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Abstract. Multi sensor data fusion is a new challenge in dimensional metrology of 

freeform surfaces. Although data fusion processes have been extensively 

investigated in the literature and multi-sensor integrated systems are gradually 
being implemented by industry, the data obtained by the various sensors are not 
being optimally processed to assess the geometrical defects of complex workpieces.  
The work presented in this paper aims to propose a novel framework for form error 
assessment in multi sensor dimensional metrology. A generic and global approach 
in multi-sensor metrology combining registration, data fusion and fitting is 

proposed for aspherical and freeform optics. Driven by a curvature-based 
approach, the registration of data sets obtained from different sensors is conducted 
through a developed coarse and fine registration method. In order to improve the 
accuracy of the form error assessment for freeform surfaces, a data fusion-based 
method is proposed in this paper. A Gaussian Process (GP) model is built based on 
each of the transformed data sets, followed by the maximum likelihood data fusion. 

The fused result has improved characteristics and reduced uncertainty than either 

of the measurement data sets. Finally, a fitting algorithm is applied on the fused 
data for assessment of the minimum zone. To demonstrate the feasibility of the 
proposed method, simulation data and measurement data of aspheric optics are 
used and evaluated through case studies. 
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DOI: https://doi.org/10.14733/cadaps.2021.309-327 

 

1 INTRODUCTION 

Compared with traditional optic elements in spherical shape, aspheric and freeform optics have 

many advantages such as compactness and elimination of spherical aberration. Therefore, they 
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have replaced spherical elements in multiple optical systems and have been applied in different 
fields like medical imaging, astronomy, etc. [1-2]. 

Nowadays, the measurement of freeform surfaces is usually conducted with multiple sensors 
and requires the combination of different data processing techniques such as registration, data 

fusion and fitting.  

Form errors evaluation is the main concern in terms of the performance of aspheric and 
freeform optical elements, so it is of great importance to assess the form deviations during the 
design and manufacturing. The assessed form deviations should always conform to tolerance 
specifications. One quality indicator of the form deviation is the Peak to Valley (PV). The least 
value of PV is referred as the Minimum Zone (MZ). However, the minimum zone evaluation can be 
affected by the measurement noise.  

1.1 Related Work 

Registration is essentially conducted in two steps [3] namely coarse and fine registrations. The 
coarse registration roughly aligns the two data sets from a global view. The resulting alignment is 
consequently optimized in the fine registration step to minimize a quadratic error. 

In dimensional metrology, there is no standard coarse registration technique. As a promising 
method for coarse registration, Hough Transform (HT) was first attempted by [4] where only 
translations of the target object were considered. More recently, [5] extended the HT approach by 
including rotations and scale changes for the detection of non-parametric curves. The main 
concern of the HT algorithm is its complexity, which proportionally increases with the data volume 
since HT is based on an exhaustive search.  

Fine registration refers to the set of techniques that obtain the Euclidean rigid motion between 

two or more data sets through iterative minimization. The commonly used fine registration 

methods are Iterative Closest Point (ICP) algorithm and its variants [6], which have been largely 
investigated regarding improvements in their speed, convergence and robustness. A classification 
and comparison of ICP variants is described in [7]. ICP algorithms operate in two steps: search for 
correspondences between points and computation of the Motion R (Rotation) and T (Translation). 
The main drawback of these techniques is the necessity to specify an initial guess to start the 

process which is expected to be quite close to the solution to guarantee the convergence. Hence, a 
good initial estimate of the transformation is required from the coarse registration.  

For decades, considerable research attention has been paid to the fundamental problem of 
fitting models to a number of observations [8]. The evaluation of geometric deviations in 
coordinate metrology involves a minimization step in which a substitute surface should be fitted to 
the measured points. The choice of objective function and distance measure, which is used in 
fitting the substitute surface, has an effect on the estimation accuracy of geometric deviations to a 

certain extent. One of the most popular methods for smoothing random errors is to use the Lp-

norms. Similarly, in coordinate metrology, the error objective function is defined by the Lp fitting 
norm. Three well-known types of Lp norms exist in literature, which could be applied for fitting 

purposes, namely L1-norm, L2-norm and L-norm. L2-norm is very popular and received a lot of 
interest by industry for its ease of implementation while overestimating form errors assessment. 

