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Abstract. Developing predictive and optimization models for metal-based additive 
manufacturing (AM) processes to link part geometry, process parameters, build 

geometry and the resulting mechanical and physical properties is challenging. There 

are unique, rapid heat cycling characteristics with AM processes that influence the 
hardness, strength, and residual stress characteristics, which is the focus of this 
research. The component’s properties are influenced by the tool path as well as the 
process settings. Developing a predictive model is complicated, as single bead 
observations are different from multiple bead configurations, and occurrences and 
magnitudes of the tensile and compressive stresses vary throughout the specimen. 

Therefore, approaches to extract information from heat maps resulting from 
calibrated finite element simulation models are explored. Images are converted into 
2D and 3D geometry, and point cloud data generated to provide positional and 
residual stress data in a format that can be utilized for comparative and predictive 
modelling. Initial comparative and artificial neural network prediction models indicate 
the potential of these approaches.  
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1 INTRODUCTION 

Laser cladding is usually utilized for coating surfaces to improve the performance of the surface 
(corrosion or wear resistance) or to repair it if it is worn. This process has evolved into a viable metal 

additive manufacturing (AM) solution for fabricating localized features onto an existing component, 
or to create a near net shape. Laser cladding is termed as direct energy deposition (DED) when 
being employed as an AM process.  In this process, a laser beam melts the material powder flowing 
from a nozzle while it is being distributed onto a surface. A thin layer on the surface of the substrate 

melts to help forming a bond between the clad material and the substrate material. A shielding gas 
such as argon protects the melt pool from the atmosphere to prevent oxidization.  
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The DED input parameters play a significant role in the quality of the bead [4, 6, 9], the dilution 
zone (the region where the substrate and deposition materials mix), and the heat affected zone 
(HAZ) (shown in Fig. 1), as well as the bead geometry [1, 3, 7]. As a result, understanding the 
influence of the input parameters on the resulting mechanical and physical properties is a concern 

for both equipment manufacturers, and process planners or fabricators. 

Each process input parameter (laser power, travel speed, powder feed rate, contact tip to work 
piece distance) has a distinct effect on the bead’s mechanical and physical properties. For multiple 
beads (a more realistic scenario), the percentage overlap and the travel path (one way, zigzag, 
raster scan versus a contour-based solution, etc.) are also influences. It is crucial to find the best 
combination of input and operation parameters to deposit a bead with the desired geometry and 
mechanical properties. The generation of residual stresses due to the high thermal gradients, and 

the non- uniform plastic deformation of the base substrate or plate, are two of the most important 

issues when analyzing the mechanical properties of the bead. Residual stresses can lead to 
undesirable distortion and cracks; therefore, (i) understanding the residual stress characteristics, 
(ii) linking them to the bead geometry and input parameters, and (iii) developing predictive models 
are active areas of research. Item (i) is addressed by conducting experimentally calibrated finite 
element analyses to provide insights; however, items (ii) and (iii) have significant research 

challenges, as the induced residual stresses (or hardness) are not discrete values such as the bead 
geometry shape characteristics. 

 

 
 

Figure 1: A single laser clad bead, showing the dilution and heat affected zones (with 0.2 mm 
gradients). 

 

Prior AM DED research has been conducted utilizing P420 stainless steel as the clad material and 
AISI 1018 steel as the substrate material and a 4kW diode laser-robotic cell configuration. The bead 
length is 100 mm. The process parameters, factor levels for the design of experiments, and their 

corresponding values are presented in Table 1. The bead geometry for two experiments, labelled A 
and B, and their residual stress levels in the bead center, are illustrated in Fig. 2.  
 

