

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

44

MCAD2Sim: Towards Automatic Kinematic Joints Recognition

Suthida Thongnuch1 and Alexander Fay2

Institute of Automation Technology, Helmut Schmidt University, Hamburg, Germany
1suthida.thongnuch@hsu-hh.de

2alexander.fay@hsu-hh.de

Corresponding author: Suthida Thongnuch, suthida.thongnuch@hsu-hh.de

Abstract. Developing production machines involves engineering processes to
transform customer requirements into real machines. Commissioning, which is a
bottleneck of the engineering processes, must be better addressed to improve the
machine development. To do so, with the help of virtual machines, virtual

commissioning (VC) can be performed before the real machine construction with

several promising benefits. VC, however, seeks a method to automatically generate
detailed virtual machines. The automatic model generation makes VC benefits
valid. This paper presents a practical and automatic VC model generation method
by applying the constraint-based algorithm to MCAD models. As a result, the static
geometry in the models governs kinematic joints and parameters. The proposed
MCAD2Sim workflow produces executable kinematic models in the COLLADA
format, which is a part of AutomationML and widely used in the industrial

automation domain. Furthermore, in this paper, the application of the entire
workflow on a mechanical assembly is demonstrated. The results serve as a
preliminary solution to the automatic VC model generation for more sophisticated
real-world applications.

Keywords: virtual commissioning, kinematics model, COLLADA, mechanical

computer-aided design.
DOI: https://doi.org/10.14733/cadaps.2020.44-60

1 INTRODUCTION

Developing special-purpose production machines transforms customer requirements into real
physical machines through engineering phases of a project development life cycle. The
conventional development life cycle starts with planning, followed by the design (mechanical

design, electrical design, and control code creation), construction, and commissioning. Based on
the mechanical and electrical design, mechanical parts are manufactured and assembled, and
electrical wiring is installed in the construction phase. After that, commissioning is performed on
the machine to validate control code before it is in operation. Commissioning, as a transition

between the design and the operation, is considered as a crucial stage and a bottleneck. Delay in

http://www.cad-journal.net/
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
mailto:suthida.thongnuch@hsu-hh.de
mailto:alexander.fay@hsu-hh.de
mailto:suthida.thongnuch@hsu-hh.de

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

45

commissioning directly impacts the project lead time. In practice, commissioning covers not only
control code validation, but the overall machine functions test including electrical wiring check,
sensors calibration, actuator tuning, etc. Control code bugs and other design flaws are discovered
and rectified in the commissioning phase. More than 85% of the faults and errors found during

commissioning come from previous phases [31]. Additionally, the quality of the machine must be
ensured at an acceptable commissioning cost. As a consequence, commissioning is at risk of time
delay, over budget, and poor quality.

In order to reduce the commissioning risks, the idea of an early validation using virtual
commissioning (VC) has emerged since the last decade [11]. VC, in comparison to the real
physical commissioning mentioned in the previous paragraph, adopts models instead of a real
machine. Different types of VC models are discussed in section 2. VC is commissioning that tests

individual components and functions of the system during the project development using

simulation methods and models [30]. VC offers several promising benefits regarding time, cost,
and quality. With the help of VC models, the control code is tested thoroughly in every test case
scenario. The quantitative benefits of VC are also reported; for instance, commissioning time is cut
by 25% to 75% [10][24][36]. As a result, the on-site commissioning expenses such as man-hour
costs and test material consumption are reduced. However, VC is seldom used in practice despite

plenty of VC-related software tools. At present, the effort to set up VC models is much greater
than the returned benefits. VC requires a substantial modeling effort [33] and engineering effort
[22] because the modeling process is still a manual, error-prone, and time-consuming
[4][5][12][15][32]. VC is, therefore, considered as an additional workload nowadays.

The motivation of this work is to encourage the automatic VC model generation. Rather than
modeling from scratch, building it on readily available data or models is preferable. Models such
as those from mechanical computer-aided design (MCAD) systems, for example, are usually at

hand in the early development process as a result of the mechanical design. However, MCAD

models cannot be directly used to perform VC as VC models. They are usually imported into VC
simulation tools for visualization purposes. Behavior descriptions such as motions are missing;
therefore, the descriptions must be manually added using provided functions in the tools. In the
context of VC models creation, MCAD models contain a lot of information [2][17]. Geometry and
kinematic relations can be extracted from MCAD models and utilized in VC models besides installed
actuators and sensors [17]. Exploiting such information can reduce the effort to set up VC models.

Inspired by this fact and constraint-based MCAD systems, the theory and algorithm in mechanical
assembly design are applied in this paper to automatically develop VC models from MCAD models.
The methodology bridges two different worlds of MCAD systems and VC simulation tools by the
MCAD2Sim workflow. Here, the behavior is automatically recognized and extracted from the MCAD
models to reduce the effort.

