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Abstract. Computer-Aided Design (CAD) collaboration has been studied since the 
early days of CAD research, but standardized metrics and experimental procedures 
for synchronous, cloud-based CAD research are lacking in the literature. In this work, 

we lay out an empirical approach to investigate collaboration in CAD. Our work is 
unique in its relevance to the nuances of synchronous CAD collaboration. We first 

define metrics of interest: speed, quality, communication, satisfaction, and UI (user 
interaction).  We then introduce an experimental toolkit that leverages automated 
and manual data capture methods. Lastly, we deploy our toolkit in a pilot study 
setting to reveal preliminary insights and validate the workings of our method. 
Although preliminary, our findings suggest that pairs were slower than single CAD 
users because of coordination overheads involving communication and model-tree-
scanning. 
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1 INTRODUCTION 

Only recently, fully synchronous CAD platforms have been deployed at commercial scale [27]. The 
shift to synchronous collaboration was enabled by modern cloud architecture, which allows for 
multiple designers to manipulate the same CAD geometry. This style of working is new to the design 
community and its implications are under-studied in prior research. Synchronous CAD promises to 
be an important topic of research as more design teams are collaborating globally [17]. 

Having multiple people working on the same CAD file has been shown to reduce modeling time 
[23]. It is bound to also affect other aspects of design work like quality, creativity, communication, 
and decision making. The complexity of executing design projects with teams working in 
synchronous CAD warrants novel design research methods [19].  

Experiments provide a unique advantage by allowing researchers a higher specificity in defining 
research questions [2]. Exploratory experiments are especially useful in emerging research fields 
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which do not have an exhaustive pre-existing literature to draw upon, but are also challenging to 
set up as they need to capture a large array of variables. In this paper, we present an experimental 
method to answer exploratory research questions (RQ) about collaborative CAD. 

In particular, we are interested in the following: 

➢ RQ1: What metrics are of interest in studying the performance of CAD users? 

➢ RQ2: What CAD collaboration insights can we derive from using our experimental method? 

2 LITERATURE REVIEW 

Research tools have evolved over the past few decades. However, the overarching types of research 
strategies have not changed. Figure 1 illustrates an array of such strategies and their inherent trade-

offs. It is particularly noteworthy that none of these strategies can solely maximize all three 
attributes of behavioral research: precision, generalizability, and realism. In our work, we choose 

lab experiments as they offer most precision in defining abstract research questions. This was 
important as our work is early-stage and exploratory. We acknowledge the obtrusive nature of lab 
experiments and strive to minimize this limitation by avoiding sensor-based data generation. 

 

 
 

Figure 1: Research strategies. Adapted from [20]. 

2.1 Experiments in Synchronous CAD Research 

Experimental methods have been used by other researchers to study synchronous CAD. The nascent 
state of this research area meant that these studies used CAD software that was still in beta testing 
phase and under development. Particularly, multi-user CAD (MUCAD) developed as an add-on to 
Siemens NX brings synchronous capability to a traditional CAD software [5, 23]. This tool has been 
part of multiple synchronous CAD research studies. Stone et al. proposed a method to predict the 
optimal size for a team working in MUCAD [24]. 26 students were assigned to teams of one to four 

to model three CAD models of varying difficulties. The authors found completion-time-prediction 
accuracy was correlated with team sizes, i.e. completion times for larger teams was predicted with 
higher accuracy. The prediction function was created using a regression model with the number of 
CAD features and their dependencies taken as input. Learning effects played an important role in 
this work as teammates complimented each other's skills. It is also noteworthy that simpler parts 

were modeled faster by single users vs. MUCAD teams. The quality of models was better in multi 

http://www.cad-journal.net/
https://paperpile.com/c/EN8lB7/2oRqa+nkF2O
https://paperpile.com/c/EN8lB7/2oRqa


 

 

Computer-Aided Design & Applications, 18(2), 2021, 328-342 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

330 

user teams. This work was limited by the use of a pre-production version of CAD software and its 
participant pool size.  

Another study by Stone et al. investigates MUCAD team dynamics [23]. This study consisted of 
63 students divided into 21 teams of three. Overall, MUCAD teams performed faster than individuals 

tackling the same task with traditional CAD. A second finding of this study suggests that high 
performing teams communicated less but more effectively. And last, a higher mismatch in CAD skill 
levels correlated to low performance in MUCAD teams. Final scores were modified to compensate for 
inconsistencies in participants' experience from CAD software limitations. 

