.2 Step P2: determining the second main direction 

For pistol-shaped tools, the second main direction corresponds to the working axis that passes 

through the tool’s body. The second step, P2, consists of searching for this second main direction. 
For this purpose, a second scanning direction is oriented 90 degrees from the approximate handle 
axis identified in the previous step (Figure 4). This second section scan is performed with 19 
sections. As before, when a face is included in another face, the inner face is removed. When two 
distinct faces are found in the same section, they are unified with the convex hull of those faces. 
Sections are then organized in regions based on the areas and GC variations. The body is then 

searched for among these regions by performing recognition tests, starting with the region of 
greatest height. The tested region parameters are compared to the values in Table 1. Moreover, in 

order to distinguish the body from the handle, we consider that the body region must have a 
greater width than the previously identified approximate handle, since the body is typically wider 
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than the handle. Once the body region is identified, a singular value decomposition is used to 
generate the working axis passing through the average of the GCs of the body region. 
 

 
Max 
Area 
(mm²) 

Min 
Area 
(mm²) 

Max 
Height 
(mm) 

Min 
Height 
(mm) 

Max 
Width 
(mm) 

Min 
Width 
(mm) 

Region 

asymmetry 

Approximate 

handle 
(Step P1) 

1600 250 350 50 60 30 Not relevant 

Body 
(Step P2) 

1600 300 350 50 60 30 Not relevant 

Handle 
(Step P3) 

1500 200 300 50 50 30 

Total 

symmetry 
or Partial 

asymmetry 

Push Trigger 
(Step P3) 

1700 250 60 10 50 30 
Total 

asymmetry 

 
Table 1: Expected properties for pistol-shaped tool region classification. 

 

Once the approximate handle axis and the working axis are known, the head of the tool (Figure 2, 

right) can be identified. This is done by comparing the width of a few extremum sections on both 
sides of the tool; the head is found on the side with the smallest width. The GC of the extremum 
face, for which the projected GC is the most distant to the approximate handle axis, is used as the 
working point of the tool’s head needed as a grasping cue, as detailed in Macloud et al. [3]. It is 

worth noting that, while the tool’s head is not grasped, it contributes to determining the grasp by 
orienting the tool toward the task to be performed. 

3.3.3 Step P3: determining the optimal scanning direction 

From the working axis identified at the previous step, we determine the optimal scanning direction 
for push trigger detection. Being perpendicular to the working axis, this scanning direction is 

considered optimal for identifying the push trigger region since it maximizes the variation of the 
section properties between the handle/trigger and body regions (Figure 4). 

The steps remain the same as above. Sections are generated along the optimal scanning 
direction and their properties are extracted. Twenty-eight (28) sections are set by default. When a 
face is included in another face, the inner face is removed. When two distinct faces are found in 
the same section, they are unified with their convex hull. 

In order to make it easier to identify the push trigger, the faces belonging to the body of the 

tool are first identified and then removed. Indeed, since the scanning is carried out in the direction 
perpendicular to the body of the tool, any section with an area greater than 2000 mm² is 
considered to be part of the tool’s body and removed, this value having been empirically 
determined. Next, all the remaining sections are segmented into regions. A handle is then 
searched for by performing recognition tests on regions of greater heights. Once the handle is 
identified, the handle axis is obtained by performing a singular value decomposition on the GCs of 

the faces that belong to the handle region. This handle region and axis are used to search for the 
push trigger by its proximity to the handle region, as presented next. 

3.4 Push Trigger Detection 

A push trigger corresponds to an asymmetric region with a functional side where the index finger 
will be positioned. In order to identify the push trigger region, two properties, called ‘Section 

Asymmetry’ and ‘Region Asymmetry’ are evaluated, as described next. 
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3.4.1 Section asymmetry 

This section asymmetry evaluation provides the information required to detect a push trigger. 
Indeed, as shown in Figure 5, a push trigger is associated with a change in the shape of the 
handle. Analyzing the evolution of section properties allows the identification of the trigger. Each 

section obtained in step 1 (Figure 1) consists of ‘n’ closed curves. Each closed curve is filled to 
form a face in step 2. The presence of a push trigger leads to a longer face length and a change in 
the positioning of the GC of the faces. By considering a distance L1 connecting the GC of the face 
to the Ex1 end, and with L2 its respective opposite distance to Ex2, it is assumed that a face is 
asymmetric if |𝐿1 - 𝐿2| > 𝑥, where x is an empirically-fixed threshold of 1 mm. 

 

 
 

Figure 5: Section asymmetry. 

