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Abstract. This paper presents a finite element based explicit fluid-structure coupling 
method. The derived method is proposed to solve flow-induced multi-particle motion 

in the low Reynolds number flow. The particle motion is treated as a non-linear 
geometric dynamic problem. The Total-Lagrangian finite element method is applied 
to describe and discretize the particle domain. The Bathe method is used to integrate 
over the time domain. The quasi-steady Stokes equation is used as the governing 
equation of the fluid domain. Mixed finite element is applied to solve the fluid 

equation. An explicit coupling strategy is implemented between the interaction of 
particle and the zero-Reynolds number flow. Simulations of the flow-induced multi-
particle motion with derived method are presented. 
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1 INTRODUCTION 

Flow induced multi-particle motion is a common phenomenon which can be found in different areas. 
Particle immersed in the flow with low-Reynolds number is a main characteristic of this kind of 
problems. Motions of particles, such as translation, rotation, deformation, interaction between wall 
and particles, and interaction among particles are complicated problems. Studying motions of 

particles may reveal insights of multi-particle motion phenomenon and also benefit several different 
industries. To manufacture the short-fiber reinforced composite material using injection molding 
process, fibers immersed in the resin matrix are injected into the mold. Fiber’s motions including 
transport, rotation, and deformation are subject to the motion of the fluid. The final distribution and 
pattern of fibers determines the performance of final products. Similarly, in the paper making 
industry, pulp with paper fiber in the processing of forming paper is a flow induced fiber motion 

problem. In the medical application, blood cell motion in the blood vessel also can be categorized 
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into this field. Obtaining insight of physical meaning of blood cell motion may be helpful for 
understanding mechanism behind some diseases from different perspective. 

The goal of this research is to derive a computational method to simulate the low Reynolds 
number flow-induced particle motion problem. The derived method is able to address the different 

shape of particles. It is also able to simulate rigid particles and flexible particles. The quasi-static 
Stokes equation was applied as the governing equation of the fluid domain which was solved by the 
finite element method. The particle was treated as a non-linear geometric problem. The Total-
Lagrangian (TL) finite element was used to discretize the particle. The Bathe method was applied to 
integrate the particle’s dynamic motion over the time domain. A serial partitioned coupling method 
was derived to couple the fluid and solid domains [12].  

The derived method is validated by comparing simulation results with the Jeffery theory. 

Behaviors of different geometry and aspect ratio of particles are compared with simulation. 

Simulation of three rectangular particles immersed in the double Couette flow with the derived 
method is presented. Characteristics of multi-particle motion particle are discussed. Influence of 
initial position of three particles on the behavior of the particles’ motion is also discussed.   

2 LITERATURE REVIEW 

Jeffery [6] developed a mathematical formula to describe an orbit of a rigid ellipsoid particle 

immersed in the shear flow. Zero inertia of both fluid and particle was an assumption. Fluid domain 
is assumed infinite large to avoid boundary effect on the motion of the particle. Jeffery’s theory is 
the foundation of theoretical works concerning this problem. Two-dimensional Jeffery theory is 
described in Eq. (2.1). 

 

∅(𝑡) = 𝑡𝑎𝑛−1(𝑟𝑒𝑡𝑎𝑛
𝛾̇𝑡

𝑟𝑒 + 1 𝑟𝑒⁄
) (2.1) 

Fiber’s rotation angle ∅ is a time-dependent variable. Ellipsoid aspect ratio is represented by 𝑟𝑒. Time 

𝑡 is the variable of the equation. Flow shear rate 𝛾̇ can be calculated by equation 𝛾̇ = 𝑉𝑐 𝐿⁄ , where 𝑉𝑐 

is the characteristic velocity and L is the height of simple shear flow. Figure 1 illustrates an ellipsoid 
fiber immersed in a double Couette flow and the mentioned notations applied in Jeffery’s theory. 
 

 

 

Figure 1: An illustration of an ellipsoid fiber immersed in the double Couette flow. 

