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Abstract. Topological changes are common in problems where interfaces evolve with time,
such as solidi�cation, void nucleation or shape optimisation. If the evolving boundaries are
represented explicitly, then modeling topological changes such as due to coalescence of two
phases requires detection of collision between the two phases as well as computing the inter-
sections of their boundaries. These are challenging operations for arbitrarily shaped interfaces.
Thus, implicit representations of the boundary provided by the phase �eld or level set methods
are often used to accommodate large topological changes. Such implicit representations also
implicitize physically relevant geometrical parameters such as normals and curvatures and
recover the exact interface geometry only in the limit of mesh re�nement. In this paper, an
explicit boundary tracking method is introduced which allows topological changes such as co-
alescence without requiring collision detection and intersection computations. The interface
representation is used to generate signed algebraic level sets during analysis, and topological
changes are translated into Boolean compositions on these level sets using R-functions. This
allows easy evolution of the interface while retaining its geometric representation exact to
its spline model. The developed procedure is used to study the evolution and coalescence of
voids in a metal line carrying current. Since non-iterative, algebraic methods are used, the
procedure is both stable and computationally e�cient.

Keywords: Distance Fields, Algebraic Level Sets, Boolean Compositions, CAE, Isogeometric
Analysis
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1 INTRODUCTION

Moving boundaries refer to a large class of problems where the boundaries evolve with time, such as solidi�-
cation, void formation, fracture or shape optimisation. Topological changes to geometry may arise naturally
driven by the governing physics, or may be used as a means to design components with lower mass or higher
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performance. For example, during nucleation and growth of a void due to high current density in a line (referred
as electromigration) topological changes such as void coalescence and separation are common. If the evolving
interface in such problems is represented explicitly e.g. using parametric splines, handling topological changes
becomes challenging, requiring contact detection and computing surface-surface intersections. For example,
if two voids are at the onset of coalescence, one needs to �rst detect when the associated closed geometries
come in contact. As the voids coalesce, the merged geometries need to be described. This generally involves
computing the surface-surface intersection of the two voids. Common strategies for contact detection and
intersection computation include subdivision, marching, lattice evaluation and implicitisation [13]. Performing
such operations at every time step becomes computationally expensive. Consequently, such phenomena are
generally modeled using an implicit representations of the phase interface, most commonly using the phase-
�eld or level set methods. In these methods, a state variable such as the phase �eld variable or the level
set parameter with a corresponding evolution equation is introduced. The evolution of the phase interface is
then described by the evolution of this state variable. While this implicit representation of phase boundaries
naturally allows arbitrary topological changes, it comes at the cost of not having an explicit representation
for the interface. This lack of explicit interface geometry is signi�cant for phase evolution phenomena which
depend on the curvature of, and the normal to the interface at a point. Additionally, the evolution equations
either require stabilisation or are high order partial di�erential equations, resulting in prohibitive computational
cost. In order to overcome the di�culty in the evolution of the interface as well as to retain its accuracy to
its parametric spline geometric model, an explicit boundary tracking method that allows arbitrary topological
changes is described in this paper.

In the present paper, the phase interface is explicitly described by a parametric spline representation,
and its in�uence on the underlying domain is captured through an enrichment to the �eld approximation
de�ned over the domain. The construction of behavioral approximations isoparametric with parametric spline
geometric models was proposed early by the corresponding author among others [4, 12, 15, 18]. The use of
such approximations for analysis is at present popularly referred as Isogeometric Analysis (IGA, [11]). The
building of enriched approximations proposed by the corresponding author and co-workers [21] is referred as
Enriched Isogeometric Analysis or EIGA. The in�uence of any enrichment, behavioral or otherwise, is generally
expected to decrease with distance (see for instance heterogeneous material modeling using distance �elds, [3]).
Thus, behavioral enrichments require a measure of distance from the interface. Conventionally, such distance
estimates from parametric geometries are obtained using the iterative Newton-Raphson technique [7, 14, 17].
However, numerical iterations are expensive and are often not su�ciently smooth for analysis purposes. A
simpler approach to estimating the distance from a parametric geometry is to replace the geometry with a
polytope approximation. Since distance from the planar segment can be easily computed, the distance from
the geometry can be obtained easily as the least of such distances. The process can be handled through use of
e�cient data structures [10, 16]. However, the distance thus obtained is not smooth at the vertices and edges
of the polytope approximation. This can be overcome by using R-functions to combine distance �elds from
individual segments into a single, smooth distance �eld for the parametric geometry [2]. Nevertheless, these
methods lose the geometric exactness of the phase interface and are accurate only in the limit of re�nement.