Parameters 
Factor levels 

-2 -1 0 1 2 

Powder feed rate (gr/min) 10 15 20 25 30 

Laser power (kW) 1 2 2.5 3 4 

Focal length of lens (mm) 380 390 400 410 420 

Laser speed (mm/s) 5 7.5 10 12.5 15 

Contact tip to work piece distance (mm) 21 22 23 24 25 

 

Table 1: Single bead experimental configuration, with the bolded text highlighting the process 

parameters for experiment A, and the red italicized text highlighting the process parameters for 
experiment B. 
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The residual stress measurement was conducted using the Proto X-ray diffraction system (Lab 
002/LXRD 06024) [12] for two samples in the ‘as clad’ and ‘heat treated’ states. The operating 
parameters for the measurements are presented in Table 2. The samples were extracted from the 

center of the bead specimens. Six subsurface measurements were done – 0 represents the top of 
the bead. The upper and lower bounds (red dashed lines) are calculated from the collected data 
using a 90% confidence interval and used as a basis to assess the goodness of the developed finite 
element model.  

The developed FEA model (using SYSWELD [17]) and the experimental results are presented for 
the non-heat treated (NHT) results in Fig. 2. The top of the bead is the 0 position, and the depth 
measurement is into the bead to the substrate. At the top of the bead, there is significant tensile 

stress, but it reduces as the bead depth increases. Slightly above the junction between the bead and 

the substrate, compressive stresses are observed. In the dilution zone, there are only compressive 
stresses. The observed inflection points are at the junction of the dilution and heat affected zones, 
and the HAZ and substrate. The FEA results correlate well to the experimental data. For a complete 
description of the model and mesh development, validation, experimental configuration and results, 
please refer to Nazemi and Urbanic [10]. 

 

(a)  
Width = 4.05 mm 
Height = 0.93 mm 
Depth = 0.40 mm 

 

(b)  
Width = 3.91 mm 
Height = 0.67 mm 
Depth = 0.47 mm 

 
 

Figure 2: A single laser clad bead, showing the dilution and heat affected zones. 
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The results from the complete simulation model can be analyzed in regions of interest (Fig. 3). There 
are stress variations along the bead due to the heat flow and transient start-stop conditions (Fig. 3 
(a)). It can be seen that the stress patterns are symmetric around the center axis (Fig. 3(b)).   

Extending the model to analyze multiple beads with differing overlap and process configurations 

has been done [9, 10, 20]; however, the research question focuses on how to comprehensively 
compare results quantitatively and develop a predictive model that will encompass both the bead 
geometry and physical properties. The induced residual stress (and hardness, etc.) magnitudes and 
patterns will vary based on the input parameters and the bead overlap percentage. The goal of this 
research is to transform the mechanical or physical property heat maps, or isoline representations, 
for process build configurations into geometric data, which in turn can be used for comparison 
purposes and to seed an artificial neural network or other AI based predictive model.  

 

(a)  

(b)  

 
Figure 3: (a) Longitudinal residual stress contours for specimen 𝐴 from the simulation (b) cross-

section view (specimen center). 

2 LITERATURE REVIEW 

The connection between the processing parameters and the process’s thermal history is a critical 
research topic for metal-based AM. Experimental studies are time consuming, and may be expensive, 
if residual stress and advanced microstructure analyses are performed. The use of analytical models 

is difficult, based on the fact that the metal bead-based deposition process is a highly complex non-
linear problem that couples the multi-phase fluid phenomena, heat transfer, and metallurgical 
transformations. Consequently, numerical simulation is a powerful tool for analyzing AM to evaluate 
process parameter sets, and to predict desirable cladding results. Researchers have developed mass 
transfer [22], melt pool [8], and heat transfer models, which have been validated with physical 
experimental data. Several researchers have explored the influence of input parameters on the melt 
pool, bead geometry, hardness, and residual stresses - typically for one deposited bead. A selection 

of research papers is summarized in Table 2. In most of these studies metallurgical effects were 
ignored and simplifications and assumptions have been made to model the heat source and boundary 

conditions. The discussion typically focuses on a targeted comparison of the experimental and 
simulation results, or the influence of the simplifications. No comprehensive, quantitative 
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methodologies to compare properties or results and have been presented over a wide range of 
conditions or build scenarios.  

Although predictive models have been developed for the bead geometry [1, 3, 15, 16], transient 
start-stop conditions [14], cornering, and the impact of the bead overlap percentages, travel path 

strategy, etc. all need to be considered when determining an optimal process plan strategy.  

