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Abstract. This paper describes an innovative methodology which automatically creates a
2D-axisymmetric finite element (FE) model of a quasi-axisymmetric component from its
3D CAD model. The process has been implemented as a script and uses the API to a
commercial FE package. The calculation of a volume shape coefficients to be applied in the
non-axisymmetric regions of the FE model, to account for the fact the region is not fully
axisymmetric, is also described. In the paper, the methodology is demonstrated for a rotating
blade of tapered profile analyzing and comparing both stresses and displacement. Excellent
results are shown.
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1 INTRODUCTION

There is a desire to utilize 3D Computer-Aided Design (CAD) models to represent components earlier in the
design process than is currently realized. However, there is also a need to ensure that the associated analysis
process is efficient, utilizing analysis models of appropriate cost and complexity for the maturity of the design.
For instance, at the beginning of the development phase it can be interesting to carry out analyses of different
versions of the product using simplified FE models, to select which designs are most promising based on some
particular criteria (e.g. stress/deformation). Then, the analyst can refine the design and develop progressively
more detailed representations, from 2D models or simplified 3D versions to fully detailed 3D models if required.
However, in reality the CAD models provided to the analyst may be very complex and an idealisation step is
required to make them suitable for analysis [9, 16]. In general, the main operations for geometry preparation
are:

• Defeaturing: removal of geometric details which do not affect the simulation results [10]

• Geometry clean-up: removal of design features (e.g. fillets) or unintended features (e.g. slivers) due to
geometric tolerances [4]
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• Partitioning (divide the model): this operation is vital for the correct application of boundary conditions
between regions (e.g. solid-fluid). It can also be necessary to differentiate between the different materials
in a component or decomposing the geometry to create different types of meshes [13].

• Decomposition: decomposing complex geometries into simpler sub-regions to generate models suitable
for mesh generation such as structured hex meshing or mixed-dimensional meshing [12].

• Dimensional reduction: representing models (or parts of models) with lower dimensionality [6] to create
simplified, computationally efficient versions for simulation [2, 5].

Usually, idealizing a complex CAD model will require more than one of these operations, and much research
has been devoted to managing and streamlining the process, e.g. [11]. The dimensional reduction step is at
the core of this work. Specifically, the automatic creation of a 2D-axisymmetric FE model from the 3D CAD
model of a quasi-axisymmetric component. A quasi-axisymmetric component is one where there is an obvious
axis about which much of its geometry is axisymmetric, but it includes features which are not revolved around
the axis. Some geometry clean-up operations are also required during the idealization process.

1.1 State of the art limitations for axisymmetric idealization

There are two major limitations in the field of axisymmetric idealization. The first relates to the lack of
available functionalities in CAD systems to support the automatic generation of 2D-axisymmetric FE models
from 3D quasi-axisymmetric CAD models. The most intuitive idea is to start by identifying the 2D profile
of the part, including both axisymmetric and non-axisymmetric features. The next logical step would be to
explore novel methods to identify relevant geometric features from the non-axisymmetric regions and map
them to the 2D-axisymmetric profile to complete it.
Generating the outer 2D profiles from 3D CAD geometry is common practice in the CA/DCAM field [17],
particularly in the context of mill-turning machining. A mill-turn part contains axisymmetric features (created
from turning operations) and non-axisymmetric features (created by milling operations). Given a finalized part
it is necessary to create “as-lathed” parts for generating manufacturing plans. As-lathed parts are intermediate
work-pieces obtained after all the turning operations, on which the milling operations are performed later on,
adding non-axisymmetric details. For instance, the model shown in Fig. 1 (a) is an as-lathed part obtained
through turning processes. The milling operations are performed on this part to generate the finalised part is
depicted in Fig. 1 (b).

(a) As-lathed part from turning operations.

(b) Finished part resultant from a turn-mill process.

Figure 1: Figure adapted from [8]

The common approach used in the literature to generate as-lathed models consists of revolving all the
faces of the finished part around the axis of revolution to fill-in the gaps between non-axisymmetric features.
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Unfortunately, the revolve operation presents many important drawbacks. Wentao in [8] stated that revolve
operations are computationally expensive when dealing with many 3D geometries, time consuming and po-
tentially inaccurate. Due to these drawbacks, which were also observed over the course of this work, it was
decided not to use revolve operations as part of the automatic idealisation procedures. Besides, there was also
the desire to create a CAD vendor independent solution, able to produce 2D CAD models in a neutral format
so they can be imported into any FE package for meshing and analysis.