In this paper, signed algebraic level sets of the interface are generated using implicitisation of its parametric
representation employing the resultant theory [19, 23]. These level sets act as a smooth surrogate for distance
and can hence be used to model the weakening in�uence of the enrichment. They are exact in the neigh-
bourhood of the curve or surface and thus preserve geometric accuracy. Since they are generated through a
non-iterative algebraic process, they are also numerically e�cient. Furthermore, for closed geometries, these
algebraic level sets are signed, in that they classify points as lying inside or outside the closed geometry [24].
This helps determine the phase at a given point in space during analysis. Since analysis is based on algebraic
level sets instead of the explicit parametric representation of the interface, topological changes in the phases
can be modeled through algebraic Boolean operations on these level sets using R-functions [20, 24]. The
usage of R-functions ensures that the resultant �eld retains the smoothness and geometric accuracy of the
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individual �elds. Implicit surface representation has been used for modeling in haptics [9], quadric surface
�tting [1] and in �lling holes in polygonal meshes [25]. Prior work using algebraic Boolean operations using
R-functions for analysis also exist in the literature. In [6, 26], Boolean operations were used during topology
optimization to combine free-form geometries with embedded regular-shaped primitives. In general, algebraic
Boolean compositions of complex free form parametric geometries do not appear to exist except for that
in [24]; they carried out Boolean operations on algebraic level sets constructed on complex parametric CAD
geometry. These were then used for static thermal and mechanical analysis.

In the present paper, Boolean compositions on algebraic level sets are used to study void coalescence in a
metal line subjected to high current density. When very thin lines carry current in Integrated Circuits (ICs),
large electric �elds develop. Under such electric �elds, electrons carry su�cient momentum to impart large
forces to the metal ions in the line, thereby displacing them. This leads to formation of voids near the cathode
and accumulation of material (called `hillocks') near the anode. This phenomenon is called electromigration.
As current continues to pass through the line, the developed voids evolve and grow until an open circuit failure
eventually results. During evolution, these voids can undergo drastic topological changes such as splitting
or coalescence with other voids, making this problem appropriate for application of the developed procedure.
Thus, in this paper, this evolution of voids under an electric �eld is studied, and coalescence of multiple
interacting voids is used to demonstrate the ability to handle topological changes.

This paper is organized as follows. First, implicitisation of parametric surfaces using the Dixon resultant is
discussed in § 2. The resultant is used in § 3 to generate signed algebraic level sets. These level sets act as a
surrogate of distance for parametric geometries since they increase monotonically with distance. The Enriched
Isogeometric Analysis (EIGA) procedure for electromigration is described in § 4, which uses a distance-based
weighted blending of a continuous approximation, and an enrichment representing the in�uence of a void.
The signed algebraic level sets generated in § 3 are used as a measure of distance for this weighted blending.
This approach however does not handle topological changes such as void coalescence when there are multiple,
interacting voids. A discussion on the handling of such topological changes using Boolean compositions of
algebraic level sets is provided in § 5. The paper concludes with examples of electromigration driven void
evolution with multiple interacting voids.

2 IMPLICITIZATION USING THE DIXON RESULTANT

Curves and surfaces can be expressed with an implicit or a parametric representation. Most CAD systems use
the parametric Non-Uniform Rational B-Splines (NURBS) representation, which provides a more general as
well as intuitive control of the geometry for users. On the other hand, the implicit representation of a surface
allows natural generation of level sets that increase monotonically with distance and hence are convenient for
analysis. For instance, for a unit sphere centered at the origin, the implicit function f(x) = x2 + y2 + z2 − 1
generates level sets that are zero on the surface of the sphere but increase monotonically in magnitude as we
move away from it. It is hence desirable to obtain the equivalent implicit representation for a given parametric
curve or surface for use in analysis as discussed in § 1. One possible approach to achieving this is through the
Resultant theory.