Author 
No. of beads 

Heat 
source 

FEA 
(method) 

Material 

Aggarwal et al. (2018) [1] 1 and 3 beads Laser (Gaussian), 
Experimental & statistical 

analyses 

P420 stainless steel on 
AISI 1918 

Balu et al. (2013) [2] 1 & 2 beads Gaussian 

moving 

3D thermo-

mechanical 

Ni-WC composite 

material, NT-60 over 

NT-20 

Fallah et al. (2011) [5] 1 bead Gaussian 
energy 

Mass and 
heat transfer 

AISI 304L 
Ti45Nb on Ti–6Al–4V. 

Nazemi & Urbanic (2018) [9] Multi beads 3D conical 

Gaussian 
moving 

Thermo-

mechanical-
metallurgical 

modeling 

P420 stainless steel on 

AISI 1918 

Nazemi et al. (2017) [10] Multi beads 3D conical 
Gaussian 
moving 

Thermo-
mechanical-
metallurgical 

modeling 

P420 stainless steel on 
AISI 1918 

     

Palumbo et al. (2004) [11] 1 bead, and the 

melt pool shape 

Gaussian 

energy 

3D thermo-

mechanical 

Cu-based alloy 

Song et al. (2014) [16] Multi bead wall Experimental & statistical 
analyses 

2Cr13 stainless steel 

Toyserkani et al. (2004) 
[18] 

1 bead Gaussian 
distribution 

3-D transient 
FEA 

Iron deposited onto 
mild steel 

Toyserkani et al. (2003) 
[19] 

1  Mass and 
heat transfer 

P20 tool steel 

Urbanic et al. (2018) [20] Multiple beads – 
surface (Hybrid 

Manufacturing) 

3D conical 
Gaussian 

moving 

Thermo-
mechanical-

metallurgical 
modeling 

420 stainless steel on 
Cold rolled structural 

steel 

 
Table 2: Selected research publications related to metal AM bead geometry, simulations, and 

materials. 
 

There are issues with granularity and scope to be considered. Most researchers present data on 
thermal histories and localized analyses in steady-state regions. An effective optimization model 
provides a systematic and quantitative way to evaluate and select decisions. Here, it should consider 
multiple criteria: the bead geometry, mechanical and physical properties at multiple points within 

the bead and the substrate, process settings, the tool path motions, and the transient and steady-
state conditions. It should be flexible and extensible (i.e., not limited to one bead), and various 
process conditions and results should be captured. These are significant challenges to be addressed. 
Data fusion between experimental and simulation data should serve as a basis for a predictive model 
and optimization strategy. Unlike experimental data, which typically targets collecting a subset of 

data, the FEM model provides insight within the complete specimen and the surrounding 
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environment / substrate. However, experimental research must be performed to calibrate the 
simulation models over the problem space, as there is no comprehensive body of knowledge to draw 
upon for metal AM processes. Consequently, once a calibrated simulation model is developed, it is 
essential to extract information not only at the nodes, but the gradient data in the regions between 

the nodes (Fig. 4 (a)) – in 3D (Fig. 4 (b)). In Fig. 4 (a) there are seven distinct internal residual 
stress levels within one mesh region, and it is evident from Fig. 4 (b), that the variations in stress 
are significant along the bead. Therefore, it is proposed to perform data digitization and curve 
extraction to identify key regions and use this information to seed comparative and predictive 
models. The simulation results need to be extracted and transformed into a format that will serve 
as the basis for the comparison and prediction model solution approaches under development.  

Multiple available commercial digital image and CAD tools were explored to determine whether 

an automated solution existed for extracting contours or generating topology maps, based on 

grayscale or color images. The grey scale value at each pixel is converted into a z height, and some 
smoothing occurs between these points, but the pixilation influence is evident, as there is graininess 
in the image (Fig. 5 (a) and (b)). Rhino® has a raster to topology converter for grayscale images, 
and the color image can be overlaid, as shown in Fig. 5. There are ripples in the surface, and in 
regions where there should be distinct height differences (yellow and orange), there are not, as the 

grayscale pixel values vary between 228 and 232, and are not distinguishable for a pincushion based 
surface.  After converting Fig. 4 into grayscale, the boundaries can be detected, but the boundaries 
are not as clearly distinguishable, and it appears that the detected boundaries could correlate to 
more than one stress level when they are extracted with the GIMP edge detection algorithm.  

