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ABSTRACT 

 

In this work, a framework for an inedited method for mechanical structures 
optimization is proposed. It is performed by re-arranging the Topology Optimization 
mesh obtained by BESO according to mechanical parameters. The principal stresses 

and the slope of the principal reference system are calculated, mesh elements are 
rotated, and a process of joining and size-modifying elements is performed. In a 
further step, a fine gradient based shape optimization may be applied. The main 
advantage of the method is that the final layout is created by modifying the 
orientation of the resulting elements, and an enhanced distribution of material is 
achieved. The goal is to overcome the sensitivity problems of other methodologies, 
and to reduce undesired checkerboard pattern. Finally, the preliminary results of a 

first implementation of the methodology are presented. 
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1 INTRODUCTION 

The goal of the Topology Optimization of a linearly elastic structure is the definition of the optimal 

material layout within a given domain. The structure is subjected to constrains and loads, which 
represent the boundary conditions of the problem. The desired result is the reduction of the solid 
volume compared with an initial design region. 

The achievement of such task is relevant in many fields, and different approaches have been 
developed. These approaches include the solution of a constrained optimization [5]. The functions are 
minimized (or maximized) by the optimization method, which involves mechanical parameters such 
as compliance, eigenfrequency, and more. Due to the complexity of the problem, the achievement of 

high performances in terms of mass reduction is a complex task. 
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The well-known and widespread topological optimization (TO) methodologies are divided into two 
main categories: microscopic and macroscopic methods. Such distinction is substantial, because the 
result of the TO may be different due to the different strategy adopted. 

In methods using a microscopic approach, such as SIMP [3] and BESO [12], the feasible domain 

available for the solid material is divided in a finite number of discrete elements. The density of the 
material of each element represents the design variables, which may vary with continuity in the SIMP 
method (density approach) or being binary in the BESO Method (evolutionary approach). 

On the other hand, methods using macroscopic approaches, such as Level Set, describe the 
evolution of the boundaries of the solid domain in function of the design variables [15]. A discretization 
of the design domain is required as well, even if the implementation of this methodology does not 
intrinsically need the decomposition stage in a finite number of elements. 

Many researches disclosed different variants of the said methodologies, highlighting their 

advantages and drawbacks. Eschenauer and Olhoff [9] carried out a comprehensive analysis of various 
aspects regarding the Topology Optimization. They proposed a review of the most widespread 
macroscopic and microscopic approaches. Methods adopting the microscopic paradigm were first 
presented by Bendsoe and Sigmund [4] [17]. Many efforts have been done in order to improve these 
methodologies. For instance, Christiansen et al. [7] combined Topology and Shape optimization in 

order to achieve more smooth geometries. Other efforts have been done even using genetic 
algorithms [24]. 

Another example is the work of Xia and Breitkopf [20], which is a derivation of the density 
approaches, such as SIMP, and deals with a multiscale topology optimization. A multilevel approach 
has been applied using BESO strategy at different optimization stages [6] as well. 

Some works investigating the use of microscopic approaches highlighted some drawbacks. One of 
the most relevant issue is that SIMP, ESO, and BESO are able to give indication of the topology only 

in an implicit manner. For this reason, Guo et al. [11] proposed a TO strategy which explicitly controls 
the optimized layout with function representing geometrical features. 

In general, macroscopic approaches, such as Shape Derivatives or Level Set [1] [23] [21] may 
be adopted as an alternative to microscopic approaches. Wang have investigated the application of 
level sets in [19], and the significant work to synthetize compliant mechanisms is detailed in [18]. To 
study the behavior of compliant mechanisms, a density-based topology optimization method (SIMP) 
has been adopted by Zhuo [22] as well. 

Moreover, there are topic directly related to TO that have been investigated. As an example, the 
direct application to the CAD application using optimization strategies [8] [16]. 
Despite the large number of researches regarding the structural TO, the discussion about the choice 
of the best strategy to achieve the higher mass reduction is still an open topic. All approaches exhibit 
some advantages and are affected by some drawbacks. For instance, microscopic approaches are 
potentially able to produce a large number of topologies. On the other hand, they have a high 

sensitivity of the results to the choice of mesh resolution adopted to discretize the variable domain. 
Macroscopic approaches potentially are able to explicitly express the boundaries of the solid domain 
resulting by the optimization process. These approaches overcome the problem of undesired 
pixelization of the solid domain, typical for microscopic approaches. The main issue of this approach 
is the high dependency to the initial material configuration, and the risk in reaching a local minimum 
for the optimization problem. 