The remaining part of this article is structured as follows. Section 2 reviews state of the art in

two aspects: behavior modeling in the context of VC and the MCAD2Sim workflow in research and

tools. Section 3 explains the MCAD2Sim approach and the relevant theoretical background. Section
4 demonstrates and exemplifies the approach implementation in detail. Section 5 compares the
results with other approaches. Finally, section 6 concludes the result and discusses the advantages
and disadvantages of the approach as well as the improvement in future work.

2 LITERATURE REVIEW

A simulation model in the context of VC is not merely a mathematical model. Instead, a geometry

model and a behavior model constitute an essential part of a VC model [14][25]. Behavior
modeling depends on many factors such as application scenarios and modeling techniques available
in the tools. As a result, VC behavior models are rich in diversity. Recently, the Association of
German Engineers (VDI) classified four types of VC models in ascending order of model fidelity:
event-based, kinematics, kinematics with 3D models, and dynamics model [30]. As the name

suggests, event-based models (e.g., Petri nets and state machines) provide binary responses to

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

46

events. Building VC models at the event-based level requires knowledge in such kind of formalism
(e.g. Petri nets) and a considerable effort to integrate it with geometry. Similarly, a strong
background in the laws of physics is required to build dynamics models. Strahilov and Damrath
[27] model the linear movement of a pneumatic cylinder using the laws of fluid mechanics. The

difference of compressed air pressure in the cylinder chamber determines the force acting on the
piston. As a result, at the end of the simulation cycle, a new piston position is calculated. Related
formulas and parameters such as the piston area, the chamber volume, friction in the chamber
must be provided to physics engines for calculation. The dynamic model of the cylinder is achieved
(the ramp up and ramp down of the piston is realized without the constant-speed assumption).
However, the required effort, knowledge and input data are considerable. From the economic point
of view, dynamic models are not always the optimum model because of their complexity and

computational expense.

Simulation at the kinematic level, on the other hand, gives the impression of how systems
work. The kinematics and kinematics with 3D model require little knowledge to predefine a
movement path. They are closely related to the visualization and particularly useful to validate
motion and detect a collision. It is, therefore, reasonable to build the kinematics with the 3D model
because the effort spent is relatively low to achieve this high fidelity. Kinematic models serve as

the foundation of the dynamic model because motions produced by dynamic models must be
kinematically feasible as well [3].

This paragraph reviews the kinematic models as a part of 3D models in research and tools and
identifies a research gap. As an essential part of a virtual machine, 3D MCAD models are usually
imported into simulation tools and are then manually elaborated with kinematic information. In
Process Simulate, users can manually configure a kinematic chain of an MCAD model using the
Kinematics Editor tool. Guerrero et al. [8] demonstrate the application of Process Simulate to

perform VC of a pick and place system. They manually configure and parametrize a kinematic

chain of the 3D MCAD model of the pick and place system using Kinematics Editor. The process is
cumbersome and tedious. Hoffmann et al. [12] propose a workflow transforming MCAD to a VC
model. Their workflow begins with the import of a simplified MCAD model into the robot simulation
tool called Ciros, then manually classify/structure components in the model into stationary parts,
moving parts (i.e. actuators) and sensors, and assign Ciros functions to actuators (e.g. translation
and rotation) and sensors (e.g. ultrasonic sensor). The resulted simulation model must be further

refined with function parameters such as translation stroke and speed. They also conclude that it is
impossible or partially possible to transfer MCAD with kinematics from CAD systems to the
simulation environment; therefore it is necessary to attach kinematics to geometry manually. It is
evident that kinematic behavior generation is still a manual process, and the automatic MCAD-to-
simulation workflow is missing.

3 MCAD2SIM APPROACH

This paper proposes the MCAD2Sim approach aiming to reduce the manual creation of kinematics
with 3D models generation. As the name suggests, the approach produces simulation models from
MCAD models as depicted in Figure 1. An MCAD model designed in an MCAD system is converted
into a 3D kinematics model represented by a kinematic chain. The algorithm adopted in this paper
translates assembly constraints to kinematic joints which is a part of the chain. The kinematic
model as an executable simulation model is in the COLLADA Kinematics format. The following
subsections explain the related foundation applied in this approach.

3.1 Assembly Modeling in MCAD Systems

Products designed in MCAD systems are mechanical assemblies. In MCAD systems, it is necessary
to model individual parts and put them together as an assembly for several reasons such as
separating or reducing materials, allowing disassembly or repair, visualizing relative motions and

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

47

spatial relationship between parts, and creating a part list [18]. Assembling parts in MCAD systems
is commonly fulfilled by assembly constraints.