 

3.4.2 Region asymmetry 

As discussed in Macloud et al. [3], the evolution of section properties is exploited at the 
segmentation step (step 3, Figure 1, left) so as to organize the tool’s geometry successively into 

zones, segments, and regions. A region is defined as a group of sections that share similar area 

and GC properties. Each region possesses elementary properties such as its height, width, length, 
GC and area. In the present paper, regions are also described by a new property, called region 
asymmetry. Region asymmetry is determined by analyzing the asymmetry of the faces belonging 
to the region. Three cases are considered: 

• If more than 50% of the faces are asymmetrical and have a total height greater than 
15mm, then the region is labeled as having ‘Total asymmetry’; 

• If less than 50% of the faces are asymmetrical and have a total height less than 15 mm, 
then the region is labeled as having ‘Total symmetry’; and 

• Else the region is labeled as having ‘Partial asymmetry’. 

This region asymmetry property helps to detect push triggers, as discussed next. 

3.4.3 Push trigger identification 

At the beginning of step 4 (Figure 1, left), the tool geometry has been segmented into regions. 

Step 4 is where these regions are classified and identified as a head, a handle or a push trigger. 
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Since the head region was identified during the P2 step above, we now have to identify the handle 
and the push trigger. 

The method used to identify the handle region was detailed in Macloud et al. [3]. To review, 
regions are identified by comparing their properties with the value range of the region type being 

searched. For example, a pistol drill handle is expected to have a width of between 30 and 50 mm, 
as shown in Table 1. Here, we assume that the handle region is already identified and we focus on 
identifying the push trigger region. 

Depending on the segmentation parameters and the pistol-shaped tool geometry, three 
possible scenarios can arise (see Figure 6). 

Scenario 1 – Handle region with Total symmetry (T.S. in Figure 6): A handle region was 
found and characterized by Total symmetry (Figure 6a and 6b, region C). Two situations can arise: 

• Scenario 1a - The trigger identification step (to come) will identify a push trigger region 

(Figure 6d, region B); or 
• Scenario 1b - The trigger identification step (to come) will not identify a push trigger region 

and so reenacts it (Figure 6e, region B). 

Scenario 2 – Handle region with Partial asymmetry (P.A. in Figure 6): A handle region 
was found and characterized by Partial asymmetry (Figure 6c, region B). The trigger identification 

step (to come) will identify a push trigger region within this handle region. 

Each scenario is analyzed as described below. 

Scenario 1a - The push trigger region is identified in this scenario (Figure 6d). Starting from 
the first region above the handle, according to the distance from the tool’s head (determined at 
step P2), the regions are tested successively according to the following two criteria: 

• The region’s properties’ values fall within the values specified for push triggers in Table 1. 
Hence, the region must be labeled as having Total asymmetry, and its width must be 

between 30 and 50 mm; and 
• For each asymmetric face of the region, one extremum point along the length must verify 

the rule , where is the distance between the extremum point and the 

intersection of the handle axis with the face (P), while  characterizes the average distance 
between the extremum points and P for all faces of the handle region (Figure 7). This 
criterion verifies that the push trigger geometry includes a portion that is offset from the 

handle and that is where the index finger is positioned to operate the mechanism. 

Scenario 1b - If at the previous step scenario 1a was not verified, no push trigger region was 
identified and scenario 1b applies. This scenario consists of reenacting the trigger. Thus, starting 
from the first section above the handle, in order of the distance from the head (determined at step 
P2), the sections are tested successively according to the following criteria: 

• The section must be asymmetric; and 
• Its corresponding face must verify the rule , as for scenario 1a above (Figure 

7). 

If the section does not qualify as belonging to the push trigger, it is discarded. If the section 
qualifies as belonging to the push trigger, it is counted and the test proceeds with the next section 
until a series of sections with a height of 20 mm is found; this series of sections is considered to 
be the push trigger region, illustrated as region B2 in Figure 6e. This process verifies that the push 

trigger region is at least 20 mm high and includes a portion that is offset at least 5mm from the 
handle axis and where the index finger can be positioned to operate the mechanism. 

Scenario 2 – Scenario 2 applies when a handle region was found and characterized by partial 
asymmetry. It is thus designed to retrieve, within that region, the asymmetric portion and the 
symmetric portion (Figure 6c). The symmetric portion of the region is expected to correspond to 
the handle (Figure 6f, region B1), whereas the asymmetric portion is tested as a push trigger 
according to the rules of scenario 1a (Figure 6f, region B2). 
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Figure 6: Scenarios for push trigger detection. 

 

If none of these scenarios applies, then no trigger is identified. It can be noted, however, that in 
all of the tested cases a trigger was identified if a handle was identified. 