The second limitation relates to the lack of investigation on simulation techniques for the axisymmetric
analyses of quasi-axisymmetric models. Currently, axisymmetric analyses are mainly performed on truly axisym-
metric models or on quasi-axisymmetric models, where it is assumed that the impact of the non-axisymmetric
features on the analysis results is negligible and are simply ignored in the analysys (e.g. the tiny holes in
Fig. 1 (b)). However, for many components the non-axisymmetric features cannot be considered negligible
and must be accounted for in the axisymmetric analysis to ensure the results obtained are representative of
the behaviour of the 3D component. While in Abaqus [1] a manual approach can be used to account for some
simple non-axisymmetric cylindrical hole features for which the effect can be mathematically derived, to the
authors’ knowledge there are no published methods to automatically account for general non-axisymmetric
features in an axisymmetric analysis.

This paper presents an automated idealization methodology for creating a 2D-axisymmetric FE model
from the 3D CAD model of a quasi-axisymmetric component. An approach to account for non-axisymmetric
features in an axisymmetric analysis based on a geometric attribute (shape coefficient) is also discussed.
This coefficient is used to correct the material properties and loads on the non-axisymmetric regions of the
2D-axisymmetric FE model.

2 The Idealisation process

The idealisation methodology presented here has been implemented in two main stages: i) a software capability
developed in the C# programming language for the creation of the 2D-axisymmetric profile and ii) a Python
script which exploits the Abaqus Python Scripting Interface to calculate the shape coefficient from the CAD
model and meshing operations. The input is a triangular facetted representation of the CAD geometry.
A facetted representation was selected as the input because it can be created for all common engineering
geometry types (e.g. NURBS geometry, analytic CAD geometry, meshed geometry and point clouds). The
facetted representation is created by replacing each of the faces of a model by a set of triangular facets. The
quickest way to achieve this is to export the geometry from the CAD system in a facetted format. VRML was
the format used in this work because it is well documented and widely available, but the approach would work
equally well with any triangular surface mesh/facet representation. The mesh coarseness should be selected
to reflect the size of the features in the part, but increasing the number of elements will impact the processing
time. One of the advantages of the VRML writers is that they use element sizes suited to the scale and
curvature of the model. Note that, while it is possible to analytically compute an analytic description of an
analytic shape when projected on a plane, it is not possible to do this for NURBS geometry. The different
steps implemented in the process are further reported with the geometry at different stages shown in Fig. 2.

2.1 Step 1: Projecting face facets circumferentially onto the r-Z plane

The 2D axisymmetric model exists on a plane, consequentially the first step in the idealisation of the component
model involves circumferentially projecting the facets representing each face onto a plane. The plane is referred
to as the r−Z plane where r is the radial direction and Z the axial. The circumferential projection of a face
onto the r − Z plane implies a <3 → <2 transformation from the Cartesian coordinate system (x, y, z) to a
new set of coordinates in (r, Z) space. Depending on the direction of the axis of revolution in the component
model the specific transformation will differ, but for each facet vertex the r coordinate is the shortest distance

Computer-Aided Design & Applications, 16(6), 2019, 1020-1033
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


1023

of the point from the axis of revolution, and the Z coordinate of the vertex remains at its current value
in the axial direction. For example, assuming the axis of revolution is the z-axis, the transformation is
(x, y, z)→ (r, Z) = (

√
(x2 + y2), z).

2.2 Step 2: Classifying faces

Once the facets representing the model faces have been projected onto the r − Z plane, it is necessary to
classify them, so that they can be used to describe the overall shape of the final 2D-axisymmetric model in
future steps. The classifications are:

• Case 1: After the projection, the 3D face becomes a 2D degenerate face of zero area (referred to as a
“mapping face” in this work). This occurs when the area of every facet representing the face becomes
zero after the projection. For example, this is the case of faces F1 to F5 in Fig. 2

• Case 2: These are faces that include some facets that have non-zero area when projected circumferentially
onto the r − Z plane. For example, faces F6 to F9 in Fig. 2

Figure 2: Key elements in the 3D model (left) and the equivalent 2D-axisymmetric profile (right).