Figure 1: The MCAD2Sim workflow.

The assembly constraints define relationships between geometric elements of joined parts such as
points, planes, axes, and surfaces. For example, as shown in Figure 2, the arm of the assembly
shown in Figure 1 is joined to the base by two assembly constraints. The concentric constraint
connects the cylindrical surfaces so that they share the center axis. The coincident constraint

brings the two flat surfaces into contact. Without these constraints, the arm can move freely in the

3D space, i.e., six DoFs (three translations and three rotations along/around the X-, Y-, and Z-
axis). The concentric and coincident constraints allow the arm to rotate around the base. Thus, the
mobility is reduced to one DoF. Commercial MCAD systems offer several types of assembly
constraints.

Figure 2: The line-line and plane-plane coincident assembly constraints.

3.2 Kinematic Joint Types

As shown in the left side of Figure 1, the assembly consists of three parts (or links) and two joints
(or kinematic pairs). A combination of links and joints forms a kinematic chain (see the right side
of Figure 1). A kinematic chain is a collection of links and joints interconnected to provide the
output motion corresponding to the given input motion [21]. Generally, links are related to

geometry and are, therefore, visually seen. Between the links, there is a joint which allows or

restricts some relative motions of the links. As depicted in Figure 2, a revolute joint is a result of
constraining the arm to its parent link. Joints are not obviously seen in comparison to links.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

48

3.3 Mapping Constraints to Kinematic Joints

This subsection explains the algorithm that associates joint types with assembly constraints. MCAD

models contain abundant information including the implicit kinematic information [2][17].
Assembly constraints can be mapped to kinematic joints. Kim et al. [16] establish a rule to detect
kinematic joints based on two key geometry characteristics: IPV (Independent Principal Vectors)
and IMG (Intersection of Mating Geometries). The number of IPVs and types of IMG determine the
rotational and translational DoFs, respectively. Their combination results in the total number of
DoF and kinematic joint type. These characteristics are the result of applied assembly constraints.

As illustrated in subsection 3.1, when applying a constraint, geometric elements (e.g., lines,
planes) must be used. Their intersections are the IMGs. The assembly shown in Figure 1 uses the
axis and plane as the geometric elements. Their intersection or IMG is the point as shown in Figure
3. A point IMG allows no translation. Direction vectors of the axis and plane determine the IPV

which is the number of independent direction vectors. As depicted in Figure 3, vector1 is the
direction vector of the axis. Similarly, vector2 which is normal to the plane is the direction vector.
IPV is, therefore, equal to one because both vectors point in the same direction. One IPV allows

one rotation. Therefore, one IPV and the point IMG result in the revolute joint as shown in Table 1.

Figure 3: The side view of the assembly in Figure 1 shows the IMG and direction vectors resulting
from assembly constraints.

Also, as seen in Figure 3, the resulting IMG and IPV can be mapped to a combination of
constraints: the line-line coincident, the plane-plane coincident, which are perpendicular. The
mapping of constraints to the kinematic joints is proposed by Chang [6]. Table 1 summarizes the
mapping. Besides the joints in Table 1, bolted joints are ubiquitous in mechanical assemblies.
Bolts, screws, and nuts are used in these joints to fix parts together. However, they must be
removed from simulation models because they are irrelevant and contain too much detail for the
simulation [12][26]. Therefore, this study replaces them with equivalent assembly constraints that

lock movement in all directions resulting in fixed joints.

4 MCAD2SIM IMPLEMENTATION

This section exemplifies the MCAD2Sim approach using an example shown in subsection 4.1. The

assembly constraints used in the prototype are explained here. Subsection 4.2 explains how the

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

49

approach is implemented to recognize kinematic joints and how the results are formulated for the
simulation.

Joint types Number
of IPVs

IMG A possible combination of constraints [6]

Prismatic 2 Line line-line coincident || plane-plane coincident

Revolute 1 Point line-line coincident ⊥ plane-plane coincident

Planar 1 Plane a plane-plane coincident

Cylindrical 1 Line a line-line coincident

Spherical 0 Point a point-point coincident

Table 1: The mapping of assembly constraints and kinematic joints.

4.1 Prototype

This study adopts the XZ-Cartesian robot shown in Figure 4 as the case study. It is assembled in
the MCAD system using the bottom-up approach, i.e., each component or sub-assembly is
modeled or obtained from component manufacturers and is joined together by assembly

constraints. MCAD models of every component except component (4) are products of Festo and
are downloaded directly from the company website. The product codes and part numbers are
indicated as shown in the feature tree of Figure 4.

Figure 4: The XZ robot.