Eves et al. conducted a study comparing MUCAD teams to teams using single user CAD systems 
connected by an email server [10]. In this work, eight teams of four worked on a multi-day CAD 
project. Team performance was rated by expert judges who evaluated screenshots of the 

participants’ CAD files. This study was limited by a bias from mismatch in skill in using MUCAD and 

use of pre-production CAD software. These limitations were compensated for by modifying the 
judges scores. The final results did not show any statistically significant difference in performance 
between singles vs. MUCAD teams. However, MUCAD teams had higher awareness of team activities 
and communicated more in comparison to single user teams.  

These early insights from research in synchronous CAD are promising and help us direct our 

work. Particularly, we take inspiration from literature to define our metrics of interest. Speed, quality, 
and communication were adopted as metrics in our work based on Stone et al. and Eves et al.’s 
work.  

2.2 Data Capture Techniques 

Advent of new sensing techniques and faster computing capabilities have enabled researchers to 

extract a wide variety of data types. Sivanathan et al. presented a ubiquitous data capture method 

for CAD work [22]. Their toolkit aggregates real-time logging of multiple data types like CAD 
metadata, eye tracking, mouse logging, and electroencephalography (EEG). The upside of the 
framework presented by Sivanathan et al. was its applicability outside of research settings. This 
toolkit was proposed to be used by practicing engineers to monitor CAD user behavior in real world. 
However, this setup requires a complicated sensor suite and is obtrusive to designers' natural way 

of working.  

Another toolkit presented by Liu et al. used EEG, galvanic skin resistance (GSR) and 
electrocardiography (ECG) to capture psycho-physiological data. This dataset was used to compute 
designers’ emotions and compared to logs of CAD system UI [14]. A fuzzy model was developed to 
derive emotions and results were then validated through a case study. This approach, like 
Sivanathan et al.’s framework, relied heavily on sensor-based solutions.  

Nyugen et al. present an EEG based toolkit that can perform design protocol analysis methods 

by microstate analysis [15]. In this work, a model to map EEG signals to design events of interest 

is developed. Then a case study is analyzed using the.  The authors present a detailed comparison 
between the automated protocol analysis results and ratings by expert human coders. This work 
concluded with recommendations on the choice of algorithms in automating design protocols using 
EEG. Like Sivanathan et al., a limitation of Nyugen et al.’s methodology is its reliance on body 
sensors leading to an obtrusive experimental setup. 

Rahman et al. present a software-based approach to capture design behavioral data. A CAD 

based platform, ENERGY3D was developed to study solar energy systems [18]. This work is non-
intrusive to the participants but is limited in its variety of variables captured. Outside of the CAD 
context, Ostergaard et al. present an experimental method to study collaboration patterns in design 
review meetings [16]. In this work, they compare groups vs. individuals working through a design 
review session. Data collection is done by evaluating participant worksheets post-experiment. In this 
work, the simplicity of the experimental setup is less obtrusive but limits the amount and variety of 

data available. 
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In our toolkit, we capture multiple data streams based on video post-processing. We leverage 
the benefits of automated and manual techniques to collect experimental data. Such multimodal 
analysis has been successfully used to investigate human social behavior [1]. This approach requires 
no body mounted sensors and provides a more natural setting for participants.  

Manual coding methods like protocol analysis have a long precedence in design research and will 
be discussed next [12]. Researchers have investigated the effects of virtual vs. co-located design 
processes using protocol analysis methods [25]. A peculiarity of protocol analysis studies is their 
small sample sizes. Small data sets are common in protocol analysis because of the time consumed 
in coding each data set [12]. Verbalization techniques are common in protocol analysis. For example, 
Anwar et al. modeled cognitive behavior in conceptual design work using such techniques [13]. 
Verbalization or ‘think aloud’ techniques have limitations like data validity, steep learning curve, and 

some tasks are not suitable for verbalization [7]. Another popular protocol analysis method involves 

participants recollecting their experience post-experiment. Such retrospective protocol analysis is 
prone to filtering and bias by participants. It is also observed that informal reporting from 
researchers’ notes during the study can lead to data losses as the research team might not have 
accounted for all possible events of interest beforehand [9]. 