L-norm enables the computation of the least value PV and is recommended by actual ISO 
standards. However, the algorithmic issues are challenging in the context of freeform surfaces and 
large data sets. 

Multi-sensor data fusion in dimensional metrology can be defined as the process of combining 
data from several information sources (sensors) into a common representational format in order 

that the metrological evaluation can benefit from all available sensor information and data [9-11]. 
There are various algorithms for data fusion. In this paper, we consider the most commonly used 
data fusion algorithms concerning dimensional metrology, namely the weighted least squares 
method, edge intensity method, Gaussian process model and Multilevel B-spline approximation. 
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Weighted least squares fusion is a fusion method based on parametric linear fitting of source 
surface data [12]. Forbes [13] developed a weighted least squares data fusion method based on 
Bayesian analysis of the measurement system. Ren et al. [14] developed a weighted least squares 
method for multi-sensor data fusion. Wang et al. [15] analyzed four types of weighted data fusion 

methods: least squares, pixel-levels, parametrical and non-parametrical methods. The advantage 
of weighted least squares fusion is its high computation speed. The difficulty lies in that it requires 
a good measurement model for accurate approximation of the source surface. Since weighted least 
squares fusion method relies on the fitting of source surface data, it is not applicable for complex 
geometries whose fitting solutions are not available or accurate.  

Edge intensity data fusion method [16-17] involves decomposition of datasets into different 
regimes and fusion is carried out in each regime. Inverse transformation is performed on the fused 

datasets to obtain the final dataset. Ramasamy [18] proposed a Multi-Scale Data Fusion (MSDF) 

framework for surface metrology datasets. Coarse registration and fine registration are performed 
to align the datasets into the same coordinate system. Then the datasets are decomposed into 
three regimes which are form, waviness and roughness. In this way, data fusion is carried out on 
individual regimes based on the regional edge intensity method. Based on Ramasamy’s work, Liu 
et al. [19] and Ren et al. [20] developed a multi-sensor data fusion method using Gaussian zero-

order regression filter for decomposition and edge intensity method for fusion. 

Gaussian process approximation is a non-parametric fitting method. Qian et al. [21] built a 
surrogate model based on Gaussian process model and adjusted it to a more accurate model using 
experimental results obtained from simulations. Later, this work was extended to the Bayesian 
hierarchical Gaussian process model for integration of low-accuracy and high-accuracy 
experiments. Xia et al. [22] built a Gaussian process model to assess the form errors using 
coordinate measurements. Later, using the similar method in Reference [23], Xia [24] developed a 

Bayesian hierarchical model which combines misaligned metrology data of two different resolutions 

to evaluate their geometrical quality. Colosimo et al. [25] proposed a two-stage Multi-sensor Data 
Fusion model (MsDF) using Gaussian process models for dimensional and geometric verification. 

Despite the various research in this domain, a generic and global approach in multi-sensor 
metrology combining registration, data fusion and fitting has not been developed so far, in 
particular in the context of aspherical and freeform optics.  

1.2 Proposed Method 

The work presented in this paper aims to propose a novel framework for form error assessment in 
multi sensor dimensional metrology. A generic and global approach in multi-sensor metrology 
combining registration, data fusion and fitting is proposed for aspherical and freeform optics.  

Driven by a curvature-based approach, the registration of data sets obtained from different 

sensors is conducted through a developed coarse and fine registration method. In order to improve 

the accuracy of the form error assessment for freeform surfaces, a data fusion-based method is 
proposed in this paper. 

A Gaussian Process (GP) model is built based on each of the transformed data sets, followed 
by the maximum likelihood data fusion. The fused result has improved characteristics and reduced 
uncertainty than either of the measurement data sets. Finally, a fitting algorithm is applied on the 
fused data for assessment of the minimum zone. The general workflow of the proposed method is 

illustrated in Fig.1, from which it can be seen that registration, data fusion and fitting are the key 
methods.  