2.3 Step 3: Identification of mapped edges

To extract a set of edges to define the axisymmetric profile of the part, the set of facets identified in step 2 as
case 1 are used. As they have zero-area, these projected facets have three collinear vertices. The associated
mapped edges can be identified by eliminating the intermediate vertex (or a coincident vertex), leaving only
the extreme points. The mapped edges are then stored in a list called SHAPE-EDGES for use in step 5.

2.4 Step 4: Identification of silhouettes edges

Silhouette edges define another set of edges required to define the axisymmetric profile. Silhouette edges are
identified as those bounding adjacent facets whose normals point in opposite directions after the projection to
the r−Z plane. The facet normals can be calculated by taking the vector cross product of two edges of that
triangle (where the edge vectors can be computed based on the end point locations). For example, in Fig. 3
the normals of facets A and B initially point out of the body in 3D space, Fig. 3 (left), as is the standard for a
CAD model. After being projected on the r−Z plane, the normal of these facets point in opposite directions
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(Fig. 3 (right)). Hence the edge shared by facet A and B is a silhouette edge. Note that this is not the case
for adjacent facets C and D or E and F, since adjacent normals point in the same direction after the projection
onto r − Z. Hence, they do not share a silhouette edge.

Figure 3: Silhouette curves of a 3D geometry viewed from the axis of revolution and definition of the normal
of representative facets (left) and definition of a silhouette curve in the r − Z plane (right).

The identified silhouette edges are added to the SHAPE-EDGES list which now contains all the necessary
edges to form the 2D-axisymmetric profile. This list represents the input to step 5.

2.5 Step 5: Obtaining a raster representation of the 2D-axisymmetric profile

The set of SHAPE-EDGES is sufficient to define the overall boundaries of the 2D-axisymmetric model. How-
ever, at this stage the shape edges are not topologically connected and cannot be used directly to identify the
topology of the 2D-axisymmetric model. This is due to the fact many of the edges will be redundant, because
many faces will potentially have projected onto the same locations. This may mean many edges overlapping
within a very small tolerance, as shown in Fig. 4 (a). The visual effect of the overlap of the edges in this figure
has been magnified for illustration purposes.

In this work, rasterization strategies are used to deal with the edge redundancy issue and to generate an
appropriate data representation for topology construction via contour recognition techniques (addressed in
step 6). The rasterization approach consists of discretizing the r − Z plane to a square grid (i.e. a raster
formed by square cells Fig. 4 (b)) which the shape edges are mapped to. If a cell in the raster is intersected
by one or more edges, then the cell is stored. This way many edges can be reduced to a set of unique cells,
Fig. 4 (c). In this work Bresenham’s line algorithm [3] was used. By applying the rasterization approach,
the 2D-axisymmetric model profile is reduced to a binary structure from which the regions that form the
2D-axisymmetric model can be extracted in step 6.

2.6 Step 6: Building the 2D-axisymmetric model

In this work, the OpenCV image processing library (particularly the .Net wrapper EmguCV) was used to identify
contours in the binary structure resulting from method 5. EmguCV contains a function for contours retrieval
(findContours) based on Suzuki´s algorithm [15]. The contours detected using this function (Fig. 4 (c)) are
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Figure 4: (a) Overlapping edges in a 2D-axisymmetric profile; (b) Overlapping edges reduced to a set of unique
cells; (c) Contours detected in the binary profile; (d) Simplified contours using Douglas-Peucker algorithm; (e)
Stitching of the simplified contours; (f) 2D-axisymmetric CAD model; (g) 2D-axisymmetric FE model

stored as arrays of points defining polygons. It was identified that the resultant polygons can be unnecessarily
complex from a FE perspective, and require simplification to help reducing the resolution (i.e. the edges defining
the polygons are much shorter than the element size). To simplify the polygons, the Douglas-Peucker algorithm
[7] (function ApproxPoly in EmguCV) was used. This algorithm identifies and compresses horizontal, vertical,
and diagonal segments to single entities, as illustrated in Fig. 4 (d). Typically, the simplified polygons have
small gaps between them after the rasterization and simplification operations. Hence, stitching the polygons
together is necessary (Fig. 4 (e)). To achieve this the “Stitch” command implemented in Abaqus/CAE is used.
The resulting set of polygons represent the 2D-axisymmetric model. These polygons can be converted into a
usable CAD model (Fig. 4 (f)) by writing them in a format such as STEP.

The automated idealisation result of some simple concepts are shown in Fig. 5. In each case the CAD
models were created in CATIA V5 and were dimesionally reduced in under 30 seconds on a standard desktop
workstation. Note that the model on the right has blades with aerofoil profiles.