The main goal of this paper is to present a novel methodology, which potentially combines the 

advantages of both microscopic and macroscopic approaches. Our proposal is avoiding the undesired 
checkerboard pattern affecting the result of microscopic approach TO. We introduce a novel method 
using an evolutionary microscopic TO approach in a first stage, combined with a refinement of the 
results by redefining the mesh. This second phase is carried out taking in account the results of the 
stress tensor analysis. 

To better explain the main idea, Fig. 1. shows a simple example of a cantilever truss subjected to 
a vertical force. Fig. 1(a). depicts the result of the optimization of a truss, obtained using the BESO 

algorithm, which was implemented by using Abaqus script. 
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(a)  

(b) 

Figure 1:  Boundary conditions for the case study and result of the process of Topological 
Optimization. 

In this case, the boundary conditions are the application of a vertical force (F) in the left bottom 

vertex of the truss, and the constraint of its right side.  In literature, this kind of procedures have 
been already largely studied, and the algorithms are well defined. To avoid tessellation of the resulting 
structure, the use of a sensitivity filter has been employed. The result of this combination is well-
defined solid/void zones. 

Some sub-structures are highlighted (red rectangles in Fig. 1(a).), which may be interpreted as 
beams. From a structural point of view, beam elements are the best in order to manage mono-axial 

states of tension, which means that the stress is a simple traction or a simple compression. In this 

example, a great number of elements composes such geometrical features. For this reason, it is 
important analyze the passage from a larger dimensional scale to a smaller one. 

It can be observed that the beam sub-structures are not disposed in the same direction of the 
square elements they are composed of. This depends on a general initial definition of the mesh. In 
addition, analyzing the state of tension of the elements, depicted in Fig. 1(b)., the first principal 
tension is bigger than the second one, and has the same direction of the beam. This stress 

configuration may be interpreted as a pure compression for the beam. This observation is coherent 
with compression/traction state of the stress of the beam. 

The implicit result of the TO is that the ideal layout includes some beam features at a macroscopic 
level. Conveniently, these beams have a mono axial state of stress. The same result may be explicitly 
obtained by observing (and averaging) the state of tension of the single elements which belong to the 
beams. 

This parallelism between the macroscopic result of the TO and the analysis of the state of tension 

of its elements may support the foundation of the optimization methodology described in this research. 
The main hypothesis is that the geometric features resulting by a topology optimization, which may 
be recognized as beams, are subjected to simply traction or compression (and not subjected to 
bending, for instance). This means that an enhanced distribution of material occurs inside the 
workspace if the elements are purely compressed or in traction. 

2 METHODOLOGY 

The proposed methodology has been devised in order to incorporate information about the stress 
configuration in the definition of the mesh. This is coherently done with the empirical observations 
illustrated in Fig.1. It is composed of different phases, which may be implemented in a MATLAB code, 
for instance, by the use of the following routines: the Finite Method Analysis [2] [10] [13] and the 

BESO Topology Optimization [14] [25]. After obtaining the results from the previous steps, a re-
meshing of the design space is performed. The re-meshing is based on the flux of tensions in the 
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optimization in the design layout.  To perform this stage, a routine for the rearrangement of the 
geometry has been developed. 

Abaqus has been adopted to employ the whole process based on the following steps: 

• discretization (mesh generation); 

• rough BESO optimization; 

• stress configuration evaluation; 

• element rearrangement (rotation and connection); 

• size (shape) optimization. 

In the following subsections, each step is described. 

2.1 Discretization 

in the initial stage it is necessary to discretize the workspace defining a starting mesh. In this work, 
the design domain relates to a cantilever truss, and the elements are square Q4-linear elements. 
These elements are characterized by four nodes, which are the integration points, and linear shape 
functions. 

The physical quantities are evaluated at the center of each single element. Stresses and strains 

are computed, and the integral of the quadratic form representing the elastic strain energy is 
calculated as: 

𝐸𝑒𝑙 =
1

2
∫ 𝐾𝑖𝑗𝑙𝑚𝜀𝑖𝑗
𝑉

𝜀𝑙𝑚 (2.1) 

where K is the fourth order stiffness tensor of the element, and ε is the second order strain tensor.  

In order to perform a comparison (for the check of the results of the MATLAB code) with the 

Abaqus software, the function built in function ESEDEN have been used. It has been done even 
because this physical quantity allows computing the sensitivity analysis to perform the optimization 
process. 