 
In the following, research outcomes regarding the workflow process steps will be detailed and 
conclusions will be drawn. To demonstrate the feasibility of the proposed method, simulation data 
and measurement data of aspheric optics are used and evaluated through case studies. 

The remainder of this paper is organized as follows: Section 2 presents the curvature-based 
registration method. In Section 3, the fitting method is explained for form error assessment. 
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Section 4 discusses the data fusion method integrating Gaussian Process models and maximum 
likelihood estimation. The proposed method is further tested on simulated data in Section 5. In 
Section 6, with a designed artefact, experimental validation is conducted based on measurement 
data and the results are discussed. Section 7 draws the conclusions. 

Figure 1: Illustration of the proposed method.  

2 CURVATURE-BASED REGISTRATION 

The registration process aims to determine the best alignment of two data types, Model data, (Q, 
the fixed set) and Scene data (P, the moving set) while combining them into the same coordinate 
system. In coarse registration, two measurement data sets in different coordinate systems are 
initially aligned in the same coordinate system. Then in fine registration, the matching vertex pairs 

in the two data sets are identified and the final registration parameters are obtained by minimizing 
the overall distance between these vertex pairs. In order to improve the efficiency and accuracy, 
curvature is used instead of the Euclidean distance to match vertices in both coarse registration 
and fine registration. The curvature-based registration is illustrated in Fig. 2. 

 

Figure 2: Curvature-based registration. 
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2.1 Curvature Definition and Calculation 

Curvature is an important attribute that measures the shape of a surface. For a continuous smooth 

surface, the curvature is defined as the bending degree of a surface. Given a point Pi on the 

surface, for each unit direction t  on its tangent plane, its normal curvature is defined as the 

curvature of the intersection curve of the surface and the perpendicular plane containing t and the 

normal direction of Pi. For discrete geometry, the curvature is calculated by the neighboring points. 
There are mainly three classes of discrete curvature approximation methods: one may 
approximate a local quadric surface on a given vertex to the meshes and then compute the 
derivatives to obtain the curvatures [26]; one may discretize the mathematical formulae of a 
smooth surface and extend it to discrete domains [27]; one may use the tensor based techniques 
for discrete curvature estimation [28] [29]. Thus, the last method is selected and applied here. 

An additional weight coefficient
e
 has been introduced into the shape operator proposed by 

Cohen-Steiner and Morvan for discrete curvature estimation. The new shape operator H for a local 

region B around a vertex P becomes: 

( ) ( ) ( )
1

e

e E

e length e B e e
A

 


=    H                                            (2.1) 

( ) ( )( )
( ) ( )( )

1

1

cos ,

cos ,
e

e



−

−



=


E

n p n e

n p n e

                                                         (2.2) 

where, e  is the edge of a triangle, e  is a unit vector of e , ( )n e  is the is the edge normal of the 

edge e , which is equal to the average normal vectors of the two triangles incident to the edge. 

( )e  is the dihedral angle between the two normal vectors of the triangle incident with e , ( )n p  is 

the normal of vertex P , B is the local region around vertex P , A is the area of B , E is the 

collection of all the mesh edges in B . The symbols and notations are described in the following 

figure (Fig.3). 

 

B

P
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2n
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e
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( )n p

( )n e

 
Figure 3: Tensor-based curvature estimation. 

 
Two curvature attributes, shape index and curvedness, are used to describe the shape of a 
surface. The shape index (s) and curvedness (c) contain the local shape information equivalent to 

the pair of maximum and minimum curvatures or the pair of mean curvature and Gaussian 
curvature. Shape index specifies the shape type while curvedness specifies the size. They are both 

calculated based on the maximum principal curvature
1

K and the minimum principal curvature
2

K , 

denoted as: 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(2), 2021, 309-327 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

314 

1 2
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arctan
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 +−
=  
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                                                         (2.3) 

    
( )2 2

1 2

2

K K
c

+
=                                                                   (2.4) 

The local shapes to which a vertex belongs are classified into 10 types and visualized in specific 
colors, as shown in Table 1. Nine fundamental shape types can be identified according to the 
different intervals that the shape index falls in. The planar shape is identified when the curvedness 

is smaller than a given threshold pC  ( pC is a small value, e.g., pC = 1x10-5). 

