

Computer-Aided Design & Applications, 18(4), 2021, 760-771

© 2021 CAD Solutions, LLC, http://www.cad-journal.net

760

Point Cloud Dataset Creation for Machine Learning on CAD Models

Andrew R. Colligan1 , Trevor T. Robinson2 , Declan C. Nolan3 and Yang Hua4

1Queen’s University Belfast, acolligan01@qub.ac.uk
2Queen’s University Belfast, t.robinson@qub.ac.uk

3Queen’s University Belfast, d.nolan@qub.ac.uk
4Queen’s University Belfast, y.hua@qub.ac.uk

Corresponding author: Trevor T. Robinson, t.robinson@qub.ac.uk

Abstract. Recently, the application of machine learning on Computer-Aided Design
(CAD) models has emerged. However, there is a lack of robust methods for the
conversion of boundary representation (B-Rep) CAD models from engineering

software to appropriate input representations for a machine learning algorithm.

Those that do exist break the link with the B-Rep, meaning the ability to use
machine learning to support future engineering operations on the B-Rep are
challenging. This paper presents a method for the creation and labelling of point
clouds from B-Rep CAD models for machine learning techniques, while maintaining
a link between the two representations. This method allows for the creation of a
dataset with additional input features determined from the CAD model such as B-
Rep face labels, that could increase the accuracy of certain problems when machine

learning is utilized. First, an open-source software called CloudCompare is used for
point cloud creation. Fast interrogation of the CAD model using face bounding
boxes are utilized to link points to their corresponding faces. This link allows for
easy traversal of the CAD model topology to gain other geometric features if
needed. A deficiency of the approach is that some B-Rep faces result in being

under sampled. For these insufficiently sampled faces, a method is presented to re-

sample them. Experiments on the approach are outlined to illustrate the efficiency
of the proposed method with the approach taking approximately 10 seconds per
CAD model within the tested dataset.

Keywords: Machine Learning, CAD Models, Point Cloud, Dataset Creation.
DOI: https://doi.org/10.14733/cadaps.2021.760-771

1 INTRODUCTION

The application of machine learning (ML) is becoming common in many different fields. This is
being referred to as a new digital revolution comparable to the invention of the internet; allowing
for digital transformations in many different industries. Machine learning is the science of getting

computers to learn to perform tasks without being explicitly programmed [1]. The use of machine

http://www.cad-journal.net/
https://orcid.org/0000-0002-7904-5644
https://orcid.org/0000-0002-6595-6308
https://orcid.org/0000-0002-9388-6183
https://orcid.org/0000-0001-5536-503X
mailto:acolligan01@qub.ac.uk
mailto:t.robinson@qub.ac.uk
mailto:d.nolan@qub.ac.uk
mailto:y.hua@qub.ac.uk
mailto:t.robinson@qub.ac.uk

Computer-Aided Design & Applications, 18(4), 2021, 760-771

© 2021 CAD Solutions, LLC, http://www.cad-journal.net

761

learning in Computer-Aided Design (CAD) modelling could have several applications. Examples of
these include: the identification of machining features (i.e. slots and holes) for CAD to Computer-
Aided Manufacturing (CAM) integration, or the detection of features that hinder the creation of
high-quality Finite Element (FE) meshes, that normally must be manually removed before analysis

can be undertaken. Although, there are several problematic issues that must be addressed. The
first is that many common CAD model formats cannot be used as the direct input into a machine
learning algorithm, such as a neural network. These algorithms require an input of fixed size for
each piece of data across the entire dataset used to train and test the algorithm. However, for CAD
models represented as a boundary representation (B-Rep), as is the norm in most commercial CAD
systems, its format does not lend itself to a fixed sized data structure. Therefore, the CAD models
need to be converted into a different representation for ML. The most common representations are

voxels, point clouds and meshes. Each of these use different methods to discretize the 3D space in

which the CAD model exists. However, this results in a loss of information that could be useful for
training the algorithm such as geometric information. This information could be represented as
input features to the ML algorithm. These features are different from those usually defined in CAD
systems, referring to any information/pattern in which the machine learning algorithm can learn.
In this paper, the two different sets of features will be differentiated by referring to each as either

“CAD features” or “ML features”. There is a scarcity of published research into the connection to B-
Rep CAD models, instead most research only works on these secondary representations. For
engineering purposes, it would be helpful if these geometric CAD features could be re-incorporated
into the secondary representation, so that they could be used as additional ML features that could
boost the ML algorithm’s performance.

