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ABSTRACT 
 

This paper introduces and extension to our previous papers [10, 11] to handle 

anomalies in the point based object slicing method. The anomalies handled are 
point, line and plane touch cases as well as overlaps. These anomalies can cause 

major problems in any intersection procedure, yet, they are seldom discussed, let 
alone handled. It turns out that the point based approach is capable of handling 
these special cases with minor extensions.  
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1 INTRODUCTION 

Anomalies have caused concern in computational algorithms since the beginning of CAD/CAD 
development. Many numerical methods work reasonably well in the general cases, however, when 

they encounter special cases such as touch or overlap, they tend to fall apart. To account for these 
cases, special code is normally inserted that deals with the special cases individually. During the 
eighties, the birth of solid modeling software, the second author would spend years writing special 
code for all cases that failed with the general purpose code. Although this was a very tedious 

process, it worked perfectly well simply because each case was well understood and could be 
handled with ease (and with an awful lot of code). While it was a doable task, given the relatively 
small number of special cases, it is definitely not scalable and hence cannot be applied to the 
potentially large variety anomalies. Our point based approach handles these cases with very minor 
adjustment to the basic algorithm. Once the extension is made, the method becomes general and 
handles all important cases. 

In this paper we investigate how a general purpose point-based slicer can be made more 

robust by extending its reach to handle two types of anomalies, commonly occurring in object 

slicing: (1) touch cases, and (2) overlaps. Within the touch case category, we handle point, line, 
curve as well as planar touch cases, Figure 1. As the slicer moves up from the tray, it encounters 
these cases and it needs to know how to handle them. The top right of Figure 1 shows an 
important case. The slicer not only needs to find the circle of touch, it needs to know that this is a 
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touch and the interior of the circle is not to be filled with material. Similarly, the bottom left needs 
to be identified as well so that the slicer does not look for a closed boundary. The bottom right 
needs special attention in that the intersection is not only a set of boundary curves but an entire 
planar domain. 

 

     

   

 

Figure 1: Point, curve, line and planar touch cases. 

 

Object slicing has a long history in the literature and we give proper credit to the prior art. These 
techniques either rely on the precise NURBS model or compute the slices from the STL conversion. 
None of them has been relied upon in this work [1-8, 10-13, 15-23]. The underlying model is 
assumed to be a NURBS object [14] not an approximation using tessellation. 

The organization of the paper is as follows. First, we summarize the point based method 
illustrating all the important steps. Then the general algorithm is presented. Touch cases as well as 
overlaps are discussed followed by a comparison with STL based slicing. A conclusions section 

closes the paper. 

2 POINT-BASED SLICING ALGORITHM 

The point-based slicing algorithm has the following main components [10, 11], Figure 2. First the 
NURBS-based model is decomposed into its smaller components, called the Bezier patches. 

Then the Bezier patches are further decomposed into smaller surfaces based on the required 
tolerance and the layer thickness. These tiny surfaces are subsequently binned into a data 
structure for fast searching as the slicing plane moves up. That is, for each position of the slicing 

place, there is a list of surfaces that intersect that plane. 
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For each slicing plane points are sampled from the surfaces that are in the local data structure. 
The sampling is done so that for each point there is a local ring neighborhood where the points are 
within the required tolerance. The obtained point cloud is ready for slicing.  

The slicing begins by laying a grid (of size equals the tolerance) on the plane, and placing 

voxels (of size equals the tolerance) above and below it. The sampling points are then processed 
into these voxels and the cells are colored as follows. If there are points in the voxels above and 
below the cell, it is colored black. If there are points only above, it is marked red, and if there are 
points only below, it is marked blue. The black cells are intersection cells, whereas the red and 
blue ones need to be processed. Figure 2 top left and middle show the red, blue and black cells for 
three intersection loops. Note how well the intersection curve is delineated by the border between 
the red and blue cells. 

 

 

 

Figure 2: The point-based intersection process. 

