
 

 

Computer-Aided Design & Applications, 16(4), 2019, 720-732 

© 2019 CAD Solutions, LLC, http://www.cad-journal.net 
 

720 

 

A Labeling Algorithm for Trimmed Surface Fitting 

Márton Vaitkus1 , and Tamás Várady2  
 

Budapest University of Technology and Economics 
1vaitkus@iit.bme.hu, 2varady@iit.bme.hu 

 
Corresponding author: Márton Vaitkus, vaitkus@iit.bme.hu 

ABSTRACT 

 

Approximating irregular trimmed surface regions with tensor product parametric 
surfaces is a difficult problem. We search for surfaces that are aligned with the 

geometric features of the shape, and possess even curvature distribution beyond the 

trim curves, as well. Labeling is a useful technique by means of which certain 
segments of the trimming boundary are associated with the sides of the parametric 
surface to be fitted. In this way it is possible to orient the unknown surface and its 
3D boundaries, and accordingly compute a good parameterization for the data points 
in the domain. This also makes it possible to extend the trimmed region into a 
quadrilateral using a set of artificial data points − first in 2D, then in 3D, as well. 
Techniques to perform label-driven parameterization and surface extension have 

been discussed in a recent paper [24], however, no explicit method was suggested 
to automatically define labels. In our paper we deal with this missing component and 
propose a new heuristic algorithm. First, we determine label candidates by various 
criteria. Then we estimate the location of virtual corners, and qualify them as weak 
or strong.  Finally, the labeled segments are merged and/or discarded by various 

rules until we reach one of the six admissible labeling configurations. Our proposed 
algorithm yields natural labelings that mostly correspond to configurations defined 

by surfacing experts. This is illustrated by several examples. Surface fitting based on 
labeled parameterization leads to high-quality surfaces, well-suited for engineering 
applications.  
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1 INTRODUCTION 

Approximating data points or triangle meshes with tensor-product (TP) parametric surfaces is a 
task of fundamental importance in computer-aided geometric design. Our particular interest relates 

to trimmed regions, bounded by an irregular multi-sided loop of boundary segments having no obvious 
tensor-product structure. There are two major applications motivating our work. 
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First, in reverse engineering [6], a CAD model is to be produced from a measured point cloud. A 
triangle mesh is generated, then segmented into disjoint regions, corresponding to the faces of the 
final B-Rep model. Each region is approximated by some surface type, such as simple primitives 
(planes, quadrics, etc.), procedural surfaces (sweeps, lofts, fillets, etc.), or else by truly free-form 

shapes, e.g. TP Bézier surfaces or NURBS, the representations used in commercial CAD systems and 
data exchange standards (IGES/STEP). 

Second, there are non-standard surface representations, such as transfinite [25] and control-point 
based [26] multi-sided patches that possess advantageous properties compared to TP NURBS in 
certain modelling tasks. Nevertheless, for downstream CAD/CAM applications, the geometry 
eventually needs to be sampled and approximated by some standard surface.  

While it is possible to approximate a complex region by means of a collection of quadrilateral 

surfaces over a topologically irregular network [10,5], in this paper we focus exclusively on fitting a 

single trimmed surface [18], thus avoiding the difficulties of creating supplementary structures for the 
quads and enforcing smooth connections.    

Parametric surface fitting is a difficult problem that depends on various parameters, including 
error tolerances, knot vectors, regularization weights, etc. [27]. In order to formulate it as a linear 
least-squares problem, ‘appropriate’ (u,v) parameter values must be assigned to the data points, as 

this will fundamentally determine the qualities of the final surface. Previous research on initial data 
parameterization has been conducted along three major directions. (i) There exist parameterization 
methods that presume that all four TP boundaries are present [3,15,17,19], or that the region has 
some special structure, e.g. it is swept [4,14,23], or singly-curved/developable [21]. (ii) Other, less 
restrictive methods project the points onto some primitive surface for trimmed parameterization [27]; 
in many cases just the best fit plane or cylinder is used.  These methods yield acceptable results for 
simple geometries, but otherwise projections may lead to extreme distortions, or even fail to be one-

to-one. (iii) Mesh parameterization is a topic with a vast and diverse literature [12], including methods 

that minimize geometric distortions [22,16], or align parameterization isolines with geometric feature 
curves [13,7]. These approaches are mainly used for texture mapping or quadrilateral remeshing; 
however, in the surface fitting context the distortion of the parameterization is not a primary concern, 
and alignment with a set of curvature lines might be unsolvable due to umbilical points in the interior 
of the surface. 