Table 2 shows how components in the prototype are connected. Component (1) is a pneumatic-
driven linear drive consisting of the housing (1.1) and the slide (1.2). The slide (1.2) is assembled
to the housing (1.1) using the line-line and plane-plane coincident as shown in Table 2 (see item

1). Since they are parallel, they result in a prismatic joint. The item 2 of Table 2 shows the flange

(2) connecting to the slide (1.2) using the plane-plane coincident and the lock constraint. These

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

50

constraints replace bolts and slot nuts that fasten the flange to the slide. Similarly, as shown in the
item 3 of Table 2, another side of the flange (2) is fixed to the linear drive (3) using the plane-
plane coincident and the concentric with lock rotation. The latter constraint replaces four through-
hole bolts locking the linear drive (3) to the flange (2).

No. Components Constraints Joints

1

line-line
coincident

||

plane-plane
coincident

prismatic

2

plane-plane
coincident &

lock
constraint

fixed

3

(left) plane-

plane
coincident &
concentric
constraint
with lock

(right) line-
line

coincident
||

plane-plane

coincident

(left) fixed

(right)
prismatic

4

plane-plane
coincident &
concentric
constraint
with lock

fixed

Table 2: The list of assembly constraints in the XZ robot.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

51

No. Components Constraints Joints

5

plane-plane
coincident &
concentric
constraint
with lock

fixed

6

line-line

coincident

⊥
plane-plane

coincident

revolute

Table 2: The list of assembly constraints in the XZ robot (continued).

4.2 Methodology

Figure 5 presents the implementation process to recognize kinematic joints and determine joints
parameters from an assembly in MCAD systems. The process starts from the root component or

the assembly’s ground which is fully constrained (or fixed). The root of this assembly is the
component (1). For the sake of simplicity, if a component is a sub-assembly, it is assumed that it
consists of two internal parts. Two end stops of (1) are, therefore, combined with (1.1). Also, in
each sub-assembly, one component must be fixed, and another one is free to move. This defines
the parent-child role. Constraints of the parent and child entity are retrieved and analysed. After
the analysis, the result is written to the output file. The process is repeated until the end of the
chain is found.

In case constraints consist of the plane-plane and line-line coincident, vectors of the plane and
line are used to determine the angle between them using the dot product as shown in Equation
(4.1):

 cosl p lx px ly py lz pz l pv v v v v vV V V V (4.1)

, where
l lx ly lzv v vV is the vector of the line,

px py pzv v vpV is the normal vector of the

plane, and ⊖ is the angle between the line and plane. The angle ⊖, therefore, decides on the

rotation or translation process. The line vector lV is passed to these processes as the rotation or

translation axis as well as the in the transformation matrix M of the child entity as shown in
Equation (4.2).

11 12 13

21 22 23

31 32 33

0

0

1 0

1x y z

r r r

r r r

r r r

t t t

R 0
M

T
 (4.2)

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

52

The transformation matrix M consists of the rotation matrix R and the translation vector T
indicating the orientation and position of an object in the 3D space. As shown in Figure 6, after the
rotation axis is determined, the mobility of the child entity is determined by incrementally turning
it one degree around the axis until the collision is detected. The rotation around the X-, Y-, and Z-

axis is specified using the rotation matrices shown in Equation (4.3). Similarly, the translation
moving range is determined by incrementally move the entity 1mm along the translation axis.

1 0 0 cos 0 sin cos sin 0

() 0 cos sin ; () 0 1 0 ; () sin cos 0

0 sin cos sin 0 cos 0 0 1
x y zR R R (4.3)

Figure 5: The flow chart shows the implementation process.

The internal structure and geometry of components allow and restrict some movements; therefore,
they play an important role in collision detection. As a result, the slide (1.2) of the component (1)

moves along the positive X-axis until it hits another end stop (or, in practice, shock absorbers).
Similarly, the piston rod (3.2) moves along the positive Z-axis until it hits another end of the
chamber. The swivel (5.2) rotates around the Y-axis in the CCW direction until it hits another end
of the groove.

After the collision is detected, the transformation matrix is updated. The transformation
matrices before and after rotation are converted into the quaternion (see Equation 4.4) and axis-

angle representation (see Equation 4.5) for the swept angle calculation. The orientation before and

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

53

after the rotation are as follows: 1 1 1

0.1736 0 0.9848 0

0 1 0 ; 100

0.9848 0 0.1736 0

R e and

2 2 2

0.1736 0 0.9848 0

0 1 0 ; 100

0.9848 0 0.1736 0

R e , resulting in the swept angle of 200 degrees. However, the

sliding distance calculation is more straightforward. The subtraction of the translation vector T after
and before the movement results in the distance travelled. The maximum allowable distance of 466

mm of the component (1) is calculated from the difference of [582.53 0 0] and [116.53 0 0]. The
49-mm stroke of the component (3) is calculated in the similar way.