Schematically, the discretization phase is depicted in Fig. 2. Fig.2(a). shows the initial analysis 

of the workspace AOI, highlighting the principal stresses, σI and σII in correspondence of the elements. 
These quantities are already expressed in the principal (local) system of reference. In addition to the 
original reference system of the element, the state of tension is described by all the components of 
the stress tensor σx, σy, and τxy. 

 
(a) 

 
(b) 

Figure 2: Stress fields for original and optimized structure. The analysis has been carried out using 
Abaqus while the optimization implementing the BESO algorithm. 

2.2 Rough BESO optimization 

The second phase consists in a rough Topology Optimization. The formulation of the problem may be 
stated as follows: the objective is the maximization of the stiffness of the structure (minimization of 

the total strain energy), and the volume becomes a fraction of the volume of the initial workspace. 
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Symbolically it may be written as follows: 

{
  
 

  
 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐶 =

1

2
𝐾𝑖𝑗𝑙𝑚𝜀𝑖𝑗𝜀𝑙𝑚

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑉𝑂𝑏𝑗 −∑𝑉𝑖𝑥𝑖

𝑁

1

= 0

𝑥𝑖 = {
1

𝑥𝑚𝑖𝑛
  1 = 1,… , 𝑁 (𝑁 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠)

 (2.2) 

The optimization is an iterative procedure, the Finite Element Analysis of the system is carried 
out, and the elastic strain energy corresponding to every single element is calculated again. 

This phase is realized using a BESO method with the material interpolation scheme. If an element 
of the mesh discloses a sensitivity number, which is higher than a certain threshold, it is flagged as 

material element. On the other hand, if the sensitivity is lower, the element is flagged as void element. 
The sensitivity value for the material elements is equal to the elastic strain energy (Eqn. (2.1),), and 
for the void elements equal to zero (in correspondence of xi=xmin≈0). The threshold value is set using 
a bisection algorithm, applied to the maximum and minimum sensitivity values. The elements flagged 
as material elements will be later redefined on the base of the principal stress configuration. 

The result of the TO consists of the definition set of elements with high strain elastic energy. Low 
energy elements are firstly flagged, and a low density (and, consequently, a low Young modulus) is 

assigned. In a second phase, the elements with low density are erased. In Fig. 2(b)., the result of the 
TO is shown, where the sub-structures of the beams are identified. While investigating the nature of 
the stresses in such sub-structures, as depicted in Fig. 2(b)., it is highlighted that the major principal 
tensions are oriented in the same direction of the elements as indicated by the red rectangles. 

2.3 Stress configuration evaluation 

After the new set of elements have been defined, the next step is the computation of the state of 
tension for each element of the resulting mesh. A new finite element analysis of all the structure is 
performed, and each element is considered. A MATLAB function calculates the principal stresses and 
strains, and the correspondent slope for the principal directions. 

This step is necessary because in the next stage, the material may be disposed along the stress 
flux, in order to reach an optimal distribution of matter and ensure better structural performances. 

This means that it is possible to formulate a rule to modify the starting mesh of the finite element 
analysis and better locally represent the structural response of the material aligning the elements to 
the principal directions. To do this, we evaluate the Mohr circle in the barycenter point of each element, 
which is defined by the traction/compression and shear tensions. Thanks to such analysis, it is possible 
to identify the rotation angle needed to impose to the finite element in order to orient it. The graphical 
interpretation of such procedure is schematically depicted in Fig. 3(b). The rotation angle of the 

generic element, as shown in Fig. 3(c)., is obtained by the use of known relations describing the Mohr 

circle for a plane state of tension: 

𝜃 =
1

2
𝑎𝑟𝑐𝑡𝑔 (

2𝜏𝑥𝑦

𝜎𝑥 + 𝜎𝑦
) (2.3) 

This expression represents the transformation from the original local system (σx, σy, τxy) to the 
principal local system (σI, σII). By implementing this new definition, the new disposition of the element 
is obtained by a rigid rotation of the element itself by an angle θ. 

2.4 Element rearrangement 

In this phase, the elements are re-defined coherently with the results of the stress analysis, 
according to their mechanical properties. The goal is to acquire and consider new information 
regarding the orientation of the principal stress tensor directions to create a new mesh. For this 
purpose, the principal stresses and slope of the principal reference system are evaluated. 
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Figure 3: Re-orienting, connection and size optimization of the elements. 

 

As depicted in Fig. 3(d)., all the elements are rotated coherently to the slope of their principal 
system of reference.  Obviously, due to such rotation, it is not possible to preserve the continuity of 

the material. For this reason, the geometry of the mesh is recovered. This is done joining the adjacent 
elements by sharing the corresponding nodes, as shown in Fig. 3(e). 