     

Jeffery’s theory reveals that fiber’s angular velocity increases with the increase of flow shear rate. 
An ellipsoid fiber’s angular velocity reaches the maximum while the fiber’s long axis orientation is 

perpendicular to the flow shear direction. An ellipsoid fiber’s angular velocity reduces to the minimum 
while the fiber’s long axis orientation is parallel to flow shear direction.  

Most of the theoretical works regarding flow-induced rigid particle motion are the extension of 

Jeffery’s theory. In Ho and Leal’s [5] study, non-Newtonian effect and weak inertial of fluid were 
involved. It was concluded that axisymmetric but non-spheroid particles generally show the same 
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behavior in the shear flow as a spheroid particle. Stover and Cohen’s [11] experimental results 
agreed with Jeffery’s theory and Leal’s theory quantitatively. 

For the multi-particle motion, Folgar and Tucker III [4] derived an orientation distribution 
function of the concentrated suspensions. Even though their theory predicted more rapid alignment 

than actual is, it has been widely used and modified in the simulation of the injection molding of 
short fiber composite material. This method has its limitation which is only able to solve rigid slender 
shape fiber motion. It is unable to solve the particle with arbitrary geometry or the flexible fiber.  

Arbitrary-Lagrangian-Eulerian (ALE) [3] is used widely as a computational method for solving 
fluid-structure interaction problem. The mesh of an ALE kinematical description of the fluid domain 
can displace independently of the fluid motion. The ALE improves accuracies of the calculation and 
alleviates excessive distortion of the computational mesh. For the flow-induced particle motion 

problem, however, large translation and rotation occur in the computation. The ALE is incapable to 

withstand very large computational mesh displacement, and re-mesh is inevitable. Transformation 
of data from the previous mesh to the current mesh is a tedious work in which accuracy of calculation 
is compromised. 

Immersed Boundary (IB) method [8] is another computational solution in which the fluid applies 
a fixed space, the Eulerian description. The mesh of the fluid is no longer moved to confirm the 

surface of the particle. Two domains are linked by an interaction equation which is named ‘the Dirac 
delta function’. Moving mesh and re-mesh are avoided in the IB method. Nonetheless, the accuracy 
of the IB method is not better than methods with the conformed interface between the two domains. 

3 METHOD 

Flow-induced multi-particle motion was studied with numerical method in this paper. Problem was 

limited in the low Reynolds number flow. Amount of particle was limited in three. Problem was 
simplified in the two-dimension. In this section, we will discuss the modeling and solution of the zero 

Reynolds number flow and multi-particle motion, coupling strategy and re-mesh scheme. 

3.1 Zero-Reynolds Number flow 

Since the size and weight of the fiber that we are dealing with are quite small, so we assume a zero-
Reynolds number-flow in this study. And the Stokes equation is used as the governing equation of 

the fluid domain. 
 𝛁 ∙ 𝐕 = 0 (3.1) 
 −𝛁 ∙ {−𝑝𝐈 + [(𝛁𝐕) + (𝛁𝐕)𝑇])} = 0 (3.2) 

where 𝑝 is pressure distribution and 𝐕 is the velocity distribution vector. For the two-dimensional 

case, 𝐕 = {𝑢, 𝑣}, where 𝑢 is the velocity distribution in the 𝑥-direction and 𝑣 is the velocity distribution 

in the 𝑦-direction. 

Equation (3.1) and (3.2) are time-independent equation representing a quasi-static problem. 
Solving a quasi-static Stokes equation is easier and faster than solving a dynamic Navier-Stokes 
equation. An acceptable accuracy can be obtained in the solving low Reynolds number problem with 
Stokes equation compared to that applying a Navier-Stokes equation. 

According to the Ladyzhenskaya-Babuska-Breezi (LBB) condition which is also known as the inf-
sup condition [10], the interpolation function of the pressure should be one order low than the 

interpolation function of the velocity based on the differential order of each term in the governing 
equation. Therefore, the mixed finite element is applied to solve Eq. (3.1) and Eq. (3.2) 
simultaneously. The Galerkin finite element method discretizes the governing equation from the 
strong form to the weak form. Integration of multiplication of residual of governing equation and 
weight function is shown in Eq. (3.3) to Eq. (3.5). They are mass conservation, momentum 
conservation in the x-direction, and momentum conservation in the y-direction, sequentially. 