 

(a)  

(b)  

 
Figure 4: (a) cross section AA and the seven residual stress boundaries within one mesh region 
bounded by 4 nodes, (b) 10 cross sections for a single bead. 

 

A-A 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 17(2), 2020, 288-311 

© 2020 CAD Solutions, LLC, http://www.cad-journal.net 
 

294 

(a)  

(b)  (c)   
 

Figure 5: (a) Rhino raster - topology conversion results, (b) detailed view showing localized ripples 

and lack of distinctive heights, (c) gray scale representation and boundaries detected for the boxed 

region in Fig. 4. 
 
Existing raster to vector conversion software for CAD geometry results required grayscale images, 
and they resulted in interesting patterns when the grayscale FE images are used directly (Fig. 6 (a)). 

When seeded with grayscale imaged preprocessed by GIMP – edge detect, the exterior boundaries 
were traced (Fig. 6 (b) and (c)), or intersecting lines resulted (Fig. 6 (d) and (e)).  Note: All these 
results are for the 50% overlap configuration B scenario.  

 

(a)  

(b)  (c)  
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(d)  (e)  
 
Figure 6: (a) Rapidresizer [13] results (b) external boundary lines traced using Rapidresizer (viewed 

in Rhino®), (c) external boundary lines traced using the Vectorization.org [21] tools (viewed in 
Mastercam ®), (d) intersecting lines result (Rapidresizer viewed in Rhino®), (e) Raster to Vector 
Software [14] (viewed in Mastercam ®).  

 

Based on reviewing several raster-to-vector solutions, it was determined that manually tracing 
boundaries using CAD tools needs to be the approach taken at this time. Preprocessing will be 
performed using GIMP software to extract the boundaries and manipulate the image for brightness 
and contrast to facilitate the tracing process. The data transformation methodology is described in 
detail in the next section.  

3 METHODOLOGY 

The overall approach to develop faster predictive models is to proceed from experiments, to 
calibrated FEA models, to a trained black box solution leveraging patterns observed from these 
analyses. The FEA and experimental results need to be reformatted into a data set approach for a 
black box model. Simple single bead experiments, multi-bead experiments for one layer, stacked 
beads (one bead thickness), and multi-bead and multi-layer experiments have been done for 420 
stainless steel. Single bead finite element models were developed for all the experimental 
configurations shown in Table 1. For a three bead single layer scenario, finite element model results 

are derived for 9 configurations, which are presented in Table 3, and sample results are illustrated 
in Fig. 7. In addition to comparing the single bead simulation results to the residual stress 
experimental results, hundreds of Vickers micro hardness results were collected for the single and 
multiple bead scenarios for the 40%, 50%, and 60% overlap configurations. The experimental and 
simulated hardness data correlate well [9, 10]; consequently, simulated residual stress data for the 
three-bead configurations are employed.  

 

 40%, 50%, 60% 
overlap  

A B C 

Powder feed rate (g/min)  20 20 20 

Laser power (KW)  2.5 2.5 2 

Focal length of lens (mm)  400 400 400 

Laser speed (mm/S)  10 12 12 

 

Table 3: Multi-bead process parameters and overlap configurations used for the FEA models. 
 
It is readily evident that the magnitudes and positions of the stress regions vary, and that the 
observed stress patterns for the multiple bead configurations are significantly different from the 
single bead configuration. No symmetry of the stress patterns is observed for the three bead 

scenario, there is a limited tensile stress region in the deposited beads (between bead 1 and 2), and 
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the maximum tensile stress regions appear to be in the bead overlap regions deep in the substrate, 
not along the center of the bead.  