 

To fill the gap in the sequence of black cells, the red and blue cells that are involved in the 
transition in color change are marked black, producing a maximum of two cells wide coverage of 
the intersection curve, Figure 2 top right. 

Using a 3x3 mask the thick intersection curve loops are separated into individual closed 
curves, Figure 2 bottom left. Some of these curves can degenerate into a line or a point, which 
requires special attention when filling the region with material. 

To thin down the thick array of points that represent the intersection curve, we use a flood fill 

algorithm. This algorithm, as its name suggests, floods the domain and hits the outermost cells 
which are then selected to be the intersection points, Figure 2 bottom middle. To store the 
intersection points for later reuse, and to be able to vary the sampling density, we fit a B-spline 
curve to the final black points, Figure 2 bottom right. The B-spline curve provides a smooth 
representation of the intersection curve that can be discretized later on at any level of detail. 

In the next section we provide details on how this algorithm can be generalized to handle 
special cases such as touch cases as well as overlaps. 
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3 GENERAL ALGORITHM WITH ANOMALY DETECTION 

The algorithm proceeds exactly as in the previous case up until cell coloring begins. To account for 
the variety of touch cases, a bit more bookkeeping is necessary with quite a few more flags 
applied. Because of the large number of flags used, we dropped the coloring scheme and replaced 

it with named cells. The classification is as follows: 

 

 EMPTY: a cell with empty voxels on it. 

 WEAK BELOW: a cell with only a non-empty voxel below the plane (formerly blue). 

 WEAK ABOVE: a cell with only a non-empty voxel above the plane (formerly red). 

 STRONG: a cell with voxels that have points below and above the plane (formerly black).  

 BOUNDARY: cells containing intersection points. 

 INTERIOR BOUNDARY: these are intersection contours for the planar touching case that 
are inside the primary boundary 

 PLANAR: used for cells in the planar touching case for the area to be filled 

 REPAIRED EXTERIOR: BOUNDARY cells that have been eliminated because they are 
unnecessary for the boundary creation. 

 EXTERIOR: cells that are not BOUNDARY, PLANAR, INTERIOR BOUNDARY or REPAIRED 

EXTERIOR. 

 

Using these classification for the various cells, the overview of the algorithm is explained below. 
Please note that handling special cases requires a lot of code and most of it is not very pretty. So 

the algorithm below may not admit immediate comprehension. However, the examples that follow 
attempt to clarify many of the complicated steps. 

 

Decompose the object into tiny patches as detailed in [10] 

For each slicer do 

Sample the surfaces intersecting the slicer 

Generate the grid and the voxels and flag the cells as above 

/* Keep all cells with WEAK ABOVE and BELOW flags for touch classification */ 

Separate the cells for multiple contours 

For each individual contours do 

Find the boundary using the fill algorithm 

Mark the cells as BOUNDARY or EXTERIOR 

/* Now find planar areas */ 

Search for all remaining EMPTY cells 

Flag them as EXTERIOR 

Flag touching STRONG points as INTERIOR BOUNDARY 

If any boundary cells are touched, mark the INTERIOR BOUNDARY as EXTERIOR 

If no EMPTY cell is left but there are still STRONG cells, mark them as PLANAR 

Order the cells 

Count the number of BOUNDARY cells 

If less than 2, point touch case 

Now order as in the previous algorithm 

Detect if there is an open contour 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 16(3), 2019, 528-538 

© 2019 CAD Solutions, LLC, http://www.cad-journal.net 
 

532 

Now fit the B-spline curve 

Create the contour for all cells with flags INTERIOR BOUNDARY 

 

In the next sections we give more details on the various touch cases to shed some light on the 

algorithm above. 

4 THE POINT TOUCH CASE 

The point touch case is handled during the cell ordering phase of the algorithm. Ideally, there 
should be no more than one point to be ordered, however, due to noise or improper sampling, 
occasionally there are two points. If it is one point, it is designated as the touch point, otherwise 

an average is computed of the flagged BOUNDARY points.  

 

   

 

Figure 3: Sphere touch (left), cone touch (right). 