Our goal is to create doubly curved trimmed patches, where simple parameterization methods are 

not satisfactory. We wish to find a good orientation for the surface to be fitted and determine 
appropriate placements for its virtual boundaries. Accordingly, the structure of the isolines is supposed 
to be well-aligned with the geometric features of the shape. We need an even curvature distribution 
not only within the trimmed region, but also in the extended surface areas beyond the trim curves. 
Overall, we wish to compute parameterizations that yield surfaces well-suited for CAGD applications.  

 In the majority of cases no single ‘best’ TP patch exists for a given trimmed region, and selecting 

the best possible configuration is often a subjective and application-dependent issue. There is an 
incredible richness of case studies and tutorials on practical surfacing on the Internet. The well-known 
commercial reverse engineering systems (Geomagic Design X, Autodesk Powershape, CATIA, and 
others) offer lots of complex operations to approximate triangle meshes with parametric surfaces. At 
the same time, we have found that producing high-quality surfaces in the above sense is not easy. 
Surfaces are often parameterized by projective methods, and then the only option to set the flow of 
the isolines is to preset a local 2D coordinate system, placed in the middle of the region [2,11]. In 

other cases, the surface is oriented using feature curves extracted automatically or explicitly drawn 
by the user [1,8]. Finally, if results are not satisfactory, the geometry is simplified by further manual 
segmentation, using dominantly quadrilaterals. 

In a recent paper [24], we have introduced new techniques that - according to our best knowledge 
– improve upon current techniques and meet complex requirements in trimmed surface fitting. The 
fundamental idea of labeling is to assign certain boundary segments to the sides of the domain 

rectangle. Labels were assumed to be given as part of the input, e.g. defined manually by the user. 

The automatic assignment of labels was identified as the most important avenue for future research.  
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In the current paper, we describe an algorithm for automatic labeling. As we are not aware of any 
theory that characterizes an ‘ideal’ parameterization for trimmed regions, here we propose a heuristic 
method. We do not claim to produce the ‘best’ possible solution in every scenario, as labeling often 
involves subjective and application-dependent considerations, however our results generally meet 

engineering expectations. 

In Section 2, we briefly summarize our work published in [24] and describe the concept of labeling. 
Then, in Section 3, we present the new labeling algorithm. Finally, in Section 4, we demonstrate the 
effectiveness of our approach by a few examples. 

2 LABELED PARAMETERIZATION AND EXTENSION FOR TRIMMED SURFACE FITTING 

In [24], we introduced pre-processing techniques to support TP fitting for trimmed patches. Our aim 

was two-fold: (i) to help in orienting the quadrilateral surface based on the geometry of the patch, 

leading to a simpler and better aligned control grid; (ii) to avoid “weak” control points that have only 
a few data points in their support and thus could lead to unstable, oscillating fits [27].  

Labeling is a powerful technique to orient the yet-unknown surface and it 
narrows down the set of possible parameterizations. We can assign labels to 
particular boundary segments − using our notations − North, West, South, East, 
prescribing that a segment must lie somewhere on the boundary of the TP 

surface to be fitted. With other words, certain segments are mapped to 
particular sides of the domain rectangle. Other segments may remain 
Unlabeled. 

In [24], it was presumed that labels have already been defined, and we pre-processed the data 
in two phases prior to fitting. First a guiding frame was constructed, which extrapolated the labeled 

segments into a four-sided virtual boundary loop, then the data was parameterized by a constrained 
optimization of the As-Rigid-As-Possible distortion energy [16]. Second, the 2D triangle mesh in the 

(u,v) plane was supplemented so that the entire domain rectangle was covered, and this was inversely 
mapped back to 3D, optimizing an energy that balanced the smoothness of the extrapolated surface 
and the fairness of its boundary curves. Experiments in [24] have shown that – given judiciously 
placed labels – constrained parameterization and extension produces accurate trimmed fits with 
simple and well-oriented control nets and controlled surface geometry beyond the trimmed region.  