 

Shape Type Identification Shape type 
label 

Color 

Spherical cup [ 1, 7 / 8)s − −  -4 Green 

Trough [ 7 /8, 5 /8)s − −  -3 Cyan 

Rut [ 5 / 8, 3/ 8)s − −  -2 Blue 

Saddle rut [ 3/8, 1/8)s − −  -1 Pale blue 

Saddle [ 1/8, 1/8)s − +  0 White 

Saddle ridge [ 1/8, 3/8)s + +  1 Pale yellow 

Ridge [ 3/ 8, 5 / 8)s + +  2 Yellow 

Dome [ 5 /8, 7 /8)s + +  3 Orange 

Spherical cap [ 7 / 8, 1]s + +  4 Red 

Plane 
pc c  5 Black 

 
Table 1: Shape types. 

2.2 Coarse Registration Using Curvature-Based Hough Transformation Method 

Since Hough transformation is based on an exhaustive search, the computational complexity 

increases with the data volume. Therefore, curvature is used for matching to reduce the number of 

iterations in the searching process.  
 
For a pair of data sets to be registered: scene data P and model data Q , the local frames 

( , )
i j

V V  should be built for all the vertices at first using the Eigen vectors obtained by eigen 

decomposition of the shape operator H . Then the possible transformation parameters for all the 

matching pairs between each vertex ip in P and iq in Q are calculated based on the local frames: 

T

i j j iR V V→ =   and i j j i j iT p R p→ →= −                                                  (2.5) 

All the obtained transformation parameters are stored in the Hough table (HT) in ascending order 

according to the number of occurrences of each parameter. The best matching is achieved when 
the similarity between transformation parameters is sufficiently high: 
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( ) ( )( ), ,i j i j mHT
dist R T R T → → −                                                     (2.6) 

where m is the residual less than 10-2. 

In the classic Hough transformation, all the local transformation parameters between each 

vertex ip in P and iq in Q need to be calculated, which leads to considerable computational cost. In 

order to improve the efficiency, curvature parameters are introduced to evaluate the degree of 
matching between the vertices first. The shape index and curvedness of all the vertices in both P  

and Q are calculated and the shape types of all the vertices can be identified. The vertices with the 

same shape types are matched initially and the transformation operations are only executed 
between these initially matching vertex pairs. In this way, the computational cost is decreased. 

2.3 Fine Registration Using Curvature-Based ICP Method 

The data sets are initially aligned in the same coordinate system and then fine registration is 
applied to all the vertices to determine the final registration parameters by minimizing the distance 

between two data sets. ICP is a common method used for registration, which mainly consists of 
two steps: matching and optimization.  

The classical ICP method matches vertices according to their Euclidean distance. In this paper, 

a more comprehensive matching indicator md combining both Euclidean distance ed and curvature 

distance cd is used, which is calculated as: 

 

                                               ( ) ( ) *, 1 ,m i i e cd p q d kd k  += + −                                       (2.7)  

                                                 ( ) ( )
2 2

1 1 2 2i i i ic p q p qd    = − + −                                          (2.8) 

                                                                      
e i id p q= −                                                           (2.9) 

1

1

1

K
 = , 

2

2

1

K
 = ,  0,1  , 

where k  is a constant to normalize cd . 

After matching the vertices, the transformation parameters ( ),R T are calculated by solving a least 

square optimization problem. The objective function is defined with the combination of point-to-
point (P-P) and point-to-plane (P-Pl) criteria and is formulated as: 
 

                            ( ) ( )( )
2

2

,
1

, min
N

T

i i i i i i i i
R T

i

R T w Rp T q Rp T q n 


=

 
= + − + + −

  
            (2.10) 

 

where wi is a weight indicating the reliable matching and its value is close to one. I  and i are set 
according to the shape type of each vertex as shown in Table 2. 
 