3.4.4 Extraction of grasping cues for pistol-shaped tools 

For pistol-shaped tools, and as mentioned above, the affordance features are identified in 
sequence starting with the head, followed by the handle and finally the push trigger. The next step 

is to extract grasping cues from these features. The grasping cues associated with the head were 
extracted in step P2, just after identifying the head. 

The handle axis was obtained in step P3 using a singular value decomposition to estimate a 
mean axis passing through the GCs of the faces belonging to the handle region. The two most 
distant faces of the handle region are used to determine the limits of the position of the hand on 

the handle. Precisely, the GCs of these two faces are projected on the handle axis to form the two 
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grasping cues that limit the hand translation: the pinky limit and the index limit. The index limit, 
however, will be replaced next by more precise cues extracted from the push trigger. 

 

 
 

Figure 7: Push trigger faces’ properties. 

 

The grasping cues associated with the push trigger are obtained as follows. First, the functional 
side of the trigger is identified. The functional side is the side where the index finger will be 

positioned. It also is the side of the trigger that is the farthest from the handle axis. It is identified 
by projecting the extremum points (Ex1 and Ex2), obtained earlier (Figure 7), for each face of the 
trigger region onto the axis of the handle. The functional side is the side with the largest average 
projection distance. Once the functional side is identified, the position of the index on the trigger is 
conveyed by a grasping cue, designated as the ‘Trigger Midpoint’, calculated by averaging the 

extremum points of the functional side of the trigger region (Figure 8). Next, as it is possible for 

the index finger to move on the contact surface of the trigger, two index movement limits are 
conveyed by two grasping cues, the Index Upper Limit and the Index Lower Limit (Figure 8). These 
are calculated by projecting the extremum point belonging to the functional side of the first and 
last sections of the trigger region onto the handle axis. These grasping cues of the trigger and of 
the handle are illustrated in Figure 8. 

4 PROPOSED METHOD ILLUSTRATION AND VALIDATION 

In this section, we illustrate the proposed grasping cues extraction method on an example and 

present the results obtained from twelve industrial 3D CAD models. 

4.1 Illustration of the Proposed Method in an Example 

Since pistol-shaped tools have multiple main directions, successive section scans are performed.  
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Step P1 aims at determining the tool’s first main direction, which corresponds to the 
(approximate) handle axis. Hence, a first section scan of 28 sections is performed along the main 
axis of the OBB (the red line in Figure 4, P1), and the section properties are extracted. Inner faces 
are removed and distinct faces, if any, belonging to the same section are unified using their 

convex hull. The tool’s 3D geometry is segmented according to the faces’ area and the GC 
evolution. For the considered example, five regions are automatically generated, as shown in 
Figure 9 (P1, left). The regions’ properties are provided in Table 2. 

At this step, an approximate handle is searched for among the segmented regions. Regions are 
tested according to their decreasing height. Region 3 has the greatest height (154.5 mm), and its 
properties satisfy the requirements from Table 1. However, region 3 is also the widest of all the 
regions listed in Table 2 (33.4 mm). Since the width of the handle is expected to be smaller than 

the width of the body, region 3 is not identified as the handle region. Region 4 is tested next. 

Since its properties fall within the expected value ranges of an approximate handle (Table 1) while 
not being the widest segmented region (28.7 mm), this region is identified as the approximate 
handle. The approximate handle axis is obtained by performing a singular value decomposition on 
the GCs of the faces that belong to the approximate handle region.  

 

 
 

Figure 8: Trigger and handle grasping cues. 

 

Step P2 determines the tool’s second main direction, which corresponds to the working axis 

that passes through the tool’s body. The new scanning direction (the red line in Figure 4, P2) is 
obtained by rotating the approximate handle axis by 90 degrees around the smallest dimension of 
the bounding box. A section scan of 19 sections is performed and the section properties are 
extracted. Inner faces are removed and distinct faces, if any, belonging to the same section are 

unified using their convex hull. The tool’s 3D geometry is segmented according to the evolution of 
the faces’ area and of the GCs. For the considered example, six regions are automatically 
generated, as shown in Figure 9 (P2, center). The regions’ properties are provided in Table 3.  

At this step, the tool’s body is searched for amongst the segmented regions. Regions are 
tested according to their decreasing height. Since the properties of region 2 fall between the 
expected value ranges of a body (Table 1), while having a greater width (33.2 mm) than the 
approximate handle (from the previous step, 28.7 mm), region 2 is identified as the body. The 

working axis is then obtained by performing a singular value decomposition on the GCs of the 
faces that belong to the body region. 