2 RELEVANT WORK

2.1 Problem of Representing 3D Models

For the purpose of machine learning, CAD models produced in commercial CAD systems such as
CATIA V5 [3] or Siemens NX [15] are normally converted from B-Rep to a secondary
representation [6][18]. Examples include: voxels, point clouds and meshes, as defined below.

Figure 1: Illustrations of B-Rep and Secondary CAD Model Representations.

A B-Rep as seen in Figure 1(a), consists of geometry (e.g. surfaces, curves and points) linked
together through topology (faces, edges and vertices). A voxel representation as shown in Figure
1(b) is effectively a 3D digital image which has a regular structure similar to a 2D pixel grid, but
with additional depth information. This spatial occupancy enumeration has several different types,
but the most common is a binary format where if a voxel lies within the shape it is denoted with a
1. Otherwise, it is denoted with a 0. One benefit of this approach is that it is relatively easy to take

ML algorithms optimized for 2D image tasks and re-implement them for learning tasks on 3D

http://www.cad-journal.net/

Computer-Aided Design & Applications, 18(4), 2021, 760-771

© 2021 CAD Solutions, LLC, http://www.cad-journal.net

762

voxels. However, this representation is highly computationally expensive for higher resolutions.
This is because the computational cost scales cubically with an increase in resolution. For example,
a model with a resolution of 64x64x64 has 262,144 parameters. In contrast, if this resolution is
doubled to 128x128x128, the number of parameters increases to 16,400,384 (6156% more). At

higher resolutions, the time to train ML algorithms becomes impractical and can also result in an
inability to fit the data in memory. A voxel representation is considered to be a dense
representation as information is stored for the entire volume of the shape. In contrast, B-Rep
models only contain information on the boundaries. Therefore, for most solid shapes, a voxel
representation stores a lot of redundant information on the interior that does not benefit the
learning problem at hand.

A point cloud represents a 3D model as a set of data points in 3D space, Figure 1(c). These

points discretize the surface of the 3D model, where each point is represented as a set of

coordinates (x, y, z). Additional dimensions can be used to store the surface normals and other
local or global CAD features. 3D scanning technology often represents objects as point clouds
where depth points are extracted from the external surface of the objects. To this end, many
papers have reported on the utilization of point clouds for machine learning techniques. Although,
initial papers [13][14] converted the point cloud data into voxel or other formats before applying

machine learning algorithms. This is due to point clouds having an irregular structure. Unlike with
voxel data, previously developed ML algorithms optimized for image tasks cannot be easily
adapted for this kind of structure. The conversion to a voxel representation creates overly
voluminous data as well as generating quantization artefacts that obstruct the natural invariance
of the data. Recent papers [10][11] have been able to implement the point cloud directly as an
input. This allows for a reduction in the number of parameters needed to represent the 3D shape
in comparison to voxel representations, as information is only needed to be stored about the

boundary of the shape. Therefore, this reduces the computational expense of training and

implementing the algorithm.

Meshes are similar to point clouds in that they both have an irregular structure. Previous
papers [5][7] have used triangular surface meshes as seen in Figure 1(d) for representing the
shape meaning that only information about the boundary is stored. As a result, this representation
has many of the benefits of point clouds from a reduction in the number of parameters to a
flexibility over the resolution. One advantage compared to point clouds is its connectivity

information that can be used to represent the underlying surface of the model.

For this paper, a point cloud representation was chosen due to mesh approaches having the
difficulty of creating a fixed input structure. It was assumed that if an effective approach for
labelling could be found for point clouds, it could be easily adapted for mesh data.