Shape type label -4 -3 -2 -1 0 1 2 3 4 5 

i  0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

i  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 

Table 2: The values of parameters I  and i 
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3 FITING 

After registration, the two measured data sets are transformed into the same coordinate system. 
Hence, fitting the data to the nominal shape is a crucial step in assessing the form error of the 
manufactured part.  

Form error determination indicates the conformance of the manufactured shape to design 
tolerance specifications. For this purpose, a variability function must be defined. Among others, 
the Peak to Valley (PV), defined as the difference between maximum and minimum form 

deviations, is considered. The form deviation associated to the measured point iP is its Euclidean 

distance to the nominal shape (Fig. 4).  

Reference surface

Measured data

di

Pi

Qi

Pi

Q
i

d
i

: A measured point

: Corresponding orthogonal projection

: Corresponding form deviation

 

 

Figure 4: Definition of form deviations. 

 

The fitting procedure also requires the selection of an appropriate fitting criterion, where Least 
Squares and Chebyshev fitting are the most widely used. Each of these problems results in an 
optimisation problem with different mathematical properties. The PV returned by the Chebyshev 
fitting is the closest to the true value. However, this results in the optimization of a non-smooth 

objective function which is more difficult than LS fitting. The MZ fitting problem could be 

formulated as follows: Given a set of m measured data points 1{ } ii mP    and their corresponding 

orthogonal projections 1{ } ii mQ   onto a surface described using an implicit equation ( ),f q s=  with 

( , , )q x y z= as the coordinates of a given point on the surface and s as the surface’ shape 

parameters. We aim at solving the problem given in (3.1). 

 

 
1

min ( ), ( ) max ( )i
x i m

x x f x 
 

=                                              (3.1) 

 

( )if x denotes the Euclidean distance between the point Pi and its corresponding orthogonal 

projection Qi. 
nx could be either the set of intrinsic shape parameters s or the motion 

parameters m : rotation and translation applied to { }iP . 

This problem has been extensively investigated for simple geometries such as straightness, 

flatness, roundness and cylindricity [30], [31-32]. Nevertheless, this problem is still a relevant 
challenge for the case of freeform surfaces. Only few works were carried on in this area [33-34]. 

In this work, the evaluation of the MZ value is conducted by means of an algorithm named the 
Hybrid Trust Region (HTR) algorithm [35]. This method consists of iteratively approximating the 
objective function given in (3.1) through quadratic programming and then using either trust region 

step, line search step or curve search step according to the actual situation at each iteration. In 
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this way, we avoid the repetitive resolution of the trust region problem. The numerical uncertainty 
associated to this problem on the returned minimum zone value is estimated as 10-15mm. 

4 DATA FUSION BASED ON GAUSSIAN PROCESS MODELING AND MAXIMUM 
LIKELIHOOD 

After fitting, form deviations of the two data sets are obtained, on which data fusion is conducted 
in two steps. Both datasets contain the actual form deviations and the measurement noise, and 
their noise scale may also be different. The fusion process aims to effectively identify the actual 
form errors with reduced uncertainty and finally achieve a more reliable estimation of the 
minimum zone that is less sensitive to the noise. In the first step, the Gaussian process model with 
mean and uncertainty is built based on measured deviations of each transformed data set. Then 

the fused mean and uncertainty are estimated according to the maximum likelihood principle in 

the second step. 