Fig. 2 demonstrates the advantages of this approach; a trimmed region representing a car body 
panel is to be approximated by a TP surface. Compare the parameterization and the fitted surface 

'without' and 'with' labeling. 

 

 

Figure 1: Labels. 

 
 

a)  Parameterization without Labeling b)  Fit without Labeling 
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Figure 2: An example of labeled fitting. 

3 THE ALGORITHM FOR AUTOMATIC LABELING 

3.1 Overview 

The input of our algorithm is a triangle mesh (manifold-with-boundary, orientable, possibly multiply 
connected) with its perimeter boundary loop segmented into a sequence of oriented polylines. Such 
segmentation of the boundary is naturally produced in the context of reverse engineering [6] and 

curve-network based surfacing [25,26]. 

The output is a labeling of the boundary segments as South, East, North, West, or Unlabeled. It 
is not necessary that all four directions are used, and the same label may be attached to more than 
one segment. Adjacent labels can form corners – either real corners when two labels share a common 
endpoint, or virtual corners formed by their extensions at the endpoints. Labels may terminate at a 

no-corner, when no sensible extension can be created. It can easily be deduced that only six possible 
label configurations exist by the number of labels (L) and corners (C), as shown by simple examples 

in Fig. 3. Our aim is to select the configuration best suited for the surface to be created.  

Our algorithm consists of the following steps: 

i. Boundary segments that serve as label candidates are detected. 

ii. Neighboring label candidates that form sufficiently 'weak' virtual corners are merged. 

iii. Label candidates are removed, until an admissible configuration of labels and corners is 
reached. 

iv. Labels are assigned according to the detected admissible configuration. 

In the following sections, we are going to discuss the basic idea of each step.  

 

   

a)  L = 0 / C = 0 b)  L = 1 / C = 0 c)  L = 2 / C = 0 

 

 

c)  Parameterization with Labeling d)  Fit with Labeling 
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d)  L = 2 / C = 1 e)  L = 3 / C = 2 f)  L = 4 / C = 4 

Figure 3: Admissible label configurations. 

3.2 Detecting Label Candidates 

First, we identify those boundary segments which can serve as label candidates; more precisely, we 
exclude those segments that are not going to serve as boundaries of the presumed TP surface. We 

test two sets of criteria in sequence. 

3.2.1 Concave Angles 

Our trimmed region can be interpreted as a remainder, after cutting off parts from a 'convex' 
quadrilateral surface using Boolean operations that often produce areas with concave angles. 
Consequently, boundary segments meeting at concave angles need to be removed from the set of 

label candidates. Two such examples are shown as the green curves in Fig. 4, for the surface of Test 
Example 1. The corner angles are computed by adding up the mesh angles formed by subsequent 
edges meeting at the corner. 

 

 

Figure 4: Concave Angles. 

 

3.2.2 Moving Frame Rotation  

Trimming a tensor product surface by intersecting it with another smooth surface might create trim 
curves without sharp or concave angles and these would not be detected by our previous test. In 
general, isoline boundaries tend to be geometrically simple curves, while trimmed boundaries obtained 
by surface-surface intersections may have more complex geometry [18]. To qualify the complexity of 
a boundary segment, we might imagine a sweep of orthogonal ‘moving frames’ defined by the 
tangents and the surface normals along the curve. For a complex trim curve, these frames will turn 

considerably by rotating in their tangent plane as we move along the curve; while for isolines they 
generally stay roughly parallel. An example is shown in Fig. 5a: here the blue vectors stay almost 

parallel moving from one end of a boundary segment to the other, the green and red arrows in contrast 
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indicate large rotations. This can be formalized in mathematical terms, as follows. The cross product 
of the initial curve tangent direction and the surface normal defines a local coordinate system for its 
tangent plane. The triangle fans adjacent to the curve are isometrically flattened, by rotating their 
faces in sequence into this plane, as illustrated in Fig. 5b. Forming the sum of the (squared) turning 

angles between subsequent edges of this planar polyline, we effectively get an approximation of its 
(squared) geodesic curvature integral [9]: 
 𝐸̃𝐿𝑎𝑏𝑒𝑙(𝐿) = ∑ (𝜑𝑣)2