 
∫ {

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
} 𝑄𝑑𝑥𝑑𝑦 = 0

Ω

 (3.3) 
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∫ {−

𝜕

𝜕𝑥
[−𝑝 + 2

𝜕𝑢

𝜕𝑥
] −

𝜕

𝜕𝑦
[
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
]} 𝑤𝑑𝑥𝑑𝑦 = 0

Ω

 (3.4) 

 
∫ {−

𝜕

𝜕𝑥
[
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
] −

𝜕

𝜕𝑦
[−𝑝 + 2

𝜕𝑣

𝜕𝑦
]} 𝑤𝑑𝑥𝑑𝑦 = 0

Ω

 (3.5) 

In Eq. (3.3) to Eq. (3.5), 𝑢 and 𝑣 represent fluid velocity in the x-direction and in the y-direction. 

Terms 𝑄 and 𝑤 are different weighting function [10]. Distmesh, a free mesh tool [7], was applied to 

discretize the geometry of the fluid domain. Finally, discretized governing equations can be written 
into a matrix form, as shown in Eq. (3.6). 

 𝑲𝑓 ∙ 𝑿(𝑽𝒙, 𝑽𝒚, 𝑷) = 𝑭(𝑭𝒙, 𝑭𝒚) (3.6) 

Herein, 𝑲𝒇 is stiffness matrix generated by the mixed finite element method. 𝑿(𝑽𝒙, 𝑽𝒚, 𝑷) represents 

known and unknown values vector, where 𝑽𝒙, 𝑽𝒚, and 𝑷 represent velocities in the x-direction, 

velocities in the y-direction, and pressure, respectively. Term 𝐹 is force vector of fluid domain, where 

𝑭𝒙 and 𝑭𝒚 are forces in the x-direction and forces in the y-direction. 

Figure 2 shows a schematic diagram of a rectangular particle immersed in the Poiseuille flow 
and the boundary condition of the fluid domain. The Poiseuille flow profile is incorporated on the 
inlet. The do-nothing boundary condition is applied to the outlet. The non-slip boundary condition is 

incorporated on the top of the fluid domain, the bottom of the fluid domain, and the surface of the 
rectangular particle. A pressure boundary condition on the outlet is set to equal to zero to avoid 
singularity in the calculation. 

 

 

Figure 2: A rectangular particle is immersed in the Poiseuille flow. 

 

The distributions of the velocity, distributions of the pressure, and distributions of the force in the 
fluid domain are obtained by solving Eq. (3.6). Only the data on the interface between the fluid 
domain and the rectangular particle is useful and is extracted from those results. To meet the 
requirements of compatibility, i.e., the velocity and the force on the interface are equivalent on both 
domains, results of velocities and forces on the interface of the fluid domain will be passed to the 
particle solver to calculate the motion of the particle. 

3.2 Multi-Particle Motion  

Since large displacement, large rotation, and large deformation are predicted when particles 
immersed in the flow, the particle’s motion is treated as a non-linear geometric dynamic problem. 
The particle is modeled in a two-dimensional domain. Total-Lagrangian (TL) incremental finite 

element method can deal with the non-linear geometry. Linear material defines the property of the 
particle. Bathe method, a time integration scheme, integrates the semi-discrete equation resulted 

from the Total-Lagrangian method over the time domain. 
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Total-Lagrangian method measures and calculates everything on the initial referential 
configuration. Displacements are obtained step by step. Using the virtual work and the energy 
conservation obtains the governing equation of the particle in the current configuration, as shown 
in Eq. (3.7) [9]. 