3 METHODS OVERVIEW 

3.1 CAD Working Styles 

To narrow down the scope of our toolkit and the pilot study, we chose three distinct CAD working 
styles: single person working in traditional CAD, single person working in synchronous CAD, and 
lastly pairs working in synchronous CAD. The three working styles help us test all possible modes in 
which our toolkit might be applied in a future study. We chose Onshape (OS) as our collaborative 

CAD software. We also added a traditional CAD working style with Solidworks (SW) as a benchmark.  
To comply with the ethics board requirements and bring structure to our discussion, we have 

adopted the following name coding: SWS1, SWS2 and SWS3 for single SolidWorks participants, 
OSS1, OSS2, and OSS3 for single Onshape participants, OSP1_1 and OSP1_2 for participants working 
in Onshape pair 1, up to OSPn_1 and OSPn_2 for participants working in Onshape pair n. See Figure 
2 for a pictorial representation of this naming scheme. 

 

 
 

Figure 2: Naming scheme of different CAD working styles. 

3.2 Metrics of Interest 

Understanding synchronous CAD collaboration warrants analysis of both CAD and non-CAD activities. 

As pointed out in the literature review, we chose speed and quality as metrics of CAD work. In 
addition, communication, satisfaction, and UI statistics were documented as non-CAD related 
metrics. We refined our metrics based on observations from the pilot study data. For example, all 

tracks in the manual coding Section 3.3.1 were identified by studying multiple participant videos. We 
were able to add metrics posteriori because of the post-processing approach of our toolkit. A 
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summary of all metrics of interest and their associated measurement tools are shown in Figure 3. 
Metrics were operationalized using three tools/methods: protocol analysis, cursor tracking and 
emotion tracking. These will be further discussed in Section 3.3. 
 

 
 

Figure 3: Toolkit architecture showing mapping of metrics of interest to data. 

3.3 Data Generation Methods 

This section describes the software specifications and post processing methods used to implement 

our multi-modal approach. All data streams captured during the pilot study were routed using the 
architecture shown in Figure 4. As can be seen, we used a variety of data traces and storage options 
to connect all stations in our experiment setup. A description of each data type follows. Note that 
some metrics are redundant/overlapping and were used to triangulate/cross-reference results. 
 

 
 

Figure 4: Data trace interconnections. 

3.3.1 Manual coding of screen recording 

Manual protocol analysis allows us to codify information that is otherwise hard to capture using 
automated techniques. A coding schema is central to a protocol analysis. Frameworks like function-
behavior-structure (FBS) are popular in the design research community [11]. However, a CAD-
specific coding schema is currently lacking in the literature. We implemented a grounded theory 

approach to develop a CAD collaboration specific coding schema [21].  

The five tracks from Figure 5, used in our protocol analysis are: CAD track (change number), 
communication, geometry rotation, roll back, and help menu access. These were derived from 
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watching multiple screen recording videos from our pilot run. All videos were annotated using a 
video coding software, V-Note, shown in Figure 5. A detailed description of each track in our coding 
schema follows. 

The CAD track helped us record time taken to complete CAD tasks and derive speed and quality 

metrics. This is consistent with metrics used by other design researchers studying synchronous CAD 
[23]. We included three subcategories into this track: active/productive work, rework, and 
incomplete/unfinished work. The statistics generated from this track were used to assess the 
participants performance in our pilot study. 

Communication messages were time stamped and tagged into two categories: (i) communication to 
plan/update and (ii) communication to help/advice. Communication between participants was 
restricted to the design task on hand and participants were instructed not to identify each other in 

their communications. 

The geometry rotation track captured assessing the CAD geometry to seek awareness. We 
recorded the frequency and time duration of each instance of spinning/rotating geometry. 

Rolling back the model tree is a common strategy used in CAD work. It becomes particularly relevant 
in dealing with coupling effects of CAD changes. Each rollback was documented with the time for 
which the model stayed in this rolled back state. 

Our participants use the software’s help menu primarily for information on feature menu options. 
Time spent on referring to the help menu was catalogued in the help access track. 

 

 
 

Figure 5: Manual coding session in progress. 

3.3.2 Cursor tracking 

We built a post processing object detection algorithm based on template matching using OpenCV. 
This helped us capture cursor locations in our study. The script scanned pixels of an input frame and 
correlated it to multiple input template images to find a match. This method relies on the screen 
recording video and obviates the need to record more footage or maintain additional software during 

the pilot study.  

Cursor tracking was implemented on video footage of OS pairs and OS single working styles 

only, as SWS users were working on a different operating system. The change in graphics from two 
different operating systems posed challenges for our cursor tracking script and it could not deliver 
consistent results. The comparison between OS pairs and OS singles was adequate to compare 
individual CAD work against paired work, which is important to future work. 