𝑣∈𝐿 ≈ ∫ 𝜅𝑔
2(𝑠)𝑑𝑠

𝐿
.  (3.1) 

We also take into account the angles 𝜑𝑏𝑒𝑔, 𝜑𝑒𝑛𝑑 spanned with the tangents of the adjacent boundary 

segments at the beginning and the end of the curve and define the label energy as 

 𝐸𝐿𝑎𝑏𝑒𝑙(𝐿) = 𝐸̃𝐿𝑎𝑏𝑒𝑙(𝐿)  +  (
𝜋

2
− 𝜑𝑏𝑒𝑔)

2
+ (

𝜋

2
− 𝜑𝑒𝑛𝑑)

2
. (3.2) 

Segments that have energy values above a certain threshold are then removed from the set 

of label candidates.  

 

  

a) Moving frame rotations b) Curve flattening 

Figure 5: Assessing label candidates. 

 

3.3 Classifying Virtual Corner Candidates 

In the subsequent phases of our algorithm, we will merge and remove label candidates with the aim 

of arriving at one of the admissible label configurations. Decisions about which labels are to be merged 
or removed will be based on the properties of the real or virtual corners defined by pairs of label 
candidates. 

We estimate the position of virtual corners by computing the normal transversal of the lines 
spanned by their opposing endpoint tangents. The estimated corner is formed at the midpoint of the 
transversal, as illustrated in Fig. 6a.  

We presume that the missing corners of the tensor-product patch (i) are close to the trimmed 
region, (ii) form an angle that deviates from 90 degrees to a controlled extent, (iii) are relatively flat 
without highly curved portions. Our aim is to retain only those corners that satisfy these requirements. 
To do so, we choose to classify corners as either concave, parallel, weakly convex, or strongly convex. 

A virtual corner is classified concave, when the normal transversal lies in the opposite direction of 
one of the endpoint tangents. When a meaningful transversal exists, a virtual corner is classified 
parallel when its angle is sufficiently small, and the transversal is far away from the label endpoints. 

When a corner that is neither concave or parallel has an angle close to 90 degrees, it is classified 
strongly convex; and weakly convex otherwise. Some examples are shown in Fig. 6b: blue lines denote 
strongly convex corners, cyan lines denote those that are weakly convex, and purple lines terminated 

with red squiggles denote concave or parallel ‘non-corners’.  
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a) Corner estimation b) Virtual corners 

Figure 6: Classifying corner candidates. 

 

Even when the corner is classified strongly convex based on these criteria, the surface that fills in the 
region between the label candidates and the corner could be geometrically complex (e.g. of high 
Gaussian curvature), like in the case of the lowermost corner in Fig. 6b. To detect such undesirable 
corners, see Fig. 7, we consider the trihedral angle formed by the surface normals at the endpoints 

(colored green and red), and the normal vector of the virtual corner (colored purple).  If the solid 
angle (or equivalently the area) of the corresponding spherical triangle is very large, as in Fig. 7a, the 
corner should be degraded to weakly convex. 

 

  

a) Bad corner trihedron b)  Good corner trihedron 

Figure 7: Corner trihedron tests. 

 

We can formalize these criteria by defining an energy that measures the strength of a convex 
corner: 

 𝐸𝐶𝑜𝑟 = (1 − 𝑤𝑇𝑟𝑖)𝐸𝐶𝑣𝑥 + 𝑤𝑇𝑟𝑖𝐸𝑇𝑟𝑖 . (3.3) 

The first term measures the quality of the corner, and is itself composed of two terms: 

 𝐸𝐶𝑣𝑥 = (1 − 𝑤𝐷𝑖𝑠𝑡)𝐸𝐴𝑛𝑔 + 𝑤𝐷𝑖𝑠𝑡𝐸𝐷𝑖𝑠𝑡, (3.4) 

where 𝐸𝐴𝑛𝑔 =  
|𝜋/2−𝜃 |

𝜋/2
 measures the deviation of the corner angle 𝜃 from a right angle, and 𝐸𝐷𝑖𝑠𝑡 =  

𝐴𝑇𝑟𝑖

𝐴𝑆𝑢𝑟𝑓
 

is the area of the triangle formed by the corner and the label endpoints, normalized by the trimmed 
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surface area. The second term of the energy 𝐸𝑇𝑟𝑖 =  
Ω

2𝜋
 is the (normalized) solid angle Ω spanned by 

the normal vectors. The weights 𝑤𝑇𝑟𝑖 , 𝑤𝐷𝑖𝑠𝑡 control the trade-off between the different criteria. 