The rotation process of the elements means that the decoupling of the nodes is performed.  The 

initial mesh is a standard square mesh and each node is shared by four elements. Usually the position 
of the nodes and the list of the nodes belonging to each element are stored in arrays. The rotation of 
the elements means that the vertices of the elements do not coincide anymore. For this reason, the 
array describing the nodes changes (the dimension is multiplied by four), and consequently the array 

of the elements changes as well (same dimension, different content). An example will be provided in 
the next section. 

Furthermore, providing again the continuity means that adjacent elements will share the nodes 
after the rotation. Again, this is done modifying the nodes and elements arrays, decreasing this time 
the dimension of the nodes array. 

2.5 Size Optimization 

The last stage is a fine size (shape) optimization depicted in Fig 3(f). This is necessary because the 
re-definition of the mesh has an influence on the distribution of the stresses in the structure. In fact, 

the elastic strain energy stored in every rotated element may result different from the value 
corresponding to the last step of optimization. 
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For this reason, as depicted in Fig. 3(f)., a further step of optimization is realized. The main idea 
is that the section of the re-oriented elements depends on the module of the first (and unique) 
principal stress. Symbolically, this new step of rough BESO optimization may be carried out applying 
the relation: 

𝐶 = 𝐸𝑒𝑙 =
1

2
∫ 𝐾𝑖𝑗𝑙𝑚𝜀𝑖𝑗
𝑉

𝜀𝑙𝑚 (2.4) 

where C is the sensitivity number of the last optimization step, or, in other words, the computed 

compliance of the element. 

The goal of such procedures is the definition of the size of the elements so that their elastic strain 
energy density is the optimal for every element. 

After the re-definition of the mesh, the elastic energy stored may be written for the mono axil 

state of tension of the elements: 

𝐶 = 𝐸𝑂𝑝𝑡 = V(s𝑂𝑝𝑡) ∙
1

2
σε (2.5) 

where S is the thickness of the element of the beam feature, and V is the volume (area) of the 
element itself. 

Because some elements disclose a mono axial state of tension, it is possible to (locally) formulate 
the optimization problem using as optimization variables the geometric quantities is as follows: 

{
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐶 = 𝑉(s𝑖) ∙

1

2
σε

𝑠𝑖 = (0, 𝑠𝑜𝑝𝑡)  𝑖 = 1,… ,𝑀 (𝑀 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠)
 (2.6) 

This strategy is suitable for the elements having a pure traction/compression state of tension and 
characterizes the beam geometrical features. However, not all the zones of the structures have such 
mechanical behavior. For this reason, elements disclosing both principal tensions belong to the 

structure, providing connections between the beams sub-structures. 

3 RESULTS 

Some steps of the proposed methodology have been implemented in a program running in the MATLAB 

environment. No third parts packages are recalled in the code, and only basic logic, mathematical and 
graphical features have been used. 

First, the state of tension in the domain has been evaluated. These results are shown in Fig. 4(a)., 
which portrays the state of tension of the truss. For each single element the vectors representing 
σx(blue vectors), σy,(magenta vectors) and τxy (green vectors) are visualized. On the other hand, Fig. 
4(b). shows the same elements rotated coherently to the principal directions. The principal tensions 

σI (green vectors) and σII (red vectors), are shown as well. Moreover, in Fig. 4(c). the result of the 

application of a BESO TO algorithm is shown. Fig. 4(d). depicts the effect of the rotation along the 
principal directions applied to the survived elements.  

Finally, Fig. 4(e). portrays the result of the rotation and re-arrangement of the elements of the 
mesh. This is done coherently to the slope of the principal directions, and to the elastic strain energy, 
evaluated in each single element of the mesh shown in Fig. 4(d). The result is that the new geometry 
is less affected by the checkerboard appearance than the one shown in Fig 4(c). In other words, the 

proposed method is able to produce a great variety of topologies, typical of microscopic approaches, 
with a good description in terms of continuity and smoothness of the boundaries, typical of 
macroscopic approaches.   