Figure 5: Automated rebuild of axisymmetric shape

3 Axisymmetric FE model

3.1 Definition

The 2D-axisymmetric FE model Fig. 4 (g) is obtained by meshing the CAD model resulting from the six steps
described in section 2. In this work the creation of the FE model was automated using the ABAQUS Python
API. The main steps in the model creation were the automation of the creation of an axisymmetric profile
and appropriate boundary conditions (e.g. Uy = 0, Rx = 0 andRz = 0, where x is the axial direction and z is
the radial) and the application of 2D axisymmetric elements (e.g. CAX6M) in the different sub-regions of the
model. The conversion of a 3D quasi-axisymmetric model to its equivalent 2D-axisymmetric representation
results in a loss of the geometric information contained in the circumferential dimension. In order to ensure the
physical relevance of the 2D-axisymmetric model with respect to the original 3D model, the information loss
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must be compensated. A physically straightforward way to account for this, is to modify the 2D-axisymmetric
FE model with a shape coefficient applied to the material properties.

For this purpose, the “Volume Fraction” coefficient (KV ) has been defined. This coefficient establishes
for each region in the model the fraction of the volume around the axis of revolution the 3D model actually
occupies. This coefficient is equal to 1 for an axisymmetric region.

3.2 Correction of material properties and loads

Correcting material properties when performing analyses using the 2D-axisymmetric model is key to obtaining
physically realistic results. Obviously, the type of material properties to be corrected will depend on the
type of analysis performed. In this work, this has been investigated from a mechanical analysis perspective.
To understand what type of material properties must be corrected in the proposed mechanical analysis, the
equations defining the behaviour of the material for the 3D and 2D axisymmetric geometries are compared.

Figure 6: Non-axisymmetric calculation volumes for the 3D and the 2D-axisymmetric models

First, the two domains must be identical in terms of mass. However, since the parameter most commonly
applied in FE packages is not the mass but the density, the latter is used instead. The actual mass of the
3D volume is given by the density (ρ) multiplied by the actual volume (V3D). This must equal the density
applied to the axisymmetric volume (ρ2D) multiplied by the assumed axysymmetric volume (V2D). Equating
the masses on both domains gives

ρV3D = ρ2DV2D ⇒ ρ2D = ρ
V3D
V2D

(1)

where the ratio V3D

V2D
is precisely the volume fraction KV . Hence, the density of the axisymmetric calculation

volume must be corrected following the relationship ρ2D = ρKV . Second, it must be ensured the equivalence
from a loading perspective and this is assured by considering the “Strain Energy”. If a perfectly elastic material
is deformed, all the energy put into this deformation must be recovered by bringing the material to its initial
state [14]. This energy (denoted by U) is defined by the stress and strain vectors in a generic differential
volume dV through the expression

U =
1

2

∫
V

{σ}{ε}dV (2)
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Finally, if Eq. 2 is written in terms of the strain vector alone and if it is considered that the 3D and the
axisymmetric volume calculations must exhibit the same elastic behaviour (stress and strain) it is possible to
imply that they must have the same energy strain magnitude (U3D = U2D). It is thus possible to write∫

V3D

{εT }E{ε}dV3D =

∫
V2D

{εT }E2D{ε}dV2D (3)

Since there is the desire to maintain an equivalence between the two domains, the strains {ε} must be the
same on both sides of Eq.3. Hence, the only term that can be used to equal the energy strain magnitudes is
the material stiffness. Therefore, it can be deduced that

EdV3D = E2DdV2D ⇒ E2D = E
dV3D
dV2D

(4)

where the ratio dV3D

dV2D
is precisely the volume fraction (KV ). Therefore, to make the axisymmetric analysis

equivalent to the 3D analysis, each of the elements of its elasticity matrix must be multiplied by the volume
fraction KV , giving

E2D = KVE (5)

From a physical point of view, reducing the Young´s modulus in the radial and longitudinal directions
corrects stiffness effects in the axisymmetric plane. Fig. 6 summarises the material properties to be edited
when using a 2D axisymmetric model to represent a non-axisymmetric feature. If isotropy in the r − Z plane
is assumed then E2D

r equals E2D
z . In a quasi-axisymmetric model of structures such as turbines or turbine

casings, the non-axisymmetric features usually only occupy a small fraction of the volume. This implies that, in
these features, any normal or shear stress with a component in the hoop direction are negligible. A convenient
way of enforcing this condition in a quasi-axisymmetric model is to specify material moduli which are negligible
in the hoop (θ) direction, i.e. to use an anisotropic material model where the properties in the r-Z plane are
given by Eq. 5, but the modulus in the θ direction is negligible. An example is given in Table 1.