 
𝛿𝑊 = ∫ 𝜎2 ∶ 𝛿( 𝑒2 )𝑑 Ω2

Ω2
− 𝛿( 𝑅)2 = 0 (3.7) 

Here, 𝛿𝑊 is the virtual work of the entire particle which should be equal to zero as the energy 

conservation. Index ‘2’, both in superscript and subscript, indicates the configuration: current 

configuration. 𝜎  represents the Cauchy stress. 𝛿( 𝑒2 )  is the virtual linear engineering strain 

increment. 𝛿( 𝑅)2  is the virtual work of the external forces. The Second Piola-Kirchhoff (2PK) stress 

‘S’ and the Green Lagrangian strain ‘E’ are utilized to convert Eq. (3.7) from the current configuration 

to the referential configuration, as shown in Eq. (3.8). 

 
∫ 𝑆0 ∶ 𝛿( 𝜀0 )𝑑 Ω0

Ω0
+ ∫ 𝑆1 ∶ 𝛿( 𝜂0 )𝑑 Ω0

Ω0
= 𝛿( 𝑅)0

2 − 𝛿( 𝑅)0
1  (3.8) 

Similar to the function and the position of the index used in Eq. (3.7), index ‘1’ represents the 

variable in the previous configuration of the current configuration ‘2’. Index ‘0’ represents the 

referential configuration. 𝛿( 𝜀0 ) is the virtual work of the linear term of the strain. 𝛿( 𝜀0 ) is the virtual 

work of the nonlinear term of the strain. 𝛿( 𝑅)0
2  is the external force virtual work in the current 

configuration. 𝛿( 𝑅)0
1  is the elastic potential energy generated by the virtual work in the previous 

configuration. Equation (3.8) can be simplified to a matrix form, Eq. (3.9). Here, 𝐾𝑇 is the tangent 

stiffness matrix of the particle. 𝑈  is the displacement of the particle. 𝐹0
2

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙  and 𝐹0
1

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 

correspond to the 𝛿( 𝑅)0
2  and 𝛿( 𝑅)0

1 , respectively. 

 𝐾𝑇𝑈 = 𝐹0
2

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 − 𝐹0
1

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (3.9) 

To include the inertia and the energy dissipation of the particle, the mass matrix, and the damping 
matrix are calculated. Since the mass conserves through different configurations, the mass of the 
particle in the referential configuration is equal to the mass of the particle in the further 

configurations. In Eq. (3.10), we calculated the mass matrix of the particle in the referential 
configuration. 𝜌𝑠 represents the density of the particle. In Eq. (3.11), the Rayleigh proportional 

damping provides an empirical way to involve the energy dissipation of the particle. Weighting 
coefficient α and β result from the natural mode of the system combining with a given damping ratio 

[2]. 

 
𝑀 = ∫ 𝜌𝑠

Ω0
𝑑 Ω0  (3.10) 

 𝐶 = 𝛼𝑀 + 𝛽𝐾 (3.11) 

A second order ordinary differential equation can be constructed. A governing equation with two 
particle case is 

[𝑀1 0
0 𝑀2] {

𝑈̈(𝑖)
1

𝑈̈(𝑖)
2 } + [𝐶1 0

0 𝐶2] {
𝑈̇(𝑖)

1

𝑈̇(𝑖)
2 } + [

𝐾𝑡
1

(𝑖−1)
0

0 𝐾𝑡
1

(𝑖−1)

] {
𝑈(𝑖)

1

𝑈(𝑖)
2 } = {

𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
1

0
2 − 𝐹𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

1 (𝑈(𝑖−1)
1 )0

1

𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
2

0
2 − 𝐹𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

2 (𝑈(𝑖−1)
2 )0

1
} (3.12) 

Superscript 1 and 2 on the top right corner indicates the number of the particles. The ‘dot’ above the 

displacement 𝑈 indicates the order of time derivative. Tangent stiffness matrix 𝐾𝑡(𝑈(𝑖−1)) refers that 

the motion of the particles is a non-linear problem. The Newton-Raphson iteration method is used 
to solve the non-linear equation. Subscripts 𝑖 and 𝑖 − 1 indicate the order of the iteration. 𝐹0

2
𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 

and  𝐹0
1

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 represent external forces on the current configuration and the internal forces stored 

from the previous configuration. 