At present the code is still under refinement, and the results in terms of definition of the mesh 
and boundaries are still under development. Anyway, we have been able to proceed with preliminary 
tests. 
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(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

 
(e) 

 
Figure 4: MATLAB implementation: (a) and (d) are the results of the FEA on the design space; (c) 
and (d) depict the FEA analysis carried out on the result of the BESO TO procedure; (e) shows the 

result of the proposed approach. 
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3.1 Comparison between BESO and proposed approach 

In this section we present the first results of the comparison between the rough BESO TO and the 

proposed methodology. The test has been done considering the boundary conditions specified in Fig. 
1(a). (H=100mm, L=200mm, F=1000N). Moreover, several repetitions have been performed with 
different grids for defining the starting mesh. The design space has been discretized in a grid of 16x8 
elements, then 20x10 elements, etc., as reported in Fig. 5. More specifically, we refer to Fig. 4(c). 
and Fig. 4 (e)., depicting the results of the BESO method, and the proposed method respectively. In 
both cases, we evaluated the total area (volume) and the compliance. In order to compare such 

results, we defined two indexes: 

% 𝐴𝑟𝑒𝑎 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 =
(Area𝐵𝐸𝑆𝑂 − Area𝑅𝑒−𝑀𝑒𝑠ℎ)

Area𝐵𝐸𝑆𝑂
 (3.1) 

% 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 =
(Compliance𝐵𝐸𝑆𝑂 − Compliance𝑅𝑒−𝑀𝑒𝑠ℎ)

Compliance𝐵𝐸𝑆𝑂
 (3.2) 

Eqn. (3.1). and (3.2). describe the indexes, which represent the improvement of the new method 
(Re-Mesh) in terms of area and compliance decrease, compared to a standard BESO. The results of 
the comparison for different elements sizes are depicted in Fig.5. 

 

 

Figure 5: Results of the comparison between the BESO TO, and the propose methodology. 

It can be noticed that most of the results are positive, which means that the proposed methodology 
gives better results. When a value is negative, for example we have an increase of the area, on the 
other hand we have a higher decrease (in percent) of the compliance, which means that globally there 
is a more efficient use of material. 

3.2 Results discussion and further developments 

The first tests are promising; however, there are still some issues to deal with. In fact, generating the 
new topology, there is still dependence of the result on the initial size of the mesh elements. Even if 

it introduces some advantages in terms of decrease of area and compliance, the re-definition of the 
mesh at the moment cannot completely modify the topological class of the structure. 
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Moreover, even if the tessellation of the topology is strongly reduced, a smooth perimeter is far 
from being obtained. The results of the proposed methodology may be further refined using parametric 
curves for the description of the boundary of the structure itself. 

 Compared to the use of the boundaries of a set of discrete elements, parametric curves are more 

feasible to provide a description of the solid domain. The reason is that the output of the methodology 
is improved, compared to the appearance of topology in microstructural TO, avoiding tessellation. 
Moreover, if the boundary of the structure is explicitly described by parameters, it is possible to apply 
a gradient based shape optimization method. 
For this purpose, we propose the use of Non-Uniform Rational B-Spline (NURBS) curves. NURBS curves 
offer continuity and flexibility for the analytic and parametric representation of TO results. More in 
detail, their formalization provides three sets of parameters, which represent the three different degree 

of freedom, which rule a new curve: control vertices, weights corresponding to each control vertex 

and values of the knot vector.  
Fig. 6. shows how the nodes of the rotated and re-joined elements are used to construct the 

NURBS curve. Nodes are used for defining the polygon vertices, being a partial input for calculating 
NURBS curves and the sequence of vertices is converted into the set of control points. The NURBS 
curves defined in this way may incorporate line and curves. In the present work we suppose to define 

the control points coordinates and eventually optimize the weights. Adopting this strategy, a good 
trade-off between complexity (number of parameters) and the possibility represent complex shapes 
may be achieved.  This is done in order to define the boundaries of the domain of the solid material. 
If different beams are adjacent, the NURBS curves provide the necessary continuity. 

 

 
(a) 

 

 
 

(b) 

Figure 6: NURBS application: (a) re-oriented elements, (b) definition of fitting NURBS. 

4 CONCLUSIONS 

This work proposes a conceptual framework for a novel TO approach. It is performed by re-arranging 
the TO mesh obtained by BESO according to mechanical parameters. The principal stresses and the 
slope of the principal reference system, are calculated, rotated, and a process of joining and size-
modifying elements is performed.  

The main advantage of the method is that the final layout is created by modifying the orientation 
of the resulting elements, so that the discretization of the Area of Interest (AOI) is more accurately 
represented by the distribution of tension. This is important because, the typical fuzzy aspect of the 
microstructural approaches is avoided. The framework has been implemented in a MATLAB program, 
some tests have been done, and the results confirm the improvement of the efficiency in the use of 
the material (less material, less compliance). 

Future research includes parametric representations of the resulting topologies using NURBS 

curves to provide a smooth contour. 
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