During this step, the grasping cue corresponding to the tool’s head is searched for by looking 
at the extremity of the smallest area. Its corresponding ‘working point’ is then extracted. 
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Figure 9: Segmentation results for the pistol-shaped drill illustrative example. 
 

Region 
Number 

Region  

Area 
(mm²) 

Region GC (mm) 

Region  

Height 
(mm) 

Region  

Width 
(mm) 

Region 
asymmetry 

1 356.8 (-13.26; 3.0; 0) 14.4 15.1 
Total 
symmetry 

2 707.6 (-29.0; 3.0; 0) 0 27.1 
Total 
symmetry 

3 1521.2 (-114.1; -10.6; 0) 154.5 33.4 
Partial  
asymmetry 

4 1199.2 (-201.8; -77.7; 0) 82.8 28.7 
Total 
symmetry 

5 388.3 (-228.8; -121; 0) 0 24.9 
Total 

symmetry 

 
Table 2: Properties of regions obtained at step P1 for the pistol-shaped drill illustrative example. 

 

Step P3 aims at determining the optimal scanning direction with which to detect the push 
trigger. At this step, both main directions represented by the approximate handle axis and the 
working axis are known. The optimal direction (the red vertical line in Figure 4, P3) for this third 
section scan is obtained by rotating the body axis 90 degrees around the smallest dimension of the 
bounding box. A section scan of 28 sections is performed along this optimal direction and the 
section properties are extracted. Inner faces are removed and distinct faces, if any, belonging to 
the same section are unified using their convex hull. Moreover, to maximize the efficiency of 

trigger segmentation, sections with an area greater than 2000mm² are removed, as they are likely 
to belong to the body of the tool, which is useless at this step. The remaining (smaller) sections 
are organized according to the evolution of the faces’ area and their GCs, as above. 
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Region 
Number 

Region  
Area 

(mm²) 
Region GC (mm) 

Region  
Height 
(mm) 

Region  
Width 
(mm) 

Region 
asymmetry 

1 412.7 (-18.7; -1.4; 0) 10.5 22.9 
Total 

symmetry 

2 980.2 (-77.9; -0.8; 0) 90.8 33.2 
Total 

symmetry 

3 1739.3 (-142.9; -15.4; 0) 13.1 36.4 
Total  

asymmetry 

4 2387.5 (-173.7; -59.6; 0) 0 8.6 
Total  

asymmetry 

5 4101.1 (-191.0; -80.9; 0) 0 8.8 
total  

asymmetry 

6 5064.5 (-191.6; -46.7; 0) 9.2 29.3 
Total  

asymmetry 

 

Table 3: Properties of regions obtained at step P2 for the pistol-shaped drill illustrative example. 
 

Region 
Number 

Region  
Area 

(mm²) 
Region GC (mm) 

Region  
Height 
(mm) 

Region  
Width 
(mm) 

Region 
asymmetry 

1 1497.1 (-169.3; -16.9; 0) 16.5 20.4 
Total  

asymmetry 

2 1597.2 (-183; -44.1; 0) 0 28.4 
Total  

asymmetry 

3 998.5 (-202.3; -78.9; 0) 62.3 28.6 
Total 

symmetry 

4 728.5 (-219.2; -116.2; 0) 5.1 30.1 
Total 

symmetry 

5 634.4 (-221.6; -124.9; 0) 0 27.9 
Total 

symmetry 

 
Table 4: Properties of regions obtained at step P3 for the pistol-shaped drill illustrative example. 

 

For the given example, five regions are automatically generated, as shown in Figure 9, P3. These 
regions’ properties are provided in Table 4.  

At this step, the handle is searched for amongst the segmented regions. The regions are 
tested in order of their decreasing height. Region 3 has the greatest height (62.3 mm), and its 
properties satisfy the requirements from Table 1 for a handle. The handle axis is obtained by 
performing a singular value decomposition on the GCs of the faces that belong to this handle 
region. 

Since the handle region identified above is labeled as having Total symmetry, searching for the 
push trigger is done according to scenario 1. Regions are tested iteratively, starting from the first 

region above the handle, according to the distance from the tool’s head. Region 2 is tested first 
here, but its height is null, and so it cannot be identified as a trigger (the height is null because the 
region counts only one section). Region 1 is tested next. Its properties satisfy the specifications for 

a push trigger in Table 1, and all four sections of the region have one extremum point that 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(6), 2021, 1167-1185 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

1182 

satisfies the rule . Hence, scenario 1a prevails and region 1 is identified as the 
trigger region. 