 

Figure 3 shows two examples. On the left there is a spherical surface and a touching plane. The 
grey cells are EXTERIOR cells, the black is the BOUNDARY, and the colored rectangular surfaces 
are the tiny patches that are in the local data structure to be processed with respect to the slicing 

plane. The right image shows the cone case with a similar coloring scheme. Please note that the 
sampling has to be done with care so that the apex of the cone is hit with at least the accuracy of 

the manufacturing tolerance. Otherwise it will be missed and the slicing plane is declared non-
intersecting. 

5 THE LINE AND CURVE TOUCHING CASES 

The line and curve touching cases are identified during the separation of the contour loops. In 

these cases, there are cells with flags WEAK BELOW or WEAK ABOVE only. As the contour forming 
algorithms proceeds (with the use of the 3x3 mask), only STRONG points are considered. 
However, to consider the touch case, neighboring points are also examined, i.e. WEAK ABOVE and 
WEAK BELOW. At the end there are the following cases: (1) there are only WEAK ABOVE or WEAK 
BELOW cells, in which case we have a touch case, (2) if there are some WEAK ABOVE and some 
WEAK BELOW cells, then we have an intersection, (3) it can happen that all of the examined cells 
are WEAK ABOVE and WEAK BELOW, and this points to a (nearly) perpendicular case, i.e. the 

slicing plane is perpendicular to the surface and the sampling points are within the tolerance below 
and above. 
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Figure 4 shows a curve and a line touch cases. The curve case on the left is at the bottom of a 
torus. The red cells are marked as WEAK ABOVE, the light black cells are the STRONG cells and 
the colored patches are the surfaces that participate in the intersection process. The image on the 
right shows the case when the cylinder is touching the slicer along one of its rulings. This touch 

case is also identified during the contour tracing steps, with an added wrinkle: the algorithm finds 
a dead end, i.e. it does not come around to find the start point. When this happens, the tracing 
has to resume from the start point in the opposite direction to find the rest of the contour line. The 
grey cells on the figure show EXTERIOR cells, the black is the contour and the tiny colored patches 
are the surfaces needed to process the intersection curve. Note that even if it is a cylinder, a lot of 
tiny surfaces are in the local data structure of the slicer. That is because the system does not know 
that it is a cylinder. It is processed just like any other NURBS surface. Extra code can be inserted 

to account for special surface types, such as quadric or planar surfaces. Touch cases for these 

surfaces can be handled separately without any special consideration. While this is a very practical 
consideration, something that must be done when implementing the method into commercial 
systems, it still does not solve the problem of general touch cases and the cases when quadric 
patches are parts of more complex NURBS objects. 

 

   

 

Figure 4: Torus touch (left) cylinder line touch (right). 

6 THE PLANAR TOUCH CASE 

The planar touch case is identified after the boundaries are found using the flood fill algorithm. The 
identification needs to be able to separate three cases: (1) the area inside the contour is filled, (2) 

the area inside is filled, however, has additional interior contours that define holes, and (3) the 
false positives. 

 

Figure 5 illustrates the process using the bottom of a cylindrical block. The red cells represent 
STRONG cells, and all cells outside the boundary are EXTERIOR cells, marked grey. During the 
search inside the boundary we search for STRONG points and flag them as INTERIOR BOUNDARY. 
Similarly, all EXTERIOR cells with the boundary that are surrounded by STRONG cells are handled 
the same way. 

We also check if we touch any BOUNDARY cells and if so, we need to flag all INTERIOR 
BOUNDARY cells to EXTERIOR cells. Also, if a BOUNDARY cell touches an EMPTY cell indicates 

some noise. When there are no more EMPTY cells but there are still STRONG cells that were not 
flagged as EXTERIOR, they are flagged as PLANAR cells. At this point the PLANAR cells are 

bounded by one or more curves made up of BOUNDARY cells. If there are PLANAR cells the case is 
flagged as planar intersection. In Figure 5 the purple cells are PLANAR cells, the black are 
BOUNDARY, the grey are EXTERIOR and the tiny colored patches form the boundary cap of the 
cylinder block. 
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As noted above, this case can be, and must be, identified geometrically if the surface type is 
known. In which case none of the above steps are necessary. However, if the general NURBS 
object has a planar component, the identification may not be possible and hence the general 
planar identification process is applicable. 