2.2 Importance of Additional Geometric CAD Features

Many of the previous papers on machine learning with point cloud data utilize data sourced from
3D scans. Therefore, there was no original B-Rep CAD model to probe for additional ML features.
This has resulted in most papers not utilizing feature information provided by CAD models that
could give increased performance to the ML algorithm. To clarify ML algorithms, especially neural
networks, benefit from large datasets containing thousands to millions of pieces of data and where

there is a direct correlation between the accuracy of the algorithm and the amount of training data
used. Access to larger amounts of data is one of the main reasons for the current surge in the
application of machine learning in many industries. It is not enough to just give data to a ML
algorithm and expect it to learn properly. The data must also contain sufficient information through
which the algorithm is expected to learn, which is represented in the form of a label. In a task
called supervised learning, the ML algorithm predicts what it thinks the label should be, which is

then compared to the true label. Through calculating a loss metric between the true and predicted

label, the algorithm can be altered to help it better predict the data on a different iteration of
training.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 18(4), 2021, 760-771

© 2021 CAD Solutions, LLC, http://www.cad-journal.net

763

The problem arises with having insufficient amounts of data for training on B-Rep CAD models.
There does not exist large repositories of B-Rep CAD models with suitable labels to be learnt such
as machining features. Although, there has been work on compiling a range of CAD models into
datasets for machine learning techniques [9][17], they still lack the necessary labels for

engineering applications. The other option is to automatically generate CAD models allowing for
better control over the labelling process [18]. The problem with this approach is that the models
created are often highly rudimental, lacking in the complexity seen in actual CAD models produced
by an engineer. There is also the risk of the programmer of the generator algorithm unintentionally
introducing ML features in the data that the ML algorithm could become over-reliant on for
learning, or the models could lack important ML features. In such cases, it can be said that the
data distribution of the generated data is not the same as the distribution of the actual data and

therefore the ML algorithm cannot generalize for new data that it sees. This results in low-

performance accuracy and an inability to learn the necessary ML features from the data.

Where there is a lack of data available for machine learning, additional hand-engineered ML
features can be used to improve performance. These ML features are chosen based on prior
knowledge of their importance to the problem. Effectively, instead of getting the ML algorithm to
learn every feature from scratch, it is given a head start by providing extra important information.

It is here that some CAD geometric information could give significant performance gains. It is
therefore paramount that there are methods of extracting this geometric information for machine
learning purposes.

3 POINT CLOUD PROCESSES

3.1 Point Cloud Generation

Within CAD systems, there is often functionality for importing point clouds, however, there lacks
functionality for point cloud generation. Ma et al [12] created point clouds from sampling the
nodes in a mesh. The problem with this was that the mesh did not uniformly sample the 3D model.
Instead, it produced dense regions in areas of higher detail. This artefact is generally desirable for
Computer-Aided Engineering (CAE), the intended purpose of such meshing algorithms. However,
the authors’ future work will include the application of machine learning to learn to decompose

CAD models for the generation of a hexahedral dominant mesh for analysis [16]. For such
decomposition applications, it will leave areas of the CAD model insufficiently described, where
new splitting faces would be created during the decomposition task and could be detrimental for
the learning process.

In this paper, an external open-source program CloudCompare [4] is chosen for the point
cloud generation. The CAD system used in the experiments was Siemens NX. For the importation
of the CAD model into the point cloud generation program, it requires the discretization of the

model into a mesh. This is achieved by creating a Standard Triangle Language (STL) version of the
model. A point cloud is then generated with a specific size e.g. 10,000 points. This is then
imported back into the CAD system to be labelled. Figure 2 shows a general process flow for the
labelling of a point cloud with information from a decomposition task. The reason for the
generation of the point cloud from the original undecomposed CAD model is due to the fact that
new geometry is created in the decomposition process. This will not be present for a non-
decomposed model given to the ML algorithm after training. Therefore, the algorithm needs to not

be reliant on this new information generated in the decomposition task. This approach allows for
this to be apparent and enables the gathering of both non-decomposed and decomposed
geometric information. By sampling uniformly and performing a study on the number of points
used to represent the data accurately, one is also able to be sure that all regions are sufficiently
described.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 18(4), 2021, 760-771

© 2021 CAD Solutions, LLC, http://www.cad-journal.net

764

Figure 2: Process Flow of Point Cloud Labelling for a Decomposition Task.

3.2 Point Cloud Labelling

One of the most important aspects of this process, is the ability to gauge which geometric face
each point belongs to. The identification of these CAD face features allows for easier traversal of
the model to obtain other CAD features such as edges or vertices. The first step in this labelling
process is to superimpose the point cloud onto the CAD model. One problem that arises from the
conversion of the B-Rep to an STL is that points that should lie on curved faces are no longer
guaranteed to. This means that one cannot simply search if the point is contained within a face to
label it.

Figure 3: Bounding Box for Work Part.

Although, the distance of the point from the face can be used to indicate if it belongs to that face.