4.1 Gaussian Process Modeling of Measurement Data 

Gaussian process has been proven to be an effective method to model the local random surface 
variation that exhibits the spatial distribution similarity [36]. The measurement data is the point 

cloud composed of vertices represented by their coordinates ( )
1, ,

, ,i i i i n
x y z

=
and can be treated as 

the superposition of the true manufactured shape and the measurement error. The deviations of 

the measurement data from the nominal part shape can be extracted and represented in function 
form as: 

( ),z f x y  = +                                                            (4.1) 

where z  is the measured deviations in Z-axis direction, ( ),f x y  is the true form deviations in Z-

axis direction, ( ),x y  is the input coordinate vector considered as the measured location,   is the 

measurement error and it can be represented as an independent and identically distributed random 
variable at each location following a standard Gaussian distribution with zero mean and variance 

2 .  

The true value ( ),f x y  is unknown and the Gaussian process is used to estimate the ( ),f x y  

and its uncertainty as: 

( ) ( ) ( )( ), , , ( , ),( ', ')f x y GP m x y k x y x y                                   (4.2) 

 

where ( ),m x y  is the mean function at location ( ),x y  and ( )( , ), ( ', ')k x y x y  is the covariance 

function evaluated at location ( ),x y  and ( ', ')x y . They can be calculated as (11) and (12), in 

which ( )E  denotes the expectation operator. 

 

( )  , ( , )m x y E f x y=                                                      (4.3) 

 

( )( , ),( ', ') [( ( , ) ( , ))( ( ', ') ( ', '))]k x y x y E f x y m x y f x y m x y= − −                   (4.4) 

 

Once the Gaussian process model is built, any prediction pf  at new location ( ),p px y  can be 

obtained by the joint distribution of the measured value in Z-axis direction and the function value 

at the prediction locations. The prediction equation is  
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( ) ( )( ), , , ( , ) , covp p p pp
f X Y z X Y N f f                               (4.5) 

where  

( ) ( ) ( ) ( )( ) ( ) ( )( )
1

2, , , , , , , , , ,p p p p ppf E f X Y z X Y K X Y X Y K X Y X Y I z
−

   = = +    

 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1

2cov , , , , , , , , , , , ,p p p p p p p p pf K X Y X Y K X Y X Y K X Y X Y I K X Y X Y
−

 = − +   

 

( )E  and ( , )K    share the same definition as in (4.3) and (4.4), ( , )X Y  is the matrix of the 

measured locations, ( , )p pX Y is the matrix of locations at which the values are to be predicted, 
2  

is the measurement error variance and I is the identity matrix. 

4.2 Data Fusion by Maximum Likelihood 

By building the Gaussian process model for the two measured deviation datasets, we can estimate 
the mean and the uncertainty of any vertex in the point cloud. Considering two measurement 

datasets, we can evaluate the means and the uncertainties as 1m , 2m  and 1u , 2u , for the two 

datasets, respectively. Since the measurement noise is in Gaussian distribution, then the 

probability of both the two measurements getting result m  can be calculated as  

( )
( )

2
1

2
122

1 1

1

1
,

2

m m

u
p m m u e

u 

−
−

=                                          (4.6) 

( )
( )
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Then the likelihood of both two measurements getting m  at specific position is 
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The corresponding natural logarithm is 

( )( ) ( ) ( )
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               (4.9) 

 
Based on the maximum likelihood principle, we can obtain the best estimation of m  by maximizing 

(4.9). Therefore, we calculate the partial derivative of (4.9) to m  as 
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       (4.10) 

 

By solving (4.10), we can obtain the best estimated value  
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If we define two weights 1  and  2  as 1 2

1

1

u
 =  and 2 2

2

1

u
 =  

 

Then (4.11) can be written as  
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The uncertainty of m  can be calculated according to the uncertainty propagation principle as: 

 

2 2

1 2
1 2

1 2 1 2 1 2

1
u u u

 

     
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                               (21) 

 
It can be seen that the uncertainty after maximum likelihood fusion is smaller than any of two 
measurement datasets. 