High thresholds were set for the cursor-template matches, and multiple calibration tests were 

performed on still frames and video samples. This was important to mitigate false detection and 
ensured repeatability of our cursor tracking results. To further counter false detections, data points 
from the same location for more than 10 seconds were flagged. With our current parameter settings, 
the algorithm was able to recover more than 85% of cursor locations. An even higher recovery rate 
can be achieved by running cursor tracking natively, a simple extension of our experimental set-up 
requiring additional CPU resources. Cursor location data was categorized in regions of interest as 

seen in Figure 6. As can also be seen, the point locations from the software were mapped to heat 
maps overlaid by the regions of interest. 
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Figure 6: (Left) Screen recording showing regions of interest. (Right) Heat map of cursor locations 
Regions of interest: 1. Feature Selection, 2. Communication, 3. Model Tree, 4. CAD Graphic Area. 

3.3.3 Emotion tracking using web camera 

Affectiva is a commercial emotion detection solution that has been successfully used in other design 
research projects. An interface using their software developer kit (SDK) was built with the ability to 
upload videos and generate emotion statistics [28].  

The software works by tracking facial cues and mapping them to seven basic emotions. An 

example frame being processed in the software and sample output is shown in Figure 7.  Facial 
expressions were tracked and processed to calculate emotion metrics for each participant.  

The SDK output was in the form of a rating from 0-100, signifying the level of expression of a 

given emotion (see Figure 7). In other words, a rating of 0 meant the emotion was not detected and 
100 meant the emotion was fully expressed. Our code sampled frames at 2 frames per second (fps) 
to match sampling frequency of other software in our toolkit. Overall, we had a 81% detection rate 

for facial videos processed from the pilot study. 

 

 
 

Figure 7: (Left) Emotion recognition algorithm showing points of significance. (Right) Data stream 
from sample video footage [28]. 

4 PILOT STUDY 

The primary goals for our pilot study were to validate the workings of our toolkit and to draw early 
insights for future work. The pilot study was designed and executed in compliance with the 

Committee on the Use of Humans as Experimental Subjects (COUHES) at MIT. As part of COUHES 

requirements, all participant names were anonymized.  
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4.1 Lab Setup 

The experimental setup was built in a pre-existing facility in the MIT Behavioral Research Lab (BRL). 

Figure 8 shows our experimental setup at the MIT BRL. This space was used to host the experiments 
and training sessions. 

 

  
 

Figure 8: (Left) Typical participant work station. (Right) An experiment in progress. 
 

Our focus was to be as non-intrusive as possible and emulate a design office setup. Participants 

were asked not to use personal electronic devices during the pilot study and adequate storage space 
was provided to accommodate participants’ belongings. It was important for us that participants 
were in physical and audio isolation from each other to simulate remote virtual collaboration. To 

enable this, the physical space inside our lab was divided using dividers and slide out partitions. We 
also added white noise in the environment to address any residual audio.  

4.2 Design Task 

The study was set up such that participants roleplayed toy designers working on an early stage 
concept of a toy car. After reviewing the initial CAD file, participants were tasked with a list of 42 
changes that represented feedback gathered from customer review sessions. Examples from the 
change list are shown in Table 1.  

 

Sr. No. Change request Points 

1 Add 3mm fillet overall on the body of the car. 1 

2 Increase the length of the car by 20%. 1 

3 Change the diameter of the wheels to 30mm. 1 

4 Increase width of tires by 50% 1 

 

Table 1: Examples from participant change list. 

 

We purposely designed our change list to stay focused on the user-software interaction and required 
our participants to perform drafting specific changes only. The prescriptive nature of our change list 
minimized variability in interpretation of the changes and forced participants to spend the majority 
of their time on CAD modeling. Participants were asked to implement as many changes as possible 
in 60 mins, with each change awarded a score. Every participant was given a demo of unique features 
in synchronous CAD including a tutorial on the collaborative features of the software. 
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4.3 Participants 

Our participant pool consisted of 12 students from MIT. It was required that all participants had 

taken a design class and used CAD for more than a year. 16 people participated in the study but we 
qualified only 12 participants data points for our analysis. Some data was discarded because of 
technical glitches or participants lacking prerequisites. On average, our participants had more than 
2.5 years of CAD experience. 