It would be computationally expensive to calculate the distance between every point in the point
cloud and every face in the model. Instead, a bounding box is initially calculated for every face in

the model. Then, it can be checked whether a point lies in any of the bounding boxes. The check is
done across all the bounding boxes at once using fast array operations from the C# Language
Integrated Query (LINQ) library [2]. A tolerance is added to the bounding box as can be seen in
Figure 3. This is due to some points no longer lying on the surface, meaning they may not be
contained within the exact bounding box. The tolerance heuristically is chosen to be 0.1mm.
Information on the selection of this metric can be found in Section 4.1.

For all the potential faces, the distance metric is calculated and then the face with the smallest
distance is chosen. If the distance metric calculated is 0mm then this face is assumed to be the
correct face. Figure 4 shows the algorithm used to label the point cloud. Figure 5 outlines the steps
within the algorithm for selecting the corresponding face of a point in the point cloud.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 18(4), 2021, 760-771

© 2021 CAD Solutions, LLC, http://www.cad-journal.net

765

Figure 4: Algorithm for Face Assignment for Point Clouds.

Figure 5: Illustration of the Process to Select the Corresponding Face for a Point.

3.3 Supplementing Non-Sampled Faces

One issue that may appear is if the sampled point cloud does not contain a point on every face in

the CAD model. This arises from two situations. The first is if the CAD model contains relatively
small faces in comparison to the other faces found in the CAD model. In this situation, the
CloudCompare software may miss these faces when sampling the point cloud. The second situation
is where the sampled CAD model is further decomposed for meshing purposes, therefore creating
additional faces as can be seen in Figure 6. These faces may not be sufficiently sampled by the
original point cloud. Therefore, the ability to identify and re-sample these faces would be greatly
beneficial. Figure 7 shows an example where small faces within the CAD model were insufficiently

sampled by the generated point cloud.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 18(4), 2021, 760-771

© 2021 CAD Solutions, LLC, http://www.cad-journal.net

766

Figure 6: Creation of New Geometric Faces from Decomposition.

Figure 7: Example of Insufficiently Sampled Faces.

For CAD models that contain only one body, the insufficiently sampled faces can be found by
simply querying which faces contain no points. The problem occurs for models where multiple
bodies exist. An example of this would be for CAD models which have been decomposed for
meshing. In these types of CAD models, there exists internal faces between the bodies which

should not be sampled. There are two types of potential internal faces. Figure 8(b) shows the
sheet bodies used to split the original CAD model for decomposition. Each of these bodies contain
faces that can be easily identified by probing the sheet bodies. The red faces in Figures 8(c) & 8(d)
show the internal faces created by the split body operation that belong to the solid bodies. For each
location where two bodies meet there will exist at least two of these faces. Within the Siemens NX

API, it is not clear how to identify these faces with any existing function.

Figure 8: Internal Sheet and Solid Faces Produced for Decomposition.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 18(4), 2021, 760-771

© 2021 CAD Solutions, LLC, http://www.cad-journal.net

767

To identify the internal faces of the solid bodies, the faces of the sheet bodies can be used. This is
because these sheet faces should have the same imprint as the solid internal faces. As the imprints
should be similar, the centroids and areas of these two types of faces should also be comparable.
Therefore, by matching the solid faces with centroids and areas similar to those of the sheet faces,

the internal solid faces can be identified. However, searching this potential face space could be
very computationally expensive. To speed up the search, a k-d tree is utilized [8]. A 3-dimensional
tree is built using the coordinates of the centroids of all the faces of solid bodies in the CAD model.
For each face in the sheet bodies, the k-d tree is searched to find the two closest neighbors for
their centroids. The area of these potential internal solid faces is then compared to the area of the
sheet face. A tolerance is added to the sheet face area for situations where the area of the internal
face is identified as being slightly different.

One situation where it has been identified that this method will fail is where the splitting

operation creates multiple new faces on the solid body from one sheet face. In this case, the areas
of the solid body and sheet body faces will not match. An example of this is shown in Figure 9.
This could be potentially solved by widening the number of neighboring centroids to test, then with
any unlabeled centroids create a set of unique permutations of faces. Then, the areas of these face
permutations could be summed and compared to the area of the sheet face. Although, this would

be immensely computationally intensive. Another approach would be to perform a union Boolean
operation on the bodies while maintaining the existing external faces. However, this functionality is
not obvious in NX, instead, some of the external faces will be merged in the process.