Figure 6: The algorithm determines the rotation axis and angle.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

54

11 22 33

32 23

13 31

21 12

1
1

2
1
()

4
1
()

4
1
()

4

w

wx

y

wz

w

r r r

q
r r

qq

q r r
qq

r r
q

q
 (4.4)

2

1

2

2

1

180
2 cos ()

1

1

x

w
x

y
y w

wz

z

w

q

q
e

q
e q

qe
q

q

e
 (4.5)

, where ⊖ is a scalar value of the rotation angle and e is a unit vector.

Since it is commonplace that components in an assembly have different coordinate systems, it
is absolutely necessary to check if components’ coordinate systems (LCS) are equivalent to the

world coordinate system (WCS) (cf. the item 1, 3, and 6 in Table 2 and Figure 4). The resulted
rotation matrix is converted to the Euler angles (see Equation (4.6)). The rotation axis is rotated
to the WCS by rotation angles in X-, Y-, and Z-axis are applied to the rotation axis. The Y-up
coordinate system of the component (1) is converted to the Z-up orientation by rotating the X-
and Z-axis 90 and 180 degrees, respectively. Therefore, the positive X-axis translation axis is
multiplied with Rx(90o)•Rz(180o) resulting in negative X-axis in the WCS. The positive Z-axis of
component (3) is transformed using Rx(180o)•Rz(90o) resulting in the negative Z-axis. The

positive Y-axis as the rotation axis is rotated to the WCS using Rx(-90o)•Rz(90o) resulted in the
negative Z-axis. Every joint is then referred to the same coordinate system.

After the joint types and parameters are determined, the resulted kinematic pair is written to
the “Chain” as the output of the process. The process proceeds to the next paired link. It is
iterated until there is no connected links to consider. The generated output is formulated into a
standard file exchange presented in the next subsection.

The presented workflow and algorithm is implemented in the stand-alone C# application. The

application interacts with SolidWorks via SolidWorks API. The matrix M of each component is
retrieved by the “Transform2”. The command “getMates()” is used to read out the assembly
constraints. For example, the line-line coincident is recognized by the command
“swMateCOINCIDENT” and “swMateEntity2ReferenceType_Line”. The component movement is
performed using the “drag()” method with “CollisionDetectionEnabled” whose parameter is the
incremental translation or rotation displacement.

2 2

2 2

arctan 2(2(),1 2())

arcsin(2())

arctan 2(2(),1 2())

w x y z x y

w y z x

w z x y y z

q q q q q q

q q q q

q q q q q q
 (4.6)

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

55

4.2.1 Compile the results into COLLADA

The generated output (produced in Figure 5) is formulated into COLLADA 1.5 (*.dae) according to
its specification [13]. COLLADA is the XML-based standard data format (IEC 62714-3) to exchange
geometry and kinematics. It is under the collective body of standard, called AutomationML which is
the standard data exchange format (IEC 62714) in industrial automation.

Figure 7 and 8 show the generated kinematic chain in COLLADA format. Figure 7 shows the

collection of joints stored in the <library_joints> as well as the COLLADA structure. Joint 2, 3, 5,
and 6 are the fixed joints, but are labeled with the <revolute> tag whose <axis> value is null
because the COLLADA syntax supports only prismatic and revolute joint. Figure 8 presents the
hierarchy of kinematic chain (up to link3 – due to the space limitation) stored in the
<kinematics_model>. The hierarchy saves only references to links and joints. Joints are
instantiated and linked to their definition in the <library_joints>. The geometry of links stored in

the <library_geometries> and <library_visual_scene> is referred to by the attributed “sid”. These

libraries are the visualization part of COLLADA. The visualization part, also known as COLLADA 1.4,
is ideally exported from MCAD systems. In reality, however, COLLADA 1.4 is not supported by
MCAD systems [28]. Therefore, each component of the XZ robot as a link is exported as the STL
file. Each STL file is then converted into COLLADA 1.4 using the MeshLabServer command of
Meshlab [7].

Figure 7: A snippet of the generated COLLADA: library_joints.

4.2.2 Import COLLADA into simulation tools

To present the usability of the result, this subsection demonstrates the import of COLLADA 1.5 into
a simulation tool such as RobotStudio. The generated COLLADA is imported into RobotStudio as a
part of AutomationML using the “AutomationML Explorer” add-in developed by Thongnuch et al.

[29] as shown in Figure 9. According to AutomationML, the XZ robot, as one of the plant asset, is

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

56

Figure 8: A snippet of the generated COLLADA: library_kinematic_models.

referred to as an IE (InternalElement) whose geometry and kinematics are described by COLLADA
(XZ_Robot.dae).