Resultants are polynomial expressions on the coe�cients of a given system of polynomial equations. A
given system of equations has a common solution only if its resultant vanishes. For example, for a linear
system Ax = 0, the determinant of the coe�cient matrix, |A|, can serve as a resultant; it depends only on
the coe�cients of the system, and the system has a non-trivial solution only if the determinant vanishes. One
commonly used resultant is the Dixon resultant [8]. This is an n-dimensional generalisation of the Cayley-
Bezout resultant [5] developed for a system of two uni-variate polynomial equations. In this paper, the Dixon
resultant is used to implicitise parametric geometries by treating the parametric representation as a polynomial
system of equations [19]. A procedure to compute the Dixon resultant shall be discussed presently. While the
procedure described is for three-dimensional surfaces, it can be readily adapted for planar curves.
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Rational parametric representations such as Bézier and NURBS have the general form,

x(u, v) =
X(u, v)

W (u, v)
, y(u, v) =

Y (u, v)

W (u, v)
, z(u, v) =

Z(u, v)

W (u, v)
(1)

where, X,Y, Z,W are functions in the parameters (u, v), with degree m in u and n in v. Such representations
can be converted into a polynomial system of equations,

xW (u, v)−X(u, v) = 0

yW (u, v)− Y (u, v) = 0

zW (u, v)− Z(u, v) = 0

(2)

The Dixon resultant is now developed for this polynomial system. De�ne, for some real constants α, β,

δ(x) =
1

(u− α)(v − β)

∣∣∣∣∣∣∣∣
xW (u, v)−X(u, v) yW (u, v)− Y (u, v) zW (u, v)− Z(u, v)

xW (u, β)−X(u, β) yW (u, β)− Y (u, β) zW (u, β)− Z(u, β)

xW (α, β)−X(α, β) yW (α, β)− Y (α, β) zW (α, β)− Z(α, β)

∣∣∣∣∣∣∣∣
Since the determinant is zero whenever u = α or v = β, (u− α) and (v − β) are factors of the determinant
and have hence been factored out. From Eq. (2), for points on the surface, the �rst-row entries are zero, and
the determinant is zero irrespective of α, β. Hence all points on the surface satisfy,

δ(x) = 0 ∀ α, β ∈ R (3)

Now, the quantity δ depends on α, β and u, v, and can be expanded to separate these factors as,

δ(x) =
[
1 α α2 · · · αm−1β2n−1

]
[MD(x)]

[
1 u u2 . . . u2m−1vn−1

]T
= [α][MD(x)][u] (4)

where, α and u denote the corresponding vectors on either side of [MD] in Eq. (4). For the quantity δ(x) to
vanish for all α, β, we require,

[MD(x)][u] = 0 (5)

⇒ |MD(x)| = 0 (6)

This forms a necessary condition for a point to lie on the parametric surface and can act as its implicit equation.
The 2mn × 2mn determinant in Eq. (6) is the Dixon resultant. The corresponding matrix is linear in x, y, z
and independent of u, v, and can be expressed as [8],

MD(x) = Mxx+ Myy + Mzz + Mw (7)

where each of the coe�cients are constants and independent of u, v or x. An algorithm to build the Dixon
matrix MD from a given parametric representation is provided in [19].

3 GENERATING SIGNED ALGEBRAIC LEVEL SETS

The Dixon resultant derived in Eq. (6) allows the generation of the level sets [23],

Γ(x) = |MD(x)| (8)
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(a) (b)

Figure 1: Algebraic level sets for an octant of a sphere generated from (a) Dixon resultant and (b) after the
trimming operation.

The generated level sets for an octant of a sphere are shown in Fig. 1a. It can be seen that while the
parametric surface is restricted to just an octant, the resultant generates level sets over the entire parametric
range, i.e., for the entire sphere. This is because the implicit equation for an octant of a sphere is the same as
that for the whole sphere. Hence, as we move away from the surface in the radially inward direction, the level
sets are not monotonic functions of distance. It is hence necessary that the implicitisation is restricted to the
required parametric domain. This can be achieved using a trimming procedure based on R-functions [2, 20].
The convex hull of the parametric surface, de�ned by the �eld Φ(x) ≥ 0, is used as the trimming region.
The trimming is carried out in two steps: normalization of the level sets generated from the resultant, and
composition with the trimming region using R-functions. Both steps shall be discussed in brief presently.

3.1 Normalization of the Level Sets

The algebraic level sets generated from Eq. (8) do not inherently satisfy ‖∇Γ‖ = 1 on the boundary or surface
of the geometry. Thus, the level sets could grow at di�erent rates in the neighborhood of the curve or surface
in comparison with the hull distance �eld. Consequently, in order to compose these level sets with the hull
distance �eld, they �rst have to be normalized.