Figure 9: Missed Internal Solid Faces.

Once the external and internal solid faces have been identified, the ratio of the number of points to
face area is calculated for the external solid faces. If any faces have a ratio of zero, then they are
re-sampled. This is achieved by randomly removing points from the faces that have the largest
ratio, therefore ensuring that the number of points in the point cloud remains the same. A

minimum number of points per face is also applied which is user-defined, in case faces with small
areas lack adequate number of points to describe them. The scope of re-sampling could also be
expanded to faces with low ratios; however, this would increase the computational expense. A

method was also tested where new points were created and the point cloud size was altered, with
the assumption that the point cloud could later be randomly downsampled to achieve the desired
size. Once each point has been associated with a face in the B-Rep model, then the dataset used
for ML can be bolstered with attributes from the B-Rep (e.g. grouping points by B-Rep face).

4 EXPERIMENTS

In this section, several experiments are detailed which were undertaken to either help in the

selection of parameters for the approaches or to measure their effectiveness. For each experiment,
a dataset of 1,000 CAD models was used. The models used for this dataset were randomly selected

from the ABC dataset [9].

http://www.cad-journal.net/

Computer-Aided Design & Applications, 18(4), 2021, 760-771

© 2021 CAD Solutions, LLC, http://www.cad-journal.net

768

4.1 Tolerance Selection

As already stated, an exact bounding box of a face may not contain points that are created from

the discretization of curved surfaces, a tolerance is needed to be added to the dimensions of the
bounding boxes. In order to select an appropriate tolerance value, an experiment was undertaken
to find the max and average distance of points from their corresponding face. To achieve this, each
point in the point cloud was probed to find its distance from each face in the CAD model. The face
with the smallest distance to the point was assumed to be the corresponding face. This distance
value was recorded for each point in the point cloud. The average and maximum distance of this

set were calculated for each model in the CAD dataset. Table 1 shows the results for the entire
dataset, where the point clouds consist of approximately 10,000 points.

 Average Face Distance (mm) Maximum Face Distance (mm)

Minimum Outlier 0 0
Quartile 1 (25%) 7.01E-05 5.03E-03
Quartile 2 (50%) 8.23E-04 7.88E-03
Quartile 3 (75%) 1.79E-03 8.19E-03
Maximum Outlier 5.14E-03 2.57

Table 1: Average and Maximum Face Distance Calculations for CAD Dataset.

Table 2 shows how the search space is reduced by the use of different tolerances on the face
bounding boxes.

Tolerance (mm) Avg. Faces in Search Space Reduction of Search Space (%)

No Tolerance 104.18 0

2.6 5.74 94.53
1 3.97 96.22
0.1 2.21 97.89

0.01 1.98 98.11

Table 2: The Effect of Altering Tolerance on the Face Search Space.

Table 1 shows that on average the furthest distance a point will lie from a face is 5.14E-03mm.
With 75% of the maximum face distances lying within 8.19E-03mm. Although, there are some
outliers with the furthest distance from a face being 2.57mm. From Table 2, it can be seen that a
tolerance of 0.01mm and 0.1mm have a similar reduction in the search space with a difference
between the two of 0.22%. Therefore, a tolerance of 0.1mm is used in this paper. As this would
have similar efficiency to a tolerance of 0.01mm, while still hopefully encapsulating some of the

points that are outliers.

4.2 Comparison of Point Cloud Sizes

To understand the scalability of the method, the basic approach without face re-sampling was run
with different point cloud sizes. Two different cases were tested: the first is non-decomposed
models where the original models from the ABC dataset were used. The second is decomposed CAD

models. Four different point cloud sizes were analyzed: 5,000, 10,000, 20,000 and 40,000 points.
As shown in Figure 10, the approach scales quadratically with an increase in the number of points.
Therefore, it could be assumed that point cloud sizes above those analyzed would be highly
expensive to label. However, the author is not aware of any published machine learning research,
that has utilized point clouds of that density. Therefore, the current approach can be deemed
appropriate. There is also a slight increase in the time taken to label the decomposed CAD models.

This can be attributed to the increased number of faces in the CAD model.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 18(4), 2021, 760-771

© 2021 CAD Solutions, LLC, http://www.cad-journal.net

769

Figure 10: Effect of Varying Point Cloud Size on the Time for Operation.