 

 

(a)  

(b)  

(c)  

(d)  
 
Figure 7: Residual stress scale, and the results for 40% overlap for experiment A (a) and C ((b), 

50% overlap experiment A (c), and 60% overlap experiment A (d).  

 
A comprehensive data set is required for developing meaningful predictive models. Consequently, 
the boundary regions for the induced residual stresses need to be determined, and intermesh data 
points and the residual stress value at each point extracted in a structured manner. A topology-
based approach is investigated to generate the training data required to teach a black box model. 
The file format for the black box model for the input will be the process settings 1..i, and the output 

will be: 

x,y,z, physical property (residual stress for this research),  

where  x, y, (z) are the Cartesian coordinates,  

physical property is the property to be considered, i.e., induced residual stresses, 
hardness, etc. 

  

In Fig. 8, the ANN architecture for the initial black box solution is illustrated. There are 3 hidden 
layers, with the neurons for layer 1, 2, and 3 being 20, 10, and 10 respectively.  
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Figure 8: Artificial neural network architecture for the initial black box solution, where Xi is a process 

setting.  

 
As topology creation solutions in Rhino© (or other image to CAD conversion software tools) do not 
isolate each bounded region well, the methodology and tools for proposed here are:  

• Employ a common scale for the iso curves / heat map colors and the FEA model geometry  
• Extract the boundary contours (GIMP) for the heat maps (Fig. 9 (a) and (b)) 
• Create NURB curves (Mastercam®) from the boundary curves (isolines or GIMP solution)  
• Create extruded solid models of the regions, where each solid model color correlates to a 

stress, and compare the models developed from the various process configurations 
(Mastercam®) (Fig. 9 (c)). 

o Use solid modeling tools to determine ‘difference’ regions or to assess size/centroid 
metrics 

o Create surfaces and point data for prediction and comparison modelling 

• Create Voronoi diagrams and extract medial lines from the boundary curves and compare 

results (Rhino© and Grasshopper© tools) (Fig. 9 (d)).  

The boundary curves created from an image may have some noise as shown in Fig. 9 top; 
consequently, a filtering configuration needs to be established for this process to be automated. 
However, once the geometry is created, detailed analytical comparisons can be performed. With a 
unit extrusion height, the dimensions, size, and centers of each stress region can be determined 
using standard solid model analysis tools which are then correlated to the bead geometry.  

Employing a unique height for each solid region and trimming the geometry at selected planes 

will allow for users to create residual stress and residual stress rate change profile curves with 
respect to the desired Cartesian coordinates, which can be used to seed a black box predictive 
modeling solution.  
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(a)  

(b)  

(c)  

(d)  
 

Figure 9: Residual stress boundary curves for the 40% overlap for experiment A (a) and C (b), and 
boundary curves solid model overlay for the low stress regions (c), and medial line for the selected 
curve (d). 
 
Two procedures are explored to generate overarching geometric model comparisons, as shown in 
Fig. 10. The same graduated color scale, and the same geometric scale must be employed. Once 

the contour geometry is created, simple extruded solid models are created. Each residual stress ‘bin’ 
(Fig. 7) is assigned an extrusion value, where the regions with the lowest residual stress value are 
extruded one unit. A unit increment for the extrusion height to residual stress bin is employed (Fig. 
11). This is the same initial step for both options.   

For option 1, a slicer module designed for additive manufacturing (APlus ®) is used to create 
slice contours. Boolean join operations need to be performed prior to slicing to reduce redundant / 
colinear geometry (Fig. 12 (a)). Once the slice contours are created (Fig. 12 (b)), end points can be 

readily created (Fig. 12 (c)). To create a grid of points, slicing must occur in the front and side 
construction planes. Filtering is required to extract the highest points and eliminate redundant data.  

For option 2, once the solid models are created, an array of points is projected onto the top of 
the surfaces, as shown in Fig. 13 (a) and (b). A grid of points is generated using standard geometry 
translation tools. This controls the point density or the predictive model resolution. Then, a ‘project 

point’ transformation is performed. Again, filtering is performed to remove redundant data. This is 
the method employed in this research to extract the residual stress data from the FEA results and 
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seed the black box models. These points are saved into a *.csv file, where one column (the ‘z’ 
coordinate) is a representative residual stress value.  