Consider a point x, a distance d away from the geometry. Let xf be the projection of this point on to the
curve or surface. The Taylor expansion of the resultant about the point x gives,

Γ(xf ) = Γ(x)−∇Γ(x) · dn +
d2

2
n · ∇∇Γ(x) · n + . . . (9)

where, n is the unit normal to the curve or surface at xf . Since xf lies on the geometry, Γ(xf ) = 0. Ignoring
higher order terms, we have the �rst order distance estimate,

f(x) = d =
Γ(x)

‖∇Γ(x)‖
(10)

This distance measure automatically satis�es ‖∇f(x)‖ = 1 on the boundary (where Γ(x) = 0), and can hence
generate normalized algebraic level sets. The gradient of the resultant can be obtained using Jacobi's formula
in Eqs. (7) and (8).
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3.2 Trimming Operation Using R-Functions

The trimmed algebraic level set, g(x), is now given by the R-function [22],

g(x) =

√
f2 +

(|Φ| − Φ)
2

4
=

{
|f(x)| Φ(x) ≥ 0√
f2 + Φ2 Φ(x) < 0

(11)

Within the trimming region, the original implicitisation is recovered, while outside the region a composite
�eld is obtained. This ensures that the subsequent level sets are smooth everywhere. The distance �eld Φ
for the convex hull can be computed as a Boolean union of distance �elds of its individual faces (edges in
2D). The procedure to obtain the Boolean union is described in § 5 as the R-disjunction operation. Trimmed
level sets generated for the sphere octant are shown in Fig. 1b; it can be seen that the level sets are globally
monotonically increasing.

For parametric splines such as NURBS, Eq. (1), and therefore the resultant, change with each knot span.
Such splines are �rst decomposed into their Bézier segments, each segment corresponding to a single knot
span. Trimmed normalized algebraic level sets are then obtained for each Bézier segment through the procedure
described in this section. These level sets are then composed using a R-disjunction operation [20] to obtain
smooth algebraic level sets for the whole parametric spline. An illustration is provided in Fig. 2, where algebraic
level sets for a NURBS curve are generated from trimmed level sets of its two constituent Bézier segments.
The resulting level sets are also smooth and trimmed. Information on the R-disjunction operation is provided
in § 5.

Figure 2: Algebraic level sets for a spline obtained from R-function based composition of level sets of individual
Bézier segments.

3.3 Ascribing Sign to Algebraic Level Sets

Closed geometries divide space into inside and outside regions. This allows one to de�ne signed algebraic level
sets. As a convention, in this paper, distances of points in the inside region are assumed positive and those
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Figure 3: Schematic describing the sign assignment process with three illustrative points. The convex hulls
for constituent Bézier segments are shown. The edges of the hulls contributing to the bounding box are shown
solid, while the rest are dashed.

outside, negative. Signed algebraic level sets can be used to resolve point containment queries, required in
multi-body contact and interference detection. In the context of analysis, point containment queries determine
the phase, and hence the material properties, at a particular point in space. These queries can be handled
on a point-by-point basis using a bounding box procedure described in [24] and outlined here. The given
closed spline geometry is decomposed into its constituent Bézier segments. The convex hulls of the individual
segments are then used to form a close-�tted bounding polygon for the geometry, called its bounding box.
For each Bézier component, the sign of the Dixon resultant Γ(x) is set such that the resultant is negative for
control points that lie on the bounding polygon (and hence outside the geometry). This ensures that within
the convex hull of any Bézier component, points outside the closed geometry have negative resultant values
and those inside, positive. This is a one-time process for a given geometry.

During sign determination, the point of interest is �rst classi�ed with respect to the bounding box. If the
point is outside the bounding box, then it is also outside the given geometry and its level set can be taken to
be negative. Query points that lie inside the bounding box are then classi�ed with respect to the convex hulls
of the Bézier components. If the point lies inside any of the hulls, then the sign of the algebraic level set is the
same as the sign of the Dixon resultant of the corresponding Bézier component, evaluated at that point. If
the query point does not lie inside any of the individual convex hulls, but lies inside the bounding box, then it
lies inside the closed geometry and its level set can be taken to be positive. This is described in the schematic
shown in Fig. 3. Three points, A, B and C are chosen as shown. Point A lies outside the bounding box and
hence has a negative level set. Point B lies inside the convex hull of a segment; its sign is assigned based on
the sign of the Dixon resultant of the segment at B (here positive). Point C lies inside the bounding box, but
not inside any of the convex hulls. From the construction of the bounding box, this implies that C lies inside
the closed geometry and thus has a positive level set. An example of signed algebraic level sets for a sphere
is given in Fig. 4.