5 TESTING ON SIMULATED DATA 

The simulation is conducted on an aspheric optical part whose shape is generated with certain 
control parameters. The mathematical form of an aspherical shape is defined following the 
equation specified in ISO 1110-12: 

( )

2
4 6 8

4 6 8
2 2

( ) ...
1 1 (1+ ) /

r
z r r r r

R r R
  


= + + + +

+ −
            (5.1) 

 

where ( )z r  is the sag at distance 
2 2r x y= +  from the central axis, i  are coefficients that 

measure the surface deviation from the axially symmetric quadric surface defined by R  and  . A 

set of 5025 grid points are sampled in the 2D space and their coordinates ( , )x y  are used to 

calculate the values of r . Hence, the nominal shape of the part is generated by setting the 

parameters as:  

R= 9.1276 10+10
, 1 = − , a4 = 1.2783 10-5, 

a6 = 7.9222 10-10
, a8 = -1.8598 10-11

, a10 = -1.8598 10-15 

 
The actual form deviations are generated following a predefined mathematical equation given 

as: ( , ) cos(0.0025 ) cos(0.0025 )f x y x y= + . Figure 5 illustrates the generated nominal part surface 

as well as the simulated form deviations.  

To account for the measurement errors, noise is added to the simulated form deviations, as 
shown in Figure 5(b). To emphasize the discrepancies between the two measurement datasets, 
their noise scales are specified differently. The noise is generated with zero-mean Gaussian 

distribution ( ) 2, (0, )x y N    at ( , )x y  locations. 
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Figure 5: The nominal surface and form deviations of the simulated part. 
 

For one dataset, the noise is generated at ~500 points randomly sampled from the 5000 points 

with 
1 0.0002mm = . This dataset is intended to imitate data collected from a tactile probe, which 

has better accuracy but with a number of sample points which is comparatively lower. For the other 

dataset, the noise is generated for all the 5000 points with 2 0.002mm = , imitating data from a 

scanning device which has lower accuracy. The resulting distribution of coupled form deviations 
and measurement errors of both datasets can be visualized in Figure 6(a) and (b). 

The Gaussian Process model of both datasets are derived based on the simulated datasets 

( , , )x y z , where ( ) ( ), ,z f x y x y = + denotes the simulated form deviations superposed with 

the generated noise. The GP models are further used to make predictions on all the data points. 

Figure 7 shows the mean prediction and prediction interval of the GP model for measurement data 
1. It can be seen that the mean prediction reaches a close fitting to the real form deviations after 
training with the noisy data, and the 95% prediction interval almost fully encloses the noise, 
indicating the accurate capture of the uncertainty. The average range of the prediction interval is 

1 0.0 mm078 = . Similarly, the results of measurement data 2 are illustrated in Figure 8. With a 

subset of only 10% of the training data points as used in measurement data 1, the GP model 

realizes an accurate prediction on all the other points. Since the noise scale used for this dataset is 
smaller, the prediction interval is narrower compared with dataset 1, reaching an average range of 

4

2 9.113 m10= m − . 

Data fusion is then conducted based on the mean and variance predicted by the two GP 
models at each point. The mean prediction and prediction interval of the fused model is shown in 

Figure 9. After data fusion, the average range of the interval falls to 47.312510fuse mm −= , which 

is smaller than both 1  and 2 before fusion. It can be concluded that, through GP modeling, the 

actual form deviations can be captured among the measurement noise, even with a small number 
of sample points. Through data fusion, the uncertainty of both GP models, as interpreted by the 
range of prediction interval, is reduced, which facilitates filtering out the noise in data and the 
robust assessment of the form deviations.  
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Figure 6: Form deviation and generated noise for two simulated measurement datasets. 
 

 

 
 

Figure 7: Mean prediction and prediction interval of the GP model for measurement data 1. 
 

 
 

Figure 8: Mean prediction and prediction interval of the GP model for measurement data 2. 
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Figure 9: Mean prediction and prediction interval of the data fusion model. 