 

(a) (b)  
 

Figure 10: (a) Option 1 process flow, (b) option 2 process flow. 
 

(a)  

(b)  
 

Figure 11: (a) Heat map, and (b) solid models with each layer height corresponding to a color region 

from the heat map. 
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(a)  

(b)  

(c)  
 

Figure 12: (a) Solid model, (b) slice contours (Front view), and (c) end points. 

 

 

 

 
Figure 13: (a) Point set, and (b) points projected onto the top surfaces. 
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Various comparison methods are utilized – both digital and geometric approaches are considered. 
Several GIMP tools allow for a difference or subtraction between image layers. The difference mode 
subtracts the pixel value of the upper layer from that of the lower layer and then takes the absolute 
value of the result; whereas, the subtract mode subtracts the pixel values of the upper layer from 

the pixel values of the lower layer. The difference mode is used here, as the subtraction mode 
resulted in a dark (near black) image. The intensity is changed for the color scale difference mode 
results for ease of interpretation (Fig. 14).  The variability and the characteristics of the overlap 
regions are complex. A gray scale image is extracted as well, as this reduces the model complexity 
for deep neural network modeling (Fig. 15). However, this generated inconsistent stress data, as 
each color corresponds to a distinct stress value range, but the gray scale value could be the same 
for two (or more) stress values due to the loss of information.  

 

 
 

Figure 14: Difference between scenario 60 A and 60 C – the black regions indicate no difference. 

 

 
 
Figure 15: Grayscale difference between scenario 60 A and 60 C – the black regions indicate no 
difference. 
 

To create a 3D model for a stress region, multiple cross sections are used along the bead, and lofting 
surface models are created, with end caps. Using these surface models, either additive (raster scan) 
or subtractive (pocketing) tool paths can be created, saved as geometry, and points positioned 
within these line/spline segments. Each point corresponds to an x, y, z position for a stress value. 

The results for these approaches are discussed in the next section. The extracted data is 
employed to develop an artificial neural network (ANN) (Fig. 8), and an adaptive neuro fuzzy 
interference system (ANFIS) solution. Initial results are reported for the ANN in this work. This 

research is in its preliminary stages. 
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4 RESULTS 

The GIMP edge detect filter extracted the boundaries and used a consistent color set for each region. 
Regions that were consistently problematic for the images being utilized are highlighted in the boxed 
areas (Fig. 16). Converting the image data into geometry introduces a scaling factor that must be 

taken into consideration when extracting and comparing the results to physical data. The results are 
consistent to themselves, but the geometric values in the plots are amplified.  

Employing option 1 to create a point cloud data at the stress region edges allows for some data 
analysis to be performed. The changes in the stress values at different Y intervals is shown in Fig. 
17 (a). Residual stress differential values can also be plotted to determine the rate of change of the 
stresses (Fig. 17 (b)). Comparisons between samples could not be readily performed without 
interpolating values.  

 

 
 

Figure 16: Regions where multiple boundaries converge. 

 

(a)  

 

(b)  
 

Figure 17: (a) Residual stress curves for selected Y values for sample 40 A, and (b) rate of change 

for residual stress values. 
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With the option 2-point cloud set, the x, y, and stress ‘bin’ data values are stored in a *.csv file for 
a given resolution, and are used directly to seed the ANN and ANFIS models. To perform 
comparisons, some additional manipulation may be necessary. Here, Excel® tools are used to map 
the regions. Note: the offset command was used to quickly create a matrix of rows and columns 

from a flat list of x, y, and stress values from the text file for the substrate region, and conditional 
formatting is used to create the color maps.  A surface map can be generated, or the data itself 
directly manipulated. The green represents compressive stresses, and the red represents the high 
tensile stresses.  The sample 40 A (Fig. 18 (a) and (b)) and 40 C (Fig. 18 (c)) can be readily 
compared, where Fig. 18 (d) and (e) are the 40 C sample data – 40 A sample data.   
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(e)  
 

Figure 18: (a) A surface map for sample 40 C using the Excel data, and (b) conditionally formatted 
data map for sample 40 C, (c) conditionally formatted data map for sample 40 A, (d) conditionally 
formatted data map for the data differences, and (e) a surface map of the residual stress differences. 