3.4 Concatenating Label Candidates 

After executing the tests of Sec. 3.2., we have L remaining label candidates, and ‘a priori’ C=L real or 
virtual corners. In the next phase of our algorithm, we take pairs of neighboring label candidates, and 

decide whether they need to be concatenated into multi-segment labels or define a proper (virtual) 
corner. With the corners classified, we remove those that are concave or parallel (C → C-1, L → L), 
and concatenate label candidates through weakly convex corners with obtuse angles (C → C-1, L → 
L-1). Consecutive segments of multi-segment labels are smoothly connected with cubic Hermite spline 
curves, so that the label forms an unbroken polyline. This scenario occurs in the test examples of 

Section 4. Hereinafter, the retained strongly convex corners will be referred simply as ‘corners’. 

3.5 Removing Label Candidates 

After excluding weak corners, the result might still not correspond to any of the admissible label 
configurations, so further removal of label candidates is required.  

One possible operation we perform is removing label candidates one by one. We assume that 

very long trim curves were removed earlier due to their geometric complexity, so we consider label 
candidates for removal in order of increasing length. To decide whether a label candidate is ought to 
be removed, we carry-out a hypothesis-test, as illustrated in Fig. 8a: assuming we wish to remove a 
label k, a virtual corner is determined by the extensions of labels k-1 and k+1. If this hypothetical 
corner can be classified as strongly convex by having a low value of 𝐸𝐶𝑜𝑟, we remove the label under 

consideration (L → L-1, C → C-1). Otherwise, we move on to test the second shortest label candidate, 
and so on. If none of the hypothesis tests result in a strongly convex corner, we remove the label that 

creates the corner with the lowest value of 𝐸𝐶𝑜𝑟. 

 

  

a) Label removal b)  Corner removal 

Figure 8: Label candidates (red), segments to be removed (green). 

 

Another kind of operation that we may perform is removing a corner together with its two 

neighboring label candidates, thus creating a parallel corner (L → L-2, C → C-3). This might be 
preferable, if such an operation would immediately result in an admissible label configuration, i.e. 
when we are in a situation with L=5, C=5 (that would become L=3, C=2) or L=4, C=3 (that would 
become L=2, C=0). In these cases, if a hypothesis test for removing the shortest label fails, a different 

sequence of hypothesis-tests is performed: we remove two adjacent labels k, k+1, and consider the 
virtual corner of labels k-1 and k+2, as illustrated on Fig. 8b. If the resulting corner is parallel, both 
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labels are removed, along with their corresponding corner. The corners are tested in order of 
decreasing values of 𝐸𝐶𝑜𝑟. If no label candidate pair can be removed to create a parallel situation, we 

proceed by removing one of the labels, as before. 

These steps are iterated until we arrive at one of the six admissible configurations, when all the 

boundary segments get labeled accordingly. Note, that for intermediate configurations C<=L always 
holds. 

4 TEST EXAMPLES 

In this section we demonstrate the algorithm by means of five examples. 

4.1 Example 1 

This is a relatively straightforward configuration (Fig. 9). The concave parts fall out leaving seven label 
candidates. 1-2 and 4-5-6 are concatenated, yielding two multiple-segment labels. 2-3, 3-4 and 6-7 
define real corners. 7-1 is a strong virtual corner computed by extending and snapping the related 
label curves. Thus we have four labels and four corners, and the algorithm terminates. 

 

   

a)  Mesh and boundary loop, 
label candidates - red 

b)  Label segments 
concatenated, virtual corners 

detected 

c)  Labeled surface fitted 

Figure 9: Example 1. 