3.3 Automatic calculation of the shape coefficients

The process has been implemented in Abaqus by inputting the 3D and the 2D axisymmetric CAD models
followed by the creation of two bodies named “Revolve” and “Subtract”. These are depicted in Fig. 7 (b) and
Fig. 7 (c) respectively for the input model in Fig. 7 (a).

• “Revolve” represents the totality of the material around the circumference and is generated by revolving
the non-axisymmetric region (referred to as F) around the axis of revolution.

• Subtract represents the material which should not be represented in the 2D axisymmetric model, and is
generated by the Boolean subtraction of the original 3D model from “Revolve”.

The calculation of the Volume Fraction (KV ) is straight forward. It only requires the volumes of the two
counter-parts, denoted by “Vol (Revolve)” and “Vol (Subtract)” respectively, as

Kv =
V ol (Revove)− V ol (Subtract)

V ol (Revolve)
(6)

It is obvious from this equation that a Volume Fraction value ranges from zero to one. Volume fractions
close to zero indicate very little material around the circumference. Conversely, if the Volume Fraction reaches
unity the geometry is fully axisymmetric (and the application of any of the shape coefficients in not required).
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Figure 7: (a) 3D Model, (b) Revolve and (c) subtract counter-parts for the calculation of the shape coefficients

4 Validation

4.1 Test case definition

To validate the proposed methodology a rotating blade of tapered profile is analysed. The radial stresses
and displacement resultant from both the 3D model (Set-up A), the generated 2D-axisymmetric model with
corrected properties (Set-up B corr) and the analytical model are compared.

The 3D model is depicted in Fig. 8 and consists of a shaft with 20 tapered blades occupying 2% of the
volume at all radii, consequently the volume fraction KV is equal to 0.02 for entire non-axisymmetric region.
The geometry studied is cyclically symmetrical about the axis of revolution; hence, analysing just one sector
is sufficient to obtain representative results for the entire model. Stresses and displacements acting along the
radial direction caused by a centrifugal body force are evaluated in this example. It is assumed that the blade
is rotating with an angular velocity ω = 250 rad/s. The isotropic material properties for the 3D model and
the corrected properties for the axisymmetric analysis are reported in table 1.

Density [Kgm−3] E1 [MPa] E2 [MPa] E3 [MPa] G12 [MPa] G13 [MPa] G23 [MPa]

Properties 7700 200000 200000 200000 77000 77000 77000

Corrected Properties 154 4000 4000 4E-3 1538.5 2E-3 2E-3

Table 1: Material properties and corrected material properties

The material properties have been corrected following the logic presented in [1]:

• The density of the non-axisymmetric region is multiplied by the volume fraction to make the mass of
the axisymmetric calculation volume equal to the mass of the blades.

• The effective in-plane Young´ s modulus, E2D
r and E2D

z , are obtained by multiplying the respective radial
and longitudinal Young´ s moduli, Er and Ez ,by the volume fraction thus E2D

r = E2D
z = E2D = KV E.

Reducing the Young´ s modulus in the radial and longitudinal directions aims to correct the stiffness.
The modulus in the circumferential direction, must also be reduced to account for the fact that there are
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“air” gaps between the blades. This value must be very small since there no stiffness in the circumferential
direction and is chosen such that E2D

θ

E2D = 10−6 (value taken from [1] for the same material).

• The in-plane shear modulus is then calculated based on the corrected Young´s modulus following the
relationship G2D = E2D

2(1+ν) .

• The shear moduli in the 12 and 23 directions are assumed to be negligible.