4.4 Pilot Study Results 

Our pilot study led to 9 CAD files, as shown in Figure 9. Single working style participant CAD files 
are not as elaborate as their paired counterparts. This is due to fewer changes implemented by 
single working style participants. This difference is captured more quantitatively in the following 
sections. 

 

   
 

Figure 9: CAD files from (left) OS Singles, (center) SW Singles, and (right) OS Pairs. 

 

4.4.1 Manual coding 

Cohen’s Kappa is a measure of inter-rater reliability (IRR) and is often used to check the 
reproducibility of a coding schema [6].  To check the validity of our coding schema, a second coder 
rated 99 video samples. Video samples were distributed to have at least one representation of our 
coding schema from each track per participant of our pilot study.  These ratings were cross 

referenced with their original categories to compute IRR statistics. We achieved 85% agreement 
between ratings and our IRR assessment resulted in a high Cohen’s K statistic of 0.71 suggesting a 
substantial agreement between raters [26]. 

Participant success in our pilot study was compared by calculating the number of changes 
completed in 60 minutes. As can be seen from the first two rows of Table 2, paired participants were 
slower at implementing changes in comparison to individuals working by themselves. It is 

noteworthy that the average time taken to complete a change is not directly indicative of the total 

number of changes implemented in our pilot study. This distinction can be explained by further 
analysis of the non-CAD related components of the protocol analysis. 

All ratios and OME values are tabulated in Table 2. Our definition of overall modeling efficiency 
(OME) helps compare relative performance of participants. We adapted this approach from 
manufacturing literature, where overall equipment efficiency (OEE) is a popular aggregate metric to 
compare production efficiency of machines  [8]. We defined three ratios to compute OME number: 

availability ratio, speed ratio, and quality ratio. Availability ratio captures the total time available to 
participants to perform CAD activities. Time spent towards activities like rework, failed changes, and 
communication were removed from total study time to calculate the available time for each working 
style. Next, speed loss ratio was used to capture the relative differences in speed at which 
participants executed changes. This ratio was calculated by baselining each participant with the 
fastest participant, SWS1. And lastly, quality loss ratio accounts for the accuracy with which each 

working style implements changes. This ratio penalized participants for incorrect implementation 
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and leaving changes incomplete. OME was calculated as product of all ratios, as seen in equation 
below. 

OME =  
S

S′
×

A

A′
×

Q

Q′
 

 

where, 

S= Total number of changes completed by participant 

S’= Maximum number of changes completed by any participant, 15 in our case 

A= 3600 - time lost performing non-CAD related activities 

A’= 3600 (secs) 

Q= Number of changes attempted - number of unfinished or incorrect changes 

Q’= Total number of changes attempted by participant 

 

Working styles SW Single OS Single OS Pair 

Average number of changes 13 11 8 

Speed loss ratio 0.87 0.76 0.51 

Average non-CAD time (secs) 555 168 867 

Availability ratio 0.85 0.95 0.76 

Average number of quality losses 3 2 1.5 

Quality loss ratio 0.81 0.87 0.84 

Average OME 0.6 0.6 0.3 

 

Table 2: Summary of OME calculations. 

4.4.2 Cursor tracking 

Modelling the cursor tracking data proved challenging, given its size and complexity. To simplify our 
analysis, we chose to aggregate data for each working style. Table 3 shows the summary of cursor 
locations detected in each region of interest from Figure 6. This information augments the qualitative 
insights shown by heat maps. 
 

 OS Single  

(%) 

OS Pair  

(%) 

Difference:  

OS Pair – OS Single 

Feature Selection 11.6 9.7 -1.8 

Model Tree 6.9 10.3 3.4 

Communication 0.0 5.4 5.4 

CAD Graphics Area 81.5 74.5 -7.0 

 
Table 3: Table showing cursor activity summary for OS Singles and OS Pairs. 

4.4.3 Emotion tracking 

Similar to the cursor tracking data, emotion tracking data was computed at a high frequency and 
then down sampled to be consistent with cursor tracking data. Emotion metrics were generated by 
filtering our data with a threshold value. All instances of sustained emotion were catalogued in time 
intervals. Table 4 shows the aggregate values of the seven basic emotions split between OS single 

and OS pairs participants. As can be seen from the last column in Table 4, paired participants 
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expressed more emotions than individuals. A more elaborate analysis of this emotion data can be 
found in Zhou et al. 's work [28]. 
 