To ensure that the point cloud was sufficiently sampling the faces of the CAD model, the number of
non-sampled faces was found for each of the CAD models in the dataset. This was compared to the

total number of faces in the CAD model. This was only conducted on the decomposed CAD models.
Table 3 highlights the averages for the dataset and how they change for different point cloud sizes.

Point Cloud Size Average Number of Non-

Sampled Faces

Average % of Non-Sampled

Faces to Total Faces

5,000 18 6.16
10,000 14 4.65
20,000 10 3.46
40,000 6 2.49

Table 3: Average Ratio of Number of Points per Face Area and Number of Non-Sampled Faces.

Intuitively, Table 3 shows that as the point cloud size increases, the number of un-sampled faces
decreases. This roughly attributes to, if the point cloud size doubles, the percentage of non-
sampled faces to total faces decreases by 25-28%. Overall, it can be said that the point clouds
created by CloudCompare are able to describe the majority of faces in the CAD model, with the
sparest point cloud size still achieving 6.16% for its non-sampled face to total faces metric.

Therefore, this approach seems to be able to describe new faces created from a decomposition
operation.

4.3 Comparison of Approach Versions

Lastly, the effect of using different versions of the approach was compared. For this only the
decomposed models were used, and the point cloud size was kept at approximately 10,000 points.

Three different versions were compared. The first only used bounding boxes, the second used the
bounding boxes and re-sampled faces but did not relocate points, and the last used the bounding
box and re-sampling by way of relocating points. Table 9 shows the comparison between each
version. It can be seen that the point relocation version was over 4 times slower than the other
versions. This may be down to how the algorithm may select a point that has already been
sampled. In this case, the algorithm will need to loop through to find another suitable point. The
basic bounding box and new point creation versions are almost equal in terms of runtime.

Therefore, it can be assumed that the k-d tree method for finding the internal solid faces is not the
bottleneck of the process.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 18(4), 2021, 760-771

© 2021 CAD Solutions, LLC, http://www.cad-journal.net

770

Version Average Time per CAD Model (secs)

Basic Bounding Box 10.31
New Point Creation 10.48
Point Relocation 48.48

Table 4: Average Ratio of Number of Points per Face Area and Number of Non-Sampled Faces for
Different Versions of the Approach.

5 CONCLUSION

The following conclusions have been drawn for this work:

• A complete pipeline for the creation and labelling of point cloud data from CAD models is
presented.

• An algorithm for the assignment of face labels to point clouds has been developed with the
limitations addressed. This achieves an average time per CAD model of approximately 10
seconds.

• A version of the approach to re-sample faces which are insufficiently described by the point

cloud is also presented, with the fastest version having an average time per CAD model of
10.48 seconds.

• There is an exponential increase in the time taken to create the point cloud and the
number of points used to sample the CAD model.

6 FUTURE WORK

The authors’ future work will include the application of machine learning to learn to decompose

CAD models for the purpose of hexahedral mesh generation. Other future avenues of work could
include the normalization of the CAD model scale to produce an adaptive bounding box tolerance.
And the movement of points back onto geometric faces where they have been moved during the
STL creation process.

7 ACKNOWLEDGEMENTS

Author Andrew R. Colligan is a PhD researcher who is funded through DfE government funding.

Andrew R. Colligan, https://orcid.org/0000-0002-7904-5644
Trevor T. Robinson, https://orcid.org/0000-0002-6595-6308
Declan C. Nolan, https://orcid.org/0000-0002-9388-6183

Yang Hua, https://orcid.org/0000-0001-5536-503X

REFERENCES

[1] Andrew Ng’s Machine Learning course, https://www.coursera.org/learn/machine-learning
[2] C# LINQ, https://docs.microsoft.com/en-us/dotnet/csharp/programming-

guide/concepts/linq/
[3] CATIA V5, https://www.3ds.com/products-services/catia/
[4] CloudCompare, https://www.cloudcompare.org/
[5] Feng, Y.; Feng Y.; You, H.; Zhao, X.; Gao, Y.: MeshNet: Mesh Neural Network for 3D Shape