 
There are bead geometry differences with the various scenarios being explored. Attention to scaling 

and the reference datum point must be made, and the regions with no overlapping geometry 
identified, as shown in Fig. 19 (boxed areas), which illustrates the 40 B to 60 B comparison. The 
magnitude and location shifts for the percent overlap differences for the high tensile and compressive 
stress regions are readily identified.  
 

 
 

Figure 19: (a) Residual stress difference data for scenario 40 B – 60 B.  

 
When doing a simple cell count enumeration and comparing the total cells for each stress level for 
the 40 and 60 percent overlap conditions for the B process settings, the counts are very similar (Fig. 
20), reinforcing that the percentage overlap is a key concern as well as the process settings.   
 
Geometric analyses for the width, height, area, centroid positions, and so forth can be determined 

from the curve geometry for the various configurations. A sample is shown in Table 4. 
When developing a methodology to capture 3D positional and stress data, multiple cross sections 

along the deposited bead need to be transformed into geometry. The curves can vary in shape and 
position (Fig. 21 (a), and the sections are not constant in shape. (Fig. 21 (a)). Surface or solid 
models bounding a stress region can be derived from these boundary curves (Fig. 21 (b) and (c)), 

and it can be seen that the highest tensile region boundary shape fluctuates along the length of the 
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bead. Multiple cross sections are required at the start and stop areas to capture the stress region 
shapes. Once a surface or solid model region is generated (lofted, swept, and flat end cap surfaces), 
tool paths can be developed, saved as geometry, and then points positioned along the tool path 
geometry, creating a 3D point cloud for that stress region. Here an AM tool path for laser cladding 

is used to create the tool path geometry that is illustrated in Fig. 21 (d).  

 

 

 
Figure 20: Residual stress bins data for scenario 40 B and 60 B.  

 

Configuration Normalized 
stress value 

No. of 
Regions 

Perimeter Area Centroid 

50 A 10 1 7.82 3.96 48.72, 14.19 

50 B 10 1 7.83 3.87 49.16, 14.24 

50 A 7 3 3.08 
12.25 
104.43 

0.30 
6.87 
67.00 

39.88, 20.48 
34.22, 12.13 
50.18, 11.95 

50 B 7 2 12.39 

104.93 

6.14 

66.63 

34.88, 11.72 

50.69, 12.03 

60 C 7 3 16.08 
103.56 
2.09 

13.29 
48.77 
0.18 

36.66, 13.33 
49.97, 14.71 
61.03, 16.25 

 
Table 4: Comparison of stress region characteristics for selected configurations. 

 

When using the point cloud data extracted from the images, initial neural network predictive results 

are promising. As shown in Fig. 22, the regression plots for a node-based data set (Fig. 22 (a)), and 
the digital data seeded model (Fig. 22 (b)). The regression values are significantly higher for all 
elements when using the data extracted from the image transformation process done here. 
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(a)   

(b)  

(c)  

(d)  
 
Figure 21: (a) Highest tensile stress residual stress boundary curves along bead ‘experiment A’, (b) 
3D view and (c) front and right side views showing the high tensile stress region shape, and (d)  AM 
tool path geometry which can be used to generate a point cloud data set.  
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(a)   

(b)  
 
Figure 22: Preliminary artificial neural network model results using (a) node data, and (b) 
topology/image data. 
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5 DISCUSSION 

The AM process family has been introduced relatively recently. Therefore, experimental analyses, 
microstructure evolutions research, tools to model and predict behaviors, and developing best 
practices are being determined concurrently. The heat maps generated from the FE results have 

information complementing the data at the nodes, how is this information can be extracted and 
leveraged is the key question addressed in this research. Although no automated solution could be 
readily determined, the foundations are available to semi-automate a solution, allowing researchers 
to extract additional data and knowledge from the residual stress simulation results. This is 
important, as there are significant amounts of data to collect as there are transient conditions and 
variations in overlap percentages which influence the final build results. The granularity of the 
collected data, the number of images to be utilized, and the influence of discretizing the data need 

to be explored further. This methodology can be employed for 2D comparisons, such as the residual 

stresses in a specific region, or a 3D based point cloud-residual stress (or other property such as 
hardness) data set can be generated and used for modeling. Once the 2D point cloud set with the 
discretized data is generated, the data set can be used to seed a neural net model.   