6 TESTING ON MEASURED DATA 

The proposed data fusion method is then tested on two measurement datasets obtained by the 

mean of the measurement of a manufactured aspherical part described using the ISO10110-12 
formulation. The nominal shape coefficients are given as follow: R=31.075, k=-0.744, a4=4.36 
x10-7, a6=-2.27 x10-10, a8=-1.70 x10-13, a10=-3.68 x10-17, a12=8.94 x10-22 , a14=1.85 x10-23 
and A16=-6.27 x10-27 . Measurements were conducted using LuphoScan 260 HD (measurement 1) 

and MarForm MFU 200 Aspheric 3D (measurement II). Measurement data 1 contains a total 
number of 612 points measured from the surface, while the point density in measurement data 2 
is much higher, resulting in 73228 points. In the first step, curvature-based registration is 

conducted to transform both datasets into a common coordinate system. The transformed datasets 
are illustrated in Figure 10. Based on the known nominal shape of the artefact, the deviations of 

measurement data are obtained through the fitting approach and denoted as (x,y, z) . The 
obtained deviations comprise both the actual form deviations and noise introduced due to 
measurement errors, as shown in Figure 11. The objective is to use the GP model and data fusion 
to have an accurate estimation of the actual form deviations with reduced uncertainty, which can 
be further used to derive the optimized assessment of minimum zone for this free-form artefact. 

The GP models of both deviation datasets are trained with (x,y) as input variables and z as 
the response variable. The mean prediction and 95% prediction interval of the trained GP models 
are illustrated with respect to the training data in Figure 12 and Figure 13 respectively. Note that 

the 95% prediction interval is considered as a zone that encloses most of the measured data 
points. The minimum zone can be derived by evaluating the largest absolute deviation of the 
prediction interval from the mean prediction and offsetting the mean prediction along the positive 
and negative Z direction with this value. According to this definition, the minimum zone is  MZ1 = 
3.68622 10-5 mm and MZ2 = 4.7277 10-5 mm for measurement data 1 and 2 respectively. 
Performing data fusion based on the GP models, a final estimation of the form deviations and the 
minimum zone can be achieved. Figure 14(a) shows the estimation result compared with the 

measured deviation datasets. The fused model enables to identify a more realistic distribution of 
the form deviations on the surface among the two noisy data. Moreover, from the uncertainty 
interval illustrated in Figure 14(b), the minimum zone of the fused model is derived as MZfuse = 
2.1079 10-5 mm, which is significantly reduced compared with those derived from the single GP 
models before fusion. Therefore, the effectiveness of the data fusion method in form deviation and 
minimum zone assessment is justified. 
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Figure 10: Measurement datasets after registration. 

 
 

Figure 11: Deviations extracted from the registered measurement data. 
 

 
 

Figure 12: GP modeling result for measured deviation data 1. 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(2), 2021, 309-327 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 
 

324 

 
 

Figure 13: GP modeling result for measured deviation data 2. 

 
 

Figure 14: Data fusion result. 

7 CONCLUSION 

Aspheric optical elements have many advantages compared to regular spherical lenses. However, 
those advantages are closely linked to their geometry quality in term of form deviation. Thus, an 
accurate measurement of the form deviation of aspheric and freeform optic parts is highly required. 
Furthermore, it must be taken into account that the measurement of aspheric and free form optic 
parts generally requires the use of multiple sensors. So one can collect several clouds of points 

with various characteristics. As a consequence, data processing is a major source of potential error 
in the process of measurement. Data processing becomes more complex and a crucial step to the 
assessment of the form deviation. 

A review of literature shows that multi-sensor data fusion has been investigated nevertheless 
most of the developed methods and algorithms failed when they are applied to aspherical and 
freeform optics. Thus, in this paper we have introduced a generic and global approach for data 
treatment of multi-sensor metrology combining three steps: registration, fitting and data fusion. 

Furthermore, the developed method takes into account the specific characteristics of aspherical 
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surface. The novel framework introduced is based on the Peak to Valley quality indicator for the 
form deviation assessment and start with a registration step based on curvature computation. 
Then we have introduced a min-max fitting method for form error assessment and finally a data 
fusion method integrating Gaussian Process models and maximum likelihood estimation. The 

feasibility of the developed framework was demonstrated through simulation data and also real 
measurement data of a designed artefact. 
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