Representation, Proceedings of the AAAI Conference on Artificial Intelligence, 33, 2019,
8279–86. https://doi.org/10.1609/aaai.v33i01.33018279

http://www.cad-journal.net/
https://orcid.org/0000-0002-7904-5644
https://orcid.org/0000-0002-6595-6308
https://orcid.org/0000-0002-9388-6183
https://orcid.org/0000-0001-5536-503X
https://www.coursera.org/learn/machine-learning
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://www.3ds.com/products-services/catia/
https://www.cloudcompare.org/
https://doi.org/10.1609/aaai.v33i01.33018279

Computer-Aided Design & Applications, 18(4), 2021, 760-771

© 2021 CAD Solutions, LLC, http://www.cad-journal.net

771

[6] Ghadai, S.; Balu, A.; Sarkar, S.; Krishnamurthy, A.: Learning localized features in 3D CAD
models for manufacturability analysis of drilled holes, Computer Aided Geometric Design, 62,
2018, 263-275. https://doi.org/10.1016/j.cagd.2018.03.024

[7] Hanocka, R.; Hertz, A.; Fish, N.; Giryes, R.; Fleishman, S.; Cohen-Or D.: MeshCNN: A

Network with an Edge, 2018. https://doi.org/10.1145/3306346.3322959
[8] K-d trees, https://pcl-tutorials.readthedocs.io/en/latest/kdtree_search.html#kdtree-search
[9] Koch, S.; Matveev, A.; Jiang, Z.; Williams, F.; Artemov, A.; Burnaev, E.; Alexa, M.; Zorin,

D.; Panozzo, D.: ABC: A Big CAD Model Dataset For Geometric Deep Learning, The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
https://doi.org/10.1109/CVPR.2019.00983

[10] Qi, C. R.; Li, Y.; Hao, S.; Guibas, L. J.: PointNet++: Deep Hierarchical Feature Learning on

Point Sets in a Metric Space, NIPS’17: Proceedings of the 31st International Conference on

Neural Information Processing Systems, 2017, 5105-5114.
https://dl.acm.org/doi/10.5555/3295222.3295263

[11] Qi, C. R.; Su, H.; Kaichun, M.; Guibas, L. J.: PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation, 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, 77–85. https://doi.org/10.1109/CVPR.2017.16

[12] Ma, Y.; Zhang, Y.; Luo, X.: Automatic Recognition of Machining Features Based on Point
Cloud Data using Convolution Neural Networks, AICS 2019: Proceedings of the 2019
International Conference on Artificial Intelligence and Computer Science, 2019, 229–35.
https://doi.org/10.1145/3349341.3349407

[13] Maturana, D.; Scherer, S.: VoxNet: A 3D Convolutional Neural Network for real-time object
recognition, In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015, 922–8. https://doi.org/10.1109/IROS.2015.7353481

[14] Sedaghat, N.; Zolfaghari, M.; Amiri, E.; Brox, T.: Orientation-boosted voxel nets for 3D
object recognition, British Machine Vision Conference (BMVC), 2017.

https://doi.org/10.5244/C.31.97
[15] Siemens NX, https://www.plm.automation.siemens.com/global/en/products/nx/
[16] Sun, L.; Tierney, C.; Robinson, T.; Armstrong, C.: Automatic decomposition of complex thin

walled CAD models for hexahedral dominant meshing, Procedia Engineering, 2016, 163.
https://doi.org/10.1016/j.proeng.2016.11.052

[17] Wu, Z.; Song, S.; Khosla, A.; Fisher, Y.; Zhang, L.; Tang, X.; Xiao, J.: 3D ShapeNets: A deep
representation for volumetric shapes, 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, 1912–20. https://doi.org/10.1109/CVPR.2015.7298801

[18] Zhang, Z.; Jaiswal, P.; Rai, R.: FeatureNet: Machining feature recognition based on 3D
Convolution Neural Network, Computer-Aided Design, 101, 2018, 12–22.
https://doi.org/10.1016/j.cad.2018.03.006

http://www.cad-journal.net/
https://doi.org/10.1016/j.cagd.2018.03.024
https://doi.org/10.1145/3306346.3322959
https://pcl-tutorials.readthedocs.io/en/latest/kdtree_search.html%23kdtree-search
https://doi.org/10.1109/CVPR.2019.00983
https://dl.acm.org/doi/10.5555/3295222.3295263
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1145/3349341.3349407
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.5244/C.31.97
https://www.plm.automation.siemens.com/global/en/products/nx/
https://doi.org/10.1016/j.proeng.2016.11.052
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1016/j.cad.2018.03.006