 
OS Single OS Pair 

Difference:  
OS Pair – OS Single 

Joy 23.3 177.3 154 

Sadness 7.3 12.0 4.7 

Disgust 444.0 251.3 -192.7 

Contempt 328.7 587.7 259 

Anger 9.3 37.7 28.4 

Fear 0.0 8.0 8 

Surprise 296.7 511.7 215 

 

Table 4: Summary of emotions captured during pilot study [28]. 

 

4.4.4 Aggregating all data streams 

Analyzing multiple data streams together can prove challenging and makes it difficult to compare 
the three working styles in a comprehensive manner. In an effort to review all data qualitatively, we 
created dotted plots as seen in Figure 10. These plots show the manual protocol analysis data 
alongside the cursor tracking dataset.  

As the two datasets were not mutually exhaustive, it was difficult to set up a quantitative 
analysis. Dotted plots are a good visual indicator to study participant behavior at a high level. For 
example, it is seen that OSP3_1 rolled back the CAD geometry more often compared to OSP3_1. 
Laying out multiple streams side by side helped us triangulate information. The dotted plots augment 
information presented by the protocol analysis and cursor activity by adding a time dimension. For 
example, the cursor activity in Table 3 give us an aggregate view of the participants movement 
within the CAD environment, but the dotted plots help us understand the distribution of time spent 

over the timeline of our pilot study, i.e. if the transitions are happening regularly or in concentrated 
spurts.  

5 DISCUSSION 

From looking at the raw data generated through the manual coding method, we observed that pairs 

were slower than individuals. This finding was also supported in the performance analysis; wherein 
overall performance of pairs judged using OME was lower. The speed loss ratios contributed the 

most to lowering OME scores. As a result, we did not observe any explicit assembly bonus effects 
i.e.  paired CAD work was not summative of individual CAD work.  

The differences in user behavior of pairs vs. individuals is depicted in Table 3. The additional 
activity of communication is applicable only to pairs and is an extra overhead. Secondly, the cursor 
activity for pairs was higher in the model tree region. We suspect model-tree-scanning was used by 
pairs to seek awareness of their counterpart’s work. This is peculiar to collaborative CAD and is a 
coordination overhead in addition to communication. 

Emotion analysis output suggests that pairs emoted more than individuals. This can potentially 
be related to user satisfaction and we note that pairs expressed more positive emotions. All data 
presented in the pilot study results was generated using archival video footage. Post-processing of 
data alleviated impetus on the research staff to analyze data during the pilot study.  
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Figure 10: (Top to Bottom) Dotted plots for OSP 3, showing OSP 3_1 on top and OSP3_2 on bottom. 

5.1 Limitation 

Small size of our participant pool reduces the confidence in our results. Using students as participants 
in design research has precedence in the field, but results from such work falls short in their 
generalizability to the real world. Rigorous training of student participants can help minimize this 
disconnect and will be implemented in future. Finally, our design task was kept drafting focused to 
bring clarity to participants and ease measurement of data. However, purely drafting focused 
exercises limit the richness of our results. Lastly, our post processing approach lent convenience in 
running the experiment, but at the cost of data loss from video post processing algorithms. 

5.2 Future Work 

We relied on the number of years of CAD experience as a recruitment qualification for participants' 
incoming skill in our pilot study. In future runs, we would like to build a calibration mechanism within 
our study to augment self-reporting. This can be done using standardized tests like the Purdue Spatial 

Visualization Test (PSVT) [4]. Richer communication mediums like audio and video conferencing are 
now becoming common in design collaboration. Restricting participants to only written 
communication was limiting and we would like to implement audio communication in the future. 
Lastly, our work would benefit from local installations of cursor tracking and emotion recognition 
tools that run natively in background. 

http://www.cad-journal.net/
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6 CONCLUSIONS 

The multimodal experimental toolkit provided consistency and standardization in executing our 
experiments. We posed two research questions in Section 1, pertaining to our work. We report our 
findings as below: 

➢ RQ1: Figure 3 captures our metrics of interest; namely speed, quality, communication, 
satisfaction, and UI statistics. A successful application of these metrics was enabled by the 
toolkit in the pilot study.   

➢ RQ2: Preliminary collaborative CAD insights from our pilot study are outlined below: 

o Single participants were faster than pairs. This is consistent with literature on 
computer supported collaborative work (CSCW). [3].  

o Communication and an increase in model-tree-scanning were identified as potential 

coordination overheads and are unique to pair CAD.  

o Pairs emoted more than single CAD participants. 
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