Bathe method [1] has two sub-steps. In the first half-time step, displacements and velocities of 

the particle are calculated according to the Newmark trapezoidal rule. In the second half-time step, 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(3), 2021, 600-611 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

605 

displacements and velocities of the particle are calculated according to the three-point Euler 
backward method.  

Only the displacements and the velocities on the nodes of the particle’s surface are needed. The 
displacement of the particle changes the geometry of the interface. We utilized the displacements 

of the particle to update the mesh of the fluid domain, which meets a requirement of the geometric 
compatibility in the coupling. The velocities on the particle’s surface in Eq. (3.6) play as the essential 
boundary conditions of the fluid calculation, which meets a requirement of the kinematic 
compatibility in the coupling. 

3.3 Explicit Partitioned Coupling Strategy 

Solutions of the fluid and the particle have been introduced in the previous sections independently. 
To couple those two solutions together, we derived an explicit coupling method. Three coupling 

compatibilities including geometric compatibility, kinematic compatibility, and dynamic compatibility, 
need to be satisfied by handling the displacements, the velocities, and the forces appropriately 
between the two domains. Figure 3 shows an entire coupling scheme schematic diagram. 

 

 
 

Figure 3: Explicit partitioned coupling scheme flowchart. 
 

The fluid domain was solved first. We extracted the forces on the interface from solutions of the fluid 
solver. Since the fluid domain was written in the dimensionless form and the particle dynamic 

equation was formulated with the physical unit without dimensionless, before delivering the forces 
the fluid exerting on the particle to the solid solver to solve motions of the particle, the dimensionless 
forces need to be scaled to the dimensional forces.  

To meet the requirement of dynamic compatibility, forces sourced from the fluid domain are 
incorporated into Eq. (3.12) as the natural boundary condition of the solid solver. Then, the solid 
solver is marched forward one time-step. Velocities and displacements on the particle’s surface are 

calculated. Before delivering the velocities and the displacements from the solid solver to the fluid 
solver, the velocities and the displacements are translated into dimensionless data. 

To meet the requirement of the kinematic compatibility, after re-mesh, the velocities on the 
surface of the particle are incorporated to the fluid domain on the matched node as the essential 
boundary condition. A coupling mainly takes places between two governing equations: Eq. (3.6) and 
Eq. (3.12). Figure 4 illustrates the coupling scheme from a perspective of the governing equations. 
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Figure 4: Explicit partitioned coupling scheme between two governing equations. 

3.4 Mesh 

To meet the requirement of geometric compatibility, a mesh tool named ‘Distmesh [7]’ is applied to 
re-mesh the fluid domain according to the result of the new geometry of the particle’s surface. 
Remesh is needed every coupling step. We applied the quadrilateral element for the particle and a 
6-node triangular element for the fluid domain. Both elements are the quadratic element. The apex 
of the element of each domain matches to each other, as shown in Figure 5. There is a small gap 

between the midpoints for a pair of matched elements. Only the accuracy of the midpoint is 
influenced. Although a deformed particle generates curved side of a quadrilateral element, the error 
caused by the gap is ignored. It is easy to transfer the data between to domain over the matching. 

 

 
 

Figure 5: Matching element on the interface between two domains. 
 

The derived method is a mesh-based method, we cannot deal with the contact of two immersed 
particle by far. Two particles approaching each other too closely also causes low mesh quality which 
will lead to inaccurate calculations. Those are limitations of the derived method for simulations of the 
flow-induced multi-particle. 

4 SIMULATION AND DISCUSSION 

All simulations were programed using the MATLAB. Simulations were running on a computer with 
hardware Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 16GB RAM, and 500GB SSD. 