 

 

 

Figure 5: Processing the bottom cap of the cylinder block. 

7 THE OVERLAP CASE 

Complex objects are designed by stitching individual surface patches together with some level of 
continuity. Unfortunately, the stitching process is almost never perfect leaving gaps, overlaps and 

dangling surfaces behind. Figure 6 shows a case of overlapping surfaces in a complex model. Now, 
this anomaly causes a lot of problems both in the tessellation process and in any numerical code. 
For example, the iteration can jump from one surface to the next and not converge within the 
required number of steps. It is always a dangerous maneuver to move across surfaces as they are 
individually designed with their own parametrizations. Tolerances that work with one surface may 
not do any good on a neighboring one with vastly different parametrization. 

Luckily, the point based approach is not sensitive to these kind anomalies. In fact, the 
algorithm does not even know if there is an overlap. It just processes the points on all patches in 
the local data structure and flags the cells according to the locations of the sampling points. When 
surfaces overlap, the sampling generates points on both surfaces and all the extra points that are 
not needed are discarded. For example, to set a cell WEAK ABOVE, all we need is one point in the 
voxel above the cell. If there are two or more, it will not affect the algorithm at all. 

Figure 7 shows an example of intersection with the slicer when overlapping surfaces are 

involved. Note that the blue points are mostly along the intersection curves and are hardly visible 
due to the size of the image.  

8 A COMPARISON WITH STL-BASED SLICING 

In this section we give a brief comparison with STL-based slicing. The two models used in the study 
are shown in Figure 8. The tessellation was done in Rhino and the tessellated model was sliced by 
Slic3r.  
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Figure 6: Overlapping surfaces in a complex NURBS model. 

 

 

   

 

Figure 7: Intersection processing with overlapping surfaces. 
     

 

   
 

Figure 8: A head and a skull model used in the comparison with point-based slicing. 
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Let us show some examples on the head first. Figure 9 illustrates slice number 100. The first three 
images show the results of slicing the model based on tessellation to within 0.01, 0.001 and 
0.0001 tolerances (left to right). Not what one would expect from a solid slicer. On the right is the 
point-based slicer producing a very smooth and fairly accurate result (tolerance was set to 0.1 

mm). 
 

       
 

Figure 9: Slicing the tessellated head (left three) and the precise NURBS model (right). 
 

Next, let us slice the skull and show slice number 182, Figure 10. The same tolerances of 0.01 (top 

left), 0.001 (top right) and 0.0001 (bottom left) have been applied. The pictures are worth a 

thousand words! Please note that higher tessellation tolerances do not necessarily mean better 
results, as clearly shown in Figure 9 and 10. Sometimes anomalies can show up for tighter 
tolerances even though they were not present in cases of lower tolerances, 
 

   
 

   
 

Figure 10: Slicing the tessellated skull and the precise NURBS model. 
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CONCLUSIONS 

An extension to our point-based slicing algorithm is presented that handles anomalies that show up 
during slicing an object for 3-D printing. The extension requires additional bookkeeping, however, 
it leaves the basic algorithm intact. The results are accurate to within the required manufacturing 

tolerance. That is, as long as the various touch cases are within the step size, i.e. the cell size, the 
touch cases are found and handled appropriately. We also provided a comparison to tessellation 
based methods. As it turns out, depending on the tessellation tolerance used, not only the accuracy 
but also the topology of the intersection curves change. This is not present in the point-based 
approach.  

After many years of testing the point-based approach, it is our conclusion that it is a very 
viable alternative to other techniques based on numerical methods or tessellations. It is very 

robust, accurate to within required manufacturing tolerances, can handle anomalies with minor 
adjustments, and is reasonably fast to outperform the printer in real time processing. 
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