4.2 Example 2 

This configuration is more complex (Fig. 10). The concave parts fall out, leaving six label candidates. 
4-5 are concatenated yielding a multi-segment label at the bottom. Then - in the first round - there 
are four real corners: 1-2, 2-3, 3-4 and 5-6, and a single virtual corner 6-1. Five labels and five 
corners do not form an admissible configuration, thus the algorithm attempts to remove one label and 
one corner.  In the second round, the algorithm evaluates the cost of removing each label, and 
measures which newly computed virtual corner would be the strongest. Deleting label 1, 3, 4-5 or 6 

would yield weak virtual corners, while deleting label 2 leads to a good final solution. 

 

   

a) Mesh and boundary loop, 
label candidates - red 

b)  Labels concatenated, 
virtual corners detected 

c)  Labeled surface fitted 

 

Figure 10: Example 2. 
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4.3 Example 3 

In this example (Fig. 11), after deleting segments with large moving frame rotation we obtain six label 

candidates. 1-2 and 3-4 are concatenated, resulting in four labels and three real corners – a non-
admissible configuration. Deleting either label 5 or 6 would result in a weak corner, while removing 
both results in parallel labels, i.e. a configuration with two labels and no corners. 

 

   

a) Mesh and boundary loop, 
label candidates - red 

b)  Labels concatenated, no 
virtual corner detected 

c)  Labeled surface fitted 

 
Figure 11: Example 3. 

4.4 Example 4 – Ambiguous Cases 

There exist ambiguous cases, where it is impossible to select a best labeling configuration, and the 
algorithm must recommend one of the possible solutions in an 'ad hoc' manner. Typical examples 

include highly symmetrical configurations, such as those shown in Fig. 12. The first surface has three 

labels and three right-angled corners, also the endpoint tangents are close to parallel, thus deleting 
either label would result in undefined, distant corners. In Fig. 12a the bottom label was chosen to be 
removed in order to obtain an admissible configuration (L=2, C=1). In the case of the hyperbolic 
saddle shown in Fig. 12b, each of the six boundary segments are approximately geodesic with every 
corner close to 90 degrees; very weak corners would be created whichever label is removed. One 
possible labeling is shown in Fig. 12b, however, its symmetric counterparts would also be appropriate. 
In case of ambiguous configurations either all labeling cases are acceptable for surface fitting or the 

user has to select explicitly the most favored configuration.  

 

 
 

a) Three-sided region b)  Six-sided region 

 

Figure 12: Example 4. 
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4.5 Example 5 

Finally, let us take the surface shown in Section 2 (Fig. 13). Seven label candidates are determined, 

where 4-5 define a weak virtual corner and gets concatenated, while the other label pairs define real 
corners yielding six labels with six corners in the first round. The algorithm defines label 2 as to be 
removed, since labels 1 and 3 define a strong virtual corner. Retaining label 6 and deleting 7, or 
retaining 7 and deleting 6 would yield poor configurations with weak virtual corners, so the algorithm 
deletes both and terminates with a 'three labels - two corners' configuration. 

 

 
  

a) Mesh and boundary loop, 

label candidates - red 

b)  Labels concatenated, virtual 

corners detected 

c)  Labeled surface fitted 

 

Figure 13: Example 5. 

5 CONCLUSIONS AND FUTURE WORK 

An algorithm to determine a preferred set of labels for facilitating trimmed surface fitting by tensor 
product parametric surfaces has been presented. Automatic labeling and the corresponding 

parameterization helps to fit a collection of high-quality surfaces without manual interaction, often 
requested in applications, such as reverse engineering or the conversion of non-standard surface 
representations.  

We have dealt only with boundary curves and their close vicinity, however considering interior feature 
curves for labeling is a challenging problem for future research. Another area is to deal with a collection 
of trimmed surface elements. This may help to better distinguish between feature curves and trimming 
curves, and may produce labeling not by local geometric tests, but by some higher-level structural 

analysis. Besides least-squares TP fitting, other surface reconstruction techniques might benefit from 

the existence of boundary labels. For example, they may be used for the detection and reconstruction 
of profile or spine curves of sweeps [4,14,23], or serve as guiding constraints in the “active surface” 
approach [20].  
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