The geometry and kinematics information in COLLADA is compiled to a mechanism (of a device

type) in RobotStudio. The RobotStudio mechanism is a group of graphic components consisting of
links and joints [1]. The geometry part (<library_visual_scenes> and <library_geometries>) is
mapped to links as shown in the “Layout” tab. Then, the kinematic part (<library_joints> and
<library_kinematics_models>) defines how the links are connected (prismatic, revolute, or fixed).

The result of the compiled kinematic chain is shown in Figure 9. Users can move the kinematic
chain within the permissible range. For example, joint 1 and 2 are moved by 346mm and 48mm,
respectively. The distance travelled can be verified by the position of links as seen in Figure 9.

5 COMPARATIVE APPROACHES

This section compares the results with recent related works as shown in Table 3. We categorize the
existing works based on three aspects: level of automation, model completeness, and output. The

manual kinematic-type VC model creation such as in [8] is the lowest level of automation. Since

the workflow presented in [8] is in PLM, the output remains usable within the PLM. The higher and
desirable level of VC model generation is (semi-) automatic. Neugebauer and Schob [20] explain
the concept in general to transform MCAD models and electrical circuits to VC models. However,
no algorithm to extract kinematics from MCAD models is mentioned.

To some degree, our approach is comparable to [23]. The constraint-joint mapping also relies
on similar assembly constraints. A similar mechanical assembly in [28] is translated into a

kinematic chain using [23]. The result shows that revolute joints are correctly detected while other
joint types need correction. Moreover, joints in sub-assemblies are not detected because the
algorithm takes only constraints at the top-level assembly into consideration. The resulted
mapping produces the kinematic chain in the Simulink block diagram in which joint direction and
limits must be manually specified. Specifying joint directions by base and follower frames in the 2-
D block diagram seems complicated.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

57

Figure 9: The resulted VC model as a mechanism in RobotStudio.

6 CONCLUSION AND FUTURE WORK

This paper addresses the high modeling effort that hinders the usage of VC in industry. The result
demonstrates that applying the MCAD2Sim methodology to MCAD models can automatically
produce kinematic-type VC models. The methodology applies the rule-based algorithm to basic
constraints to extract joint types and determine joint parameters from the geometry. The described
approach covers the entire workflow to executable VC models in the standard format. The
generated kinematic model serves as the basis for the dynamic model. The generated kinematic

model can be supplemented by dynamic behavior (e.g. a ramp-up and -down behavior and spring
and damping of joints) and is driven by connected output signals.

The algorithm as the core of the methodology still has room for improvement. The current
applied algorithm is straightforward, but it relies solely on explicit and basic constraints.

Compliance with the mapping rule, which requires good design practices, is a must. To cover with
more variations of constraints in MCAD models, future work takes geometry into account to deal
with non-conforming constraints. The screw theory [34] and slippage motion analysis [35] could

improve the algorithm. Additionally, the applied algorithm can detect only lower kinematic pairs (as
listed in Table 1) in which the parent and child link share the surface contacts. Extending the
algorithm to cover higher kinematic pairs (e.g., gears, cams) whose link contacts are point and line
as proposed by Mitra et al. [19] is also an option.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

58

Approaches

Manual (Semi) Automatic

VC
models in
standard

format

Concept Implementation Applied
 algorithm Kin.

joint
without
param.

Kin.

joint
with

param.

Guerrero et al. [8] x no

Neugebauer and
Schob [20]

x

SimScape [23]

x
 constraint-

joint mapping
no

This study
 x constraint-

joint mapping
yes

Table 3: A summary of the recent related works in terms of the level of automation,
completeness, and output of the workflow to generate kinematic-type VC models.

ORCID

Suthida Thongnuch, https://orcid.org/0000-0003-4805-0827
Alexander Fay, http://orcid.org/0000-0002-1922-654X

REFERENCES

[1] ABB. (2017). Operating manual - RobotStudio 6.06 Software.
[2] AVANTI Consortium.: AVANTI: Test methodology for virtual commissioning based on

behavior simulation of production systems, 2014. http://www.avanti-
project.de/files/AVANTI_D1%201_State_of_the_Art_public.pdf

[3] Bender, J.; Erleben, K.; Trinkle, J.: Interactive Simulation of Rigid Body Dynamics in
Computer Graphics, Computer Graphics Forum, 33(1), 2014, 246–270.

https://doi.org/10.1111/cgf.12272
[4] Bergert, M.; Kiefer, J.: Mechatronic Data Models in Production Engineering. IFAC Proceedings

Volumes, 43(4), 2010, 60-65. https://doi.org/10.3182/20100701-2-PT-4011.00012
[5] Botaschanjan, J.; Hummel, B.; Hensel, T.; Lindworsky, A.: Integrated Behavior Models for

Factory Automation Systems. In Proceedings of the 2009 IEEE Conference on Emerging
Technologies & Factory Automation (ETFA), 2009, 1 - 8.
https://doi.org/10.1109/ETFA.2009.5347021

[6] Chang, K.-H.: Product Design Modeling using CAD/CAE: The Computer Aided Engineering
Design Series. The computer aided engineering design series: Elsevier, 2014.