4 CURRENT THROUGH A LINE WITH A VOID

As an application, the electrostatic problem of a current carrying metal line with a void is considered. This is
of relevance in studying void growth due to electromigration, which is a failure concern in the semiconductor
industry. A formal description of the electromigration problem follows (see Fig. 5a for reference). A rectangular
domain Ω, containing an arbitrarily shaped void is considered. To allow irregular shapes, voids are represented
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Figure 4: Signed algebraic level sets for a sphere generated using the bounding box procedure. Regions inside
the sphere have positive level sets and those outside, negative.

using unclamped NURBS curves. The usage of unclamped curves ensures C1 continuity of both geometry and
electric potential approximation. The system is governed by the Laplace equation on the electric potential φ,

∆φ = 0 in Ω (12)

Dirichlet boundary conditions are applied at the top and bottom surfaces, and the walls are assumed to not
allow electric �ux to �ow through them. Additionally, there is no �ux entering or exiting the surface of a void
Γe,

∂φ

∂n
= 0 on Γe (13)

Here, an enriched isogeometric approach is used [21], where the potential is expressed as a weighted blending
of a continuous approximation φc, and an enrichment φe representing the in�uence of the void,

φ(x) = (1− w(x))φc(x) + w(x)φe(P(x)) (14)

Here, P(x) is the projection of x on to the void interface (see Fig. 5a). Thus, the potential solution φc at
x is blended with the interface solution φe at the projection of x on the void interface. The weight function
w(x) is de�ned such that it is unity on the void boundary and falls monotonically to zero with distance away
from the void,

w(x) = exp

(
−
(
d(x)

d0

)2
)

(15)

where, d0 is a scaling parameter for the distance �eld d(x). This ensures that the solution near the void
interface is dominated by the interface solution φe, while the continuous solution dictates behavior at points
far away from the void. Since the void is represented as a NURBS curve, the signed algebraic level sets
described in this work can be used as the distance measure. This form of the electric potential automatically
satis�es the void boundary condition Eq. (13). The system is solved using isogeometric analysis for an elliptical
void, and the resulting potential solution is shown in Fig. 5b.

The obtained results can be interpreted as follows. For a system with no voids, the analytical solution at
a point x ≡ (x, y) is given by,

φ(x) =
y

h
(16)

where, h is the height of the metal line. The potential solution varies linearly from the bottom surface to the
top. This satis�es both the governing Laplace equation, as well as the Dirichlet and wall boundary conditions.
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(a)
(b)

Figure 5: (a) Schematic of the electromigration problem for a rectangular domain. A sample point and its
projection on to the void interface are illustrated. (b) Contours of the electric potential solution obtained for
a system with a single void.

Such a solution is characterized by straight, horizontal contour lines. As can be seen in Fig. 5b, far away
from the void, the potential contour lines are una�ected and remain straight and horizontal. However in the
neighbourhood of the void, the contours are distorted in order to satisfy Eq. (13). The use of an explicit
interface representation along with the assumed form for the potential approximation in Eq. (14) has allowed
imposing the void interface conditions exactly.

5 BOOLEAN OPERATIONS FOR MULTIPLE VOID SYSTEMS

Complications arise in modeling electromigration problems when multiple interacting voids are present. Voids
can split or coalesce with one another, and this poses a challenge for explicit interface representations. Such
representations usually require detection of contact between coalescing voids and computation of intersections
of the void boundaries. These are challenging problems with arbitrarily shaped voids. In this work, this problem
is circumvented by using Boolean operations on the algebraic level sets. The algebraic Boolean union of the
level sets of individual void interfaces is used for analysis. As voids coalesce, the union operation automatically
generates algebraic level sets for the coalesced void. Since the analysis procedure depends only on algebraic
level sets, this Boolean union of the level sets su�ces and interacting voids can be easily accommodated
without requiring collision detection and intersection computations. The union operation is carried out using
the R-disjunction operation [20]. If g1(x) and g2(x) are the signed algebraic level sets of two coalescing voids,
then the union of these level sets is given by,

g(x) = g1 ∨ g2 = g1(x) + g2(x) +
√
g21 + g22 (17)

By the nature of the R-disjunction, the resultant signed level set is positive when either level set is positive; this
ensures that the region inside a coalesced void is positive. This is depicted in Fig. 6 for a system with two voids.
As can be seen from the �gure, the union operation ensures positive level sets inside either void, and thus
automatically generates algebraic level sets for a coalesced void. The usage of R-disjunction ensures that the
composed algebraic level sets are smooth, allowing analysis. A system with two elliptical voids was studied.
The solution for the electric potential for the system with and without coalescence of the voids is shown
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(a) (b)

Figure 6: Algebraic level sets for a system with two interacting voids (a) without coalescence (b) with
coalescence. The level sets are generated through a Boolean union operation on individual level sets in both
cases.