The very last step is to extract the grasping cues (Figure 10). For the handle, the GCs of the 

two most distant faces of the handle region are projected on the handle axis to form the two 
grasping cues that limit the hand translation on the handle axis: the pinky limit and the index 
limit. The index limit, which is closer to the trigger, is disregarded, to be replaced by more precise 
cues from the trigger. For the trigger, the trigger midpoint cue is calculated by averaging the 
extremum points belonging to the functional side of the trigger region. Next, the extremum points 
on the functional side of the trigger of the two most distant faces of the trigger region are 
projected on the handle axis to form the two grasping cues that limit the index translation, yielding 

the index upper limit and the index lower limit. All of these grasping cues are shown in Figure 10. 

 

 
 

Figure 10: Grasping cues obtained for the pistol-shaped drill illustrative example. 

4.2 Test Results and Discussion 

This grasping cues extraction method was tested on twelve pistol-shaped tools (using electric or 

pneumatic power) retrieved from Part Supply, a catalog of sourceable 3D components, or from 
GrabCAD, a collaboration environment that allows the sharing of CAD models. The grasping cues 
obtained for ten of these pistol-shaped tools were quite satisfactory, as shown in Figure 11. 

Determining if the grasping cues are satisfactory, or not, is based on a human’s expected 
grasp of the tool. If the grasping cues are visually positioned in a plausible way, then the result is 
considered valid. Otherwise, the result is considered incorrect.  

Two of the twelve tested tools yielded no result because their general shape was too different 

from a typical pistol shape. In one of these cases (Number 12, Figure 11) the geometry of the 
body is too small to allow the reconstruction of an adapted working axis at step P2. Hence, no 
optimal scanning direction could be determined. In the other case (Number 11, Figure 11), the 
square clutch at the rear of the body inhibits the identification of the approximate handle region in 
step P1.  

It would have been useful to conduct a greater number of tests to further validate the method. 
It has proved challenging, however, to collect a large number of 3D CAD models of adequate 

quality. As mentioned above, all of the models tested here were retrieved from Part Supply or from 
GrabCAD. While other online platforms, such as TurboSquid or Sketchfab, also offer a variety of 3D 
models freely shared by Internet users, these models do not come from industrial sources, but 
from other fields such as computer graphics, for which the design constraints are different. Hence, 
the results would have had questionable validity. 
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Figure 11: Grasping cues obtained for 12 pistol-shaped tools. 
 

In addition, the proposed method relies on the scanning of the 3D geometry and leads to the 
extraction of sections. Indeed, the larger the step size (or the distance between sections), the 

greater the risk of missing a shape variation. On the other hand, too fine a scanning step would 
not allow the detection of large but continuous variations. One possible solution would be to 
perform two scans: a coarser one to detect transitions between regions, and a finer one to refine 
data acquisition where necessary. 

Finally, the proposed method recognizes features (a body, handle, push trigger) based on the 

assumption that the family of tools to which the analyzed CAD model belongs is known 
beforehand, so that it can look for those features. This implies a limitation that the proposed 
algorithm, as described, only works for pistol drills and pistol screws, considered as a family. 
However, that family encompasses many individual tools, and so the proposed method is likely to 
make a significant contribution. Moreover, the proposed algorithm is composed of many different 
elements, such as push trigger recognition, that are likely to be reused with other families of tools. 
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5 CONCLUSION 

This study has proposed the only method, to the authors’ knowledge, that allows automatically 
extracting grasping cues from 3D CAD models of pistol-shaped tools. In our previous paper, a 
method was described for tools in which the scanning direction was directly obtained from the CAD 

model’s oriented bounding box, as is the case for mallets, pliers or screwdrivers [3]. In the present 
study, we built on our previous work to propose a method that automatically determines the 
optimal scanning direction for pistol-shaped tools (which have a more complex geometry than 
mallets, for example), and that leads to identifying the push trigger as a key affordance feature. 

This method encompasses three steps (P1, P2, and P3) whose objective is to determine the 
main directions of the tool. First (P1), the approximate handle region and approximate handle axis 
are determined. Second (P2), the approximate handle axis is used to determine the tools’ body 

region and working axis. Third (P3), the working axis is utilized to determine the optimal scanning 

direction to identify the push trigger region.  

The general process includes the same 5 steps for each scanning direction. First, a section 
scan is performed. Second, the section properties are extracted, including new properties called 
section asymmetry and region asymmetry, that are used to identify the push trigger. Third, the 3D 
geometry is segmented into zones, segments, and regions. Fourth, the regions that are 

meaningful for grasping are identified, and fifth, grasping cues are extracted for each type of 
region. The proposed method was validated on a dozen CAD models of professional quality. The 
grasping cues were successfully extracted on all ten of these for which the tool actually had a 
typical pistol shape. 
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