The analytical expression for the stresses along the midline of the component can be divided into two
different components, one for the shaft section and one for the blade.
The radial stresses for the shaft section (0 ≤ r ≤ r1) (refer to Fig. 8) can be defined as

σrs = A+
3 + ν

8
ρω2

(
r21 − r2

)
(7)

where ν = 0.3 is the Poisson’s ratio, ω = 250rad/s is the angular velocity, the density ρ is given in table 1
and A represents the stresses at the blade-shaft interface. A can be evaluated as:

A =
mblade · ω2 · COG

πr21t
(8)

where mblade is the mass of the blade, t its thickness and COG the centre of gravity of the blade.
The radial stresses along the midline of the tapered blade (r1 ≤ r ≤ r2) can be defined as:

σrb = ρω2

(
r22
3r
− r2

3

)
(9)

Figure 8: Shaft with 20 tapered blades uniformly distributed along the circumference and 1/20th sector of
the same geometry

Both FE models have utilised quadratic elements with the same density on the plane of the blade. The
two set-ups are represented respectively in Fig. 9 where the boundary conditions applied are also reported.
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Figure 9: Analysis Set-up A (left) and Analysis Set-up B (right)

4.2 Results and discussion

Radial stress: The contour plots of the radial stress for the 3D section (Set-up A) and the corrected 2D
axisymmetric (Set-up B Corr) are shown in Fig. 10 left and right respectively. From the figure it is visible that
the results obtained from the two different set-ups are similar.

Figure 10: Stress contour plots for Set-up A (left) and Set-up B (right) where the stress on the blade is
corrected by the volume fraction

To carry on a quantitative analysis of the behaviour of the stress, 35 points radially distributed along the
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midline of the shaft and blade have been taken from both set-ups (red points in Fig. 10). Their values have
been plotted in Fig. 11 and compared with the analytical solution obtained from Eq. 7 and 9. In Fig. 11 the
red triangles represent the stress values of set-up A, the black crosses shows the stress values of Set-up B and
the green line represents the analytical solution. Note that the first 500mm is the shaft, while the range from
500mm to 3500mm is the blade.
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Figure 11: Stress along the radial direction for Set-up A and Set-up B Corr and analytic solution

The maximum radial stress along the midline of the blade is at the interface between the disk and the
blade. At this particular point, Abaqus provided a stress of 11320 MPa for set-up A and 11450 MPa for set-up
B. From the interface on, the radial stress decreases progressively along the length of the blade. To provide
a further quantitative insight of the relative differences (deviation) between the two set-ups, the stress and
displacements at the sample points obtained on both set-ups are mapped against each other to outline the
relative difference (see distance to the line of slope equal to one) between both analyses. Fig. 12 and Fig. 13
show the differences between both set-ups in terms of stress and displacement respectively.

The maximum deviations occur at the interface between shaft and blade. In the middle of the interface
(where the red point is) the deviation is circa 1.5% for the stress and 1.1% for the displacement. On the
interface there are two points where the stress gets concentrated (shown grey in Fig. 12). Here the complex
stress concentrations cannot be appropriately represented by the axisymmetric model which leads to higher
deviations at these two points with values of 6.8% for the stress and 4.4% for the displacement. At this radius
the axisymmetric model has to represent both the free surface of the shaft plus the connection of the shaft
with the blade.

5 Conclusion and future work

From this work, the following conclusions can be drawn;

• An innovative methodology which automatically creates a 2D-axisymmetric model for a quasi-axisymmetric
component from its 3D CAD model, in very short timescales, has been presented.

• A shape coefficient is used to correct the material properties when performing axisymmetric finite element
analysis.
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Figure 12: Relative difference between set-
up A and B (stresses)

Figure 13: Relative difference between set-
up A and B (displacements)

• The ensemble of idealization methodologies described have been implemented in a fully automated
software prototype.

• The accuracy of this shape coefficient is tested through load analysis on a rotating blade of tapered
profile.

• Accurate results are reported.

Over the course of this work, the idealisation and analysis of even seemingly complex models has required
less than 5 minutes to process. In the process described above, one Kv value is calculated for each quasi-
axisymmetric region in the model. This was fine for the example model because the tapered blade profile
meant that the Kv value was constant across the blade, and the calculated Kv was accurate at all positions.
Should the thickness of the geometric features in the axisymmetric regions not exhibit this property, then
the Kv value calculated will be the average for the region. Should the average not be sufficient then the
quasi-axisymmetric profiles in the 2D model can be divided into smaller regions. This will produce smaller
sections, each with a Kv value averaged for the region they cover. At the highest level of granularity, the
quasi-axisymmetric regions can be meshed in the 2D model, and each element treated as a separate region.
This will provide the highest possible accuracy, but there will be a cost associated with its computation.

Future research will involve testing the idealisation methodologies on components from other industry
sectors and investigating extension of the methodology to other Finite Element Analysis disciplines.
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