[7] Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G.: MeshLab:
an Open-Source Mesh Processing Tool. In Proceedings of the 2008 Eurographics Italian
Chapter Conference, 2008, 129-136.
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

[8] Guerrero, L. V.; López, V. V.; Mejía, J. E.: Virtual Commissioning with Process Simulation
(Tecnomatix). Computer-Aided Design and Applications, 11(S1), 2014, 11-19.
https://doi.org/10.1080/16864360.2014.914400

[9] Haller, K.; Lee-St.John, A.; Sitharam, M.; Streinu, I.; White, N.: Body-and-cad geometric
constraint systems. Computational Geometry, 45(8), 2012, 385–405.
https://doi.org/10.1016/j.comgeo.2010.06.003

http://www.cad-journal.net/
https://orcid.org/0000-0003-4805-0827
http://orcid.org/0000-0002-1922-654X
http://www.avanti-project.de/files/AVANTI_D1%201_State_of_the_Art_public.pdf
http://www.avanti-project.de/files/AVANTI_D1%201_State_of_the_Art_public.pdf
https://doi.org/10.1111/cgf.12272
https://doi.org/10.3182/20100701-2-PT-4011.00012
https://doi.org/10.1109/ETFA.2009.5347021
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.1080/16864360.2014.914400
https://doi.org/10.1016/j.comgeo.2010.06.003

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

59

[10] Fält, J.; Halmsjö, J.: Emulation of a production cell: Developing a Virtual Commissioning
model in a concurrent environment, Master Thesis. Chalmers University of Technology,
Gothenburg, Sweden. 2016.

[11] Hoffmann, P.; Schumann, R.; Maksoud, T. M.A.; Premier, G. C.: Virtual commissioning of

manufacturing systems: A review and approaches for simplification. In Proceedings of the
24th European Conference on Modelling and Simulation, 2010, 175–181.

[12] Hoffmann, P.; Schumann, R.; Maksoud, T. M.A.; Premier, G. C.: Research on simplified
modelling strategy for virtual commissioning. In Proceedings of the 24th European Modeling
and Simulation Symposium (EMSS), 2012, 294–302.

[13] IEC 62714-3: Engineering data exchange format for use in industrial automation systems
engineering -Automation Markup Language - Part3: Geometry and kinematics. 2016.

[14] Kiefer, J.; Ollinger, L.; Bergert, M.: Virtuelle Inbetriebnahme – Standardisierte

Verhaltensmodellierung mechatronischer Betriebsmittel im automobilen Karosserierohbau.
atp Edition - Automatisierungstechnische Praxis, 2009 (7), 2009, 40-46.
https://doi.org/10.17560/atp.v51i07.92

[15] Kiefer, J.; Bergert, M.; Rossdeutscher, M.: Mechatronic Objects in Production Engineering.
atp Edition - Automatisierungstechnische Praxis, 2010 (12), 2010, 36–45.

[16] Kim, J.; Kim, K.; Lee, J.; Jeong, J.: Generation of assembly models from kinematic
constraints. The International Journal of Advanced Manufacturing Technology, 26(1-2), 2005,
131–137. https://doi.org/10.1007/s00170-004-2231-3

[17] Lindworsky, A.: Teilautomatische Generierung von Simulationsmodellen für den
entwicklungsbegleitenden Steuerungstest. Ph.D. Thesis, Technical University of Munich,
Munich. 2011.

[18] Lombard, M.: SolidWorks 2013 Bible: The Comprehensive Tutorial Resource. Indianapolis,

Wiley. 2013.
[19] Mitra, N. J.; Yang, Y.-L.; Yan, D.-M.; Li, W.; Agrawala, M.: Illustrating how mechanical

assemblies work. Communications of the ACM, 56(1), 2013, 106–114.
https://doi.org/10.1145/2398356.2398379

[20] Neugebauer, R.; Schob, U.: Reducing the Model Generation Effort for the Virtual
Commissioning of Control Programs. Production Engineering Research and Development,
5(5), 2011, 539–547. https://doi.org/10.1007/s11740-011-0317-y

[21] Norton, R. L.: Design of Machinery: An introduction to the synthesis and analysis of
mechanisms and machines (2nd): McGraw-Hill Education. 1999.