4.1 Validation with the Jeffery Theory 

The derived method is validated with the Jeffery theory (2.1). An elliptic particle immersed in an 

unbounded double Couette flow is simulated. A realistic way to realize the unbounded flow domain 
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is to set the dimension of the flow domain being 40 times larger than the dimension of the elliptic 

particle. In this case, the boundary effect is avoided. Mesh of the elliptic particle and the fluid domain 
are shown in Figure 6. Elliptic particle’s axis ratio 𝑟𝑒 = 3, density is 1300 𝑘𝑔/𝑚3, Young’s Modulus is 

37 × 109 𝑃𝑎, and damping ratio is 0. The fluid’s viscosity 𝜈 = 17 (𝑁 ∙ 𝑠)/𝑚2, which was applied in the 

Stover’s experiment [11], wall speed 𝑉𝑐 = 0.027 𝑚/𝑠, flow shear rate  𝛾̇ = 0.15 (1/𝑠). Time step size 

∆𝑡 = 0.025𝑠. 

 

 
(a) (b) 

Figure 6: Mesh of the simulation used for validation. (a) Mesh of an ellipsoidal fiber. (b) Mesh of 

the fluid domain. 
     
Angle vs. time plot of the simulation in Figure 7 shows that the plot generated by the simulation is 
nicely match with the plot calculated from the Jeffery theory, which validates that the derived method 
has the capability of simulating flow induced particle motion problem accurately. It took 30 hours to 
simulate 1 min particle behaviors where 24 hours were spent to mesh. The computing speed is 
limited by a small time step size needed to ensure stability of the simulation.  

   

 
Figure 7: Comparison between results of Jeffery’s theory and simulation with the derived 
computational method. 

4.2 Shape and Aspect Ratio Effect 

This section presents the effect of particle’s shape and aspect ratio on the particle motion with 
simulations. In each case a single particle is immersed in the fluid domain. First, we show the 
different behaviors of flow induced elliptic particle and rectangular particle. They are immersed in 
the same condition of fluid domain separately. Both axis aspect ratio is 3. The only difference is their 

shape. Other parameters of particles and fluid are same as that applied in the Section 4.1. Figure 8 
(a) compares angle vs. time plot of two different particles. It shows that the elliptic particle’s rotation 
is slower than that of the rectangular particle immersed in the same condition of the double Couette 
flow. 

The comparison of rectangular shape particle with axis aspect ratio 3 and 9 is also investigated. 

The only difference of two particles is the axis aspect ratio. Other parameters are same as those 
used in Section 4.1. Figure 8 (b) plots angle vs. time diagram of two particles immersed separately 
in the same condition of the double Couette flow. Curves illustrates that a large axis aspect ratio 

particle’s rotation is slower than a relatively small axis aspect ratio particle with same shape. 

0 10 20 30 40 50 60 70
0

30

60

90

120

150

180
Boundary effect on fiber angular velocity

time (Unit:s)

a
n
g
le

 (
U

n
it
:d

e
g
re

e
)

 

 

Jeffery theory

Simulation

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(3), 2021, 600-611 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

608 

Those conclusions from simulation can be supported by Stover’s experiments observation [11]. 
Simulations of elliptic particle and rectangular particle with two different axis aspect ratio at several 
time point successively are shown in Figure 9. 

  

  
(a) (b) 

Figure 8: Angle vs. time plot. (a) Ellipsoidal fiber and Rectangular fiber. (b) Rectangular fiber 
with axis aspect ratio 3 and 9. 

 

     

     

     
1s 15s 40s 60s 76s 

 
Figure 9: Comparison of rectangular and ellipsoidal particle position at several time 
points in sequence. 

 

The 1 minute simulation of the elliptical particle took 9.3 hours, where the meshing took 4.6 hours. 
The 1 minute simulation of the smaller axis aspect ratio rectangular particle took 1.5 hours, where 

the meshing takes 0.7 hours. The 1 minute simulation of the larger axis aspect ratio rectangular 

particle took 1.6 hours, where the meshing took 0.8 hours. 

 

4.3 Three Particles Immersed in the Double Couette Flow 

To simulate how the existence of particle influences each other, a setup of three particles diagonally 
immersed in the double Couette flow was simulated. A schematic diagram of the simulation is shown 
in Figure 10. Parameters of the simulation are listed in Table 1. Four cases were simulated, where 
three particles are initially placed in different distances (i.e., 3.5 𝑚𝑚, 4 𝑚𝑚 , 4.5 𝑚𝑚, and 5 𝑚𝑚) 

between each other in the vertical direction.  
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Figure 10: Simulation of three particles immersed in the double Couette flow. 
 