(a)

(b)

Figure 7: Contours of the electric potential solution for a system with two interacting voids (a) without
coalescence (b) with coalescence.
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(a) (b)

Figure 8: Contours of the electric potential solution for a system with two bean-shaped interacting voids (a)
without coalescence (b) with coalescence.

(a) (b)

Figure 9: Contours of the electric potential solution for a system with two bean-shaped interacting voids (a)
without coalescence (b) with coalescence.
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(a) (b)

Figure 10: Contours of the electric potential solution for a system with three bean-shaped interacting voids
(a) without coalescence (b) with coalescence.

in Fig. 7. The proposed method was also applied to systems with bean-shaped voids de�ned as unclamped
NURBS curves. The solution for the electric potential for such systems with and without coalescence is shown
in Figs. 8 to 10. For these examples, an explicit interface representation would have to detect multiple complex
surface-surface intersections and handle them appropriately. These di�culties are easily overcome using the
proposed approach. Three-dimensional examples of a system with spherical voids is given in Figs. 11 and 12.
The computation times for all the above cases is tabulated in Tab. 1. As can be seen from the table, there is no
signi�cant overhead on handling systems with coalescent voids. However, simulations with multiple voids took
signi�cantly more computational time than systems with a single void. Thus the proposed approach allows
one to use an explicit interface representation, retaining exact geometric information, while also providing the
ability to model topological changes such as coalescence at low computational costs.

6 CONCLUSIONS

The Dixon resultant was used to generate signed algebraic level sets for parametric geometries. The magnitude
of these level sets provided a measure of distance from the geometry, while the sign enabled classifying points as
lying inside or outside a given closed geometry. An enriched isogeometric analysis method for a current carrying
metal line with a void was discussed. The void was modeled as an enrichment whose in�uence weakened with
distance. Due to the explicit interface representation and the form of the potential approximation, the void
interface conditions are imposed exactly. It was shown that topological changes such as coalescence could be
handled through Boolean operations on the algebraic level sets, carried out using R-functions. This allowed
handling topological changes without having to resort to overlap detection and intersection computations.
This was demonstrated on 2D and 3D systems with coalescing voids.

A study of the computational e�ciency shows that while the computational time increased with increase
in number of voids, there was no signi�cant overhead for handling topological changes such as coalescence.
Systems with coalescent voids took slightly less time than those without, which is in stark contrast to other
explicit representation methods. The developed procedure thus provides the bene�ts of using explicit interface
representations without requiring intersection computation to model topological changes.

Electromigration is also known to cause voids to split. The splitting of a void can be geometrically
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Electromigration System Number of Degrees
of Freedom

Time Without Coa-
lescence (in s)

Time With Coales-
cence (in s)

One 2D elliptical void (Fig. 5) 237 0.12 N/A

Two 2D elliptical voids (Fig. 7) 243 0.27 0.20

Two 2D bean-shaped voids (Fig. 8) 259 0.99 0.73

Two 2D bean-shaped voids (Fig. 9) 259 1.01 0.95

Three 2D bean-shaped voids (Fig. 10) 273 2.15 1.61

One 3D spherical void (Fig. 11) 4896 10.99 N/A

Two 3D spherical voids (Fig. 12) 4941 30.41 26.34

Table 1: Computation times for electromigration simulations of the di�erent systems considered. The systems
are referred by the index of the corresponding �gure. There is no signi�cant overhead on handling systems
with coalescent voids.

(a)
(b)

Figure 11: (a) Schematic of the 3D electromigration problem with a single spherical void. (b) Contours of
the electric potential solution obtained on the mid-section planes.
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(a) (b)

Figure 12: (a) Schematic of the 3D electromigration problem with coalescent spherical voids. (b) Contours
of the electric potential solution obtained on the mid-section planes.

characterized as a self-intersection of the void surface. Since the detection of self-intersections is not a trivial
operation, further work is required to handle systems with void splitting.
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