Specific geometric data can be extracted from the contour and surface data, and using the 
Rhino® and Grasshopper® tool box, Voronoi diagrams and medial lines can be extracted. However, 

the basis for comparing medial line data has not been determined at this time.  

The number of cross-sections influences the 3D model results for determining a 3D stress region. 
As shown in Figure 23, the number of cross sections change the stress regions boundary. For the 
highest tensile stress, three cross sections (Fig. 23 (a)) provide a different those shown in Fig. 21. 
This is emphasized in Fig. 23 (b). However, multiple 3D regions can be determined (Fig. 23 (c)), 
therefore, 3D point cloud – stress data sets can be generated. 

 

(a) 

 

(b) 
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(c) 

 
 

Figure 23: (a) Stress regions developed from 3 cross-sections – a bead model is included as a 
reference (b) a comparison of 3 and 8 cross-sections to model the high tensile stress regions, and 
(c) 3D model of two tensile regions. 
 
Automating the solution approaches, determining the number of cross sectioning images required 

to represent the residual stress conditions, and developing an optimization model considering the 
geometry and physical properties are challenges to be addressed in the future work. Difference 
contours need to be extracted from the comparison data. In addition to these items, CAD tools to 
facilitate developing a topological model that is not ‘piecewise’ linear steps needs to be determined. 
The standard surface modeling tools introduces folds and wrinkles if the sync points are incorrect 
(Fig. 24). However, developing predictive models using a machine learning approach with 
experimental and simulation activities is challenging, and various approaches to seed a model must 

be explored to determine a robust and extendable approach.  

 

(a)  

(b)  

Figure 24: (a) Surface models to create a continuous model solution, and (b) challenging geometry 

that results in folds, wrinkles, and distortions.  
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6 CONCLUSIONS AND FUTURE WORK 

AM fabrication challenges focus not only on fabricating components with the desired geometry, but 
also with the desired performance characteristics. Confidence in the mechanical and physical 
properties for AM components is required. Durability and performance are related to the 

manufacturing residual stresses. An effective predictive model cannot focus on absolute maximum 
and minimum stress magnitudes, but must include intermediate values and their positions, as well 
as the input process parameters and the tool path information (direction, percentage overlap). 
Therefore, a standardized method for direct comparisons needs to be determined for any x,y,z 
coordinate, as well as the observed residual stress patterns. This research proposed converting the 
results models into topology and ‘raster’ data via contour extraction and solid modeling tools to 
extract residual stress values (and changes in residual stress) patterns as well as creating medial 

lines that could be used for pattern recognition purposes. This data can be used as an input for 

training artificial neural network models, or other AI strategies.  

The quality of a black box predictive model is highly dependent on the amount of data, as well 
as the data characteristics. Shape comparison strategies must be performed, and the influence on 
the point cloud density on accuracy and run time need to be explored.  An adaptive neuro fuzzy 
interference system solution is be developed as well as an ANN using the same training and validation 

data. There are several transient conditions that need to be considered for a robust predictive model. 
The amount of data, the flexibility and extensibility of this black box solution approach needs to be 
determined to address these various conditions.    

To conclude, product and process designers need to determine ‘design for additive 
manufacturing’ and effective build solutions for cost effective, functional components. The influences 
of the component shape, build material(s), process settings, and the tool path settings need to be 
considered. Solution approaches need to fuse experimental and simulation data with sophisticated 

predictive modeling tactics to achieve this goal. The data transformation methods proposed here will 
translate FEA results into a flat data file that can readily be used for training a black box model. 
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