 Particle-1 Particle-2 Particl-3 

Type of flow Double Couette 

Viscosity (N ∙ s)/m2 17 

Fluid domain height: 2h = 0.02 m 

𝑉𝑐 (m/s) 𝑉𝑐 = 1.5 mm/s 

Shear rate: 𝛾̇ (1/s) 𝛾̇ = 0.15 (1/𝑠) 

Fiber density 𝜌𝑠  𝜌𝑠 = 1300 kg/m3 

Long axis length  Square particle: a = 3 mm 

Fiber ratio: re re = 1 

Time step ∆t (s) ∆t = 0.05 

Young’s Modulus: E  37e9 (Pa) 

Damping ratio: ζ ζ = 0 

Distance: d (mm) 3.5, 4.0, 4.5, 5.0 

 
Table 1: Parameters of simulations of three particles diagonally immersed in the double Couette 
flow. 

 

The result of case of each particle keeping 5 𝑚𝑚 distance is presented to illustrate the flow-induced 

multi-particle motion as shown in Figure 11. From 22 𝑠𝑒𝑐 to 42 𝑠𝑒𝑐, flow induced three particles drift 

closer and then apart away. Figure 8 shows the displacements of three particles in the vertical 
direction in all four cases. The changing of displacement in the vertical direction of the particle on 
the top and the particle on the bottom shows that the existence of other particles affecting the 
motion of each other. 

Figure 12 shows that particle-1 which was placed in the center at the beginning did not displace 

in the vertical direction obviously. Curves of motions of particle-2 and particle-3 in the vertical 
direction show symmetry in all four cases with different initial distances between particles. Particle-
2 and particle-3 move slightly close to the particle-1 in the vertical direction when they approximate 
to the particle-1 in the horizontal direction. Then, they repel each other to the largest distance in 
the vertical direction when three particles aligned vertically. After that, particles tend to move closer 
again vertically when they depart horizontally. Finally, particle-2 and particle-3 recover to their initial 

vertical position after departing far away from each other. This numerical experiment shows flow-
induced multi-particle motion, and reveal how particles influence the motions of each other in the 
direction vertical to the flow shear direction. 
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(a) (b) (c) 
 
Figure 11: Results of simulation of three particles diagonally initialized arranged in the double 

Couette flow. (a) Mesh; (b) Velocity distribution; (c) Pressure distribution.  
 

  
Figure 12: Displacements of three particles in the vertical direction with different initial distances 
between each particle. 

It took 4 hours to simulate 1 minute of three particles motion in average, where 3 hours 40 minutes 
were spent for mesh and re-mesh.  

5 CONCLUSION 

For solving flow-induced multi-particle motion problem, a finite element based partitioned coupling 
method is presented in this paper. Stokes equation is the governing equation of the fluid domain 
which is solved by the mixed finite element method. The particle is modeled as a non-linear 

geometric dynamic problem, which is solved by the Total-Lagrangian incremental finite element 
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method and the Bathe time integration method. The explicit coupling strategy is developed to couple 
two domains. A mesh tool ‘Distmesh’ is applied to mesh and remesh the fluid domain at each coupling 
step. The derived method is validated by comparing simulation results with the Jeffery theory. 
Behaviors of different geometry and aspect ratio of particles are compared with simulation. Results 

of simulation of three particle initially diagonally immersed in the double Couette flow is  discussed. 
The simulation revealed how the motions of particles are influenced by each other. Particles tend to 
attract each other when they are nearby each other in a certain area horizontally. The derived 
method is applied in two-dimensional domain in this study. The fluid structure coupling strategy and 
solver can be applied in the three dimensional domain. For scalability, the derived method is able to 
simulate large scale problem, such as lumber’s motion in the river. The method is capable to simulate 
large and heavy objects immersed in the flow. Low Reynolds number is required for any scale of 

problems.   
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