[22] Oppelt, M.; Barth, M.; Urbas, L.: The Role of Simulation within the Life-Cycle of a Process
Plant: Results of a global online survey, 2015. https://doi.org/10.13140/2.1.2620.7523

[23] MathWorks.: SimScape: Mates and Joints. 2017.
https://de.mathworks.com/help/physmod/smlink/ref/mates-and-

joints.html?requestedDomain=www.mathworks.com.
[24] Seidel, S.; Donath, U.; Haufe, J.: Towards an integrated simulation and virtual

commissioning environment for controls of material handling systems. In Proceedings of the
2012 Winter Simulation Conference, 2012, 1-12.
https://doi.org/10.1109/WSC.2012.6465081

[25] Spitzweg, M.: Methode und Konzept für den Einsatz eines physikalischen Modells in der
Entwicklung von Produktionsanlagen. Ph.D. Thesis, Technical University of Munich, Munich.

2009.
[26] Strahilov, A.; Mrkonjic, M.; Kiefer, J.: Development of 3D CAD simulation models for virtual

commissioning. In Proceedings of the 2012 Tools and Methods of Competitive Engineering
(TMCE), 2012, 1281-1288.

[27] Strahilov, A.; Damrath, F.: Simulation of the behavior of pneumatic drives for virtual
commissioning of automated assembly systems. Robotics and Computer-Integrated
Manufacturing, 36, 2015, 101–108. https://doi.org/10.1016/j.rcim.2015.01.001

http://www.cad-journal.net/
https://doi.org/10.17560/atp.v51i07.92
https://doi.org/10.1007/s00170-004-2231-3
https://doi.org/10.1145/2398356.2398379
https://doi.org/10.1007/s11740-011-0317-y
https://doi.org/10.13140/2.1.2620.7523
https://doi.org/10.1109/WSC.2012.6465081
https://doi.org/10.1016/j.rcim.2015.01.001

Computer-Aided Design & Applications, 17(1), 2020, 44-60

© 2020 CAD Solutions, LLC, http://www.cad-journal.net

60

[28] Thongnuch, S.; Fay, A.: A Practical Simulation Model Generation for Virtual Commissioning.
In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent
Mechatronics (AIM), 2017, 1077-1082. https://doi.org/10.1109/AIM.2017.8014162

[29] Thongnuch, S.; Fay, A.; Drath, R.: Semi-automatic generation of a virtual representation of a

production cell: combining 3D CAD and VDI-2860 behavior models by means of
AutomationML. at - Automatisierungstechnik, 66(5), 2018, 372-384.
https://doi.org/10.1515/auto-2017-0108

[30] VDI-Guideline. VDI 3693 – 1: Virtual commissioning – Part 1: Model types and glossary.
(VDI). Berlin: Beuth Verlag GmbH. 2016.

[31] Weber, K. H.: Inbetriebnahme verfahrenstechnischer Anlagen: Praxishandbuch mit
Checklisten und Beispielen. VDI-Buch. Berlin: Springer Vieweg. 2015.

[32] Westkämper, E.; Baudisch, T.; Schlögl, W.; Frank, G.: Automatic Model Generation for

Virtual Commissioning of Specialized Production Machines. Softwaretechnik-Trends, 32(2),
2012, 82-83. https://doi.org/10.1007/BF03323491

[33] Weyrich, M.; Steden, F.: Automated Configuration of a Machine Simulation Based on a
Modular Approach. In Proceedings of the 23rd CIRP Design Conference, 2013, 603–612.

[34] Whitney, D. E.: Mechanical assemblies: Their design, manufacture, and role in product

development. Oxford series on advanced manufacturing. Oxford University Press. 2004.
[35] Xu, W.; Wang, J.; Yin, K.; Zhou, K.; Van de Panne, M.; Chen, F.; Guo, B.: Joint-aware

manipulation of deformable models. ACM Transactions on Graphics, 28(3), 2009.
https://doi.org/10.1145/1531326.1531341

[36] Zäh, M. F.; Wünsch, G.; Hensel, T.; Lindworsky, A.: Nutzen der virtuellen Inbetriebnahme:
Ein Experiment. ZWF Zeitschrift Für Wirtschaftlichen Fabrikbetrieb, 101(10), 2006, 595–599.
https://doi.org/10.3139/104.101070

http://www.cad-journal.net/
https://doi.org/10.1109/AIM.2017.8014162
https://doi.org/10.1515/auto-2017-0108
https://doi.org/10.1007/BF03323491
https://doi.org/10.1145/1531326.1531341
https://doi.org/10.3139/104.101070

