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ABSTRACT 
 

Micro-finite element models (μFEMs) are one of the critical components of the microscale 
analyses that are typically performed on trabecular bone. These models are often derived from 
on micro computed tomography (μCT) data and tend to encompass an extremely large number 
of elements that in turn require significant processing time and power. To address the increased 
computational demands, the main goal of the current study was to devise an algorithm capable 
to manage the large μCT data in order to construct Cartesian μFEMs. For this purpose, the 
developed technique relies on the projection of μCT voxels to a structured grid and were designed 
to involve fast integer operations and hashing techniques for fast mesh constructions. The 
numerical tests performed on common computer hardware revealed that only 55.16 seconds are 
required to discretize more than 36.2M voxels. Furthermore, the linear time complexity of the 
developed algorithm ensures that its efficiency will be preserved even in case of larger datasets 
that tend to be prevalent in micro-structural biomechanical analysis. 
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1 INTRODUCTION 

Finite element analysis (FEA) plays a critical role in the accurate assessment of local stress-strain distribution to 
develop in geometrically complex structures [2]. Although FEA had been initially proposed to solve problems in 
traditional structural fields - such as automobile and aircraft industries  [11] - it has continuously evolved and 
eventually extended into many other engineering disciplines, including biomechanics where FEA serves as a 
standard tool used in the structural analysis of osseous  and other tissues [12], [5].  

One of the common FEA problems is related to the generation of the finite element models (FEMs) to capture 
as accurately as possible the geometrical, loading and material properties of a given biomechanical structure. Quite 
often, the generation of FEMs for osseous tissue begins with the acquisition of computed tomography (CT) data 
that is capable to simultaneously capture the geometry and at least some of the material characteristics of the 
scanned bone [6]. Without going into extensive details, it will be briefly reminded here that the non-destructive CT 
technology generates cross-sectional images of the analyzed bone that can be subsequently used to reconstruct 
3D volumetric replicas. The relatively recent advent of micro computed tomography (μCT) has enabled digital bone 
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reconstruction with micron resolutions to be then integrated into downstream micro-finite element models (μFEMs) 
[13], a critical tool in the investigation of the internal porous structure of the osseous tissue, typical known as the 
trabecular/subchondral bone [16]. 

Since μCT data could be made up of tens of millions of voxels that correspond in turn to tens of millions of 
elements, one of the common challenges of μFEM is constituted by the ability to discretize extensive models in a 
minimal amount of time. Furthermore, since hexahedral FEA elements are characterized by a higher numerical 
performance compared to their tetrahedral counterparts, they tend to be preferred by most analysts [1], [26]. 
However, commercial FEA software makes the construction of hexahedral meshes either time-consuming or 
restricted to relatively simple geometries. To address this, a number of studies [14], [17], [30] have proposed various 
solutions. However, their main emphasis has been modeling accuracy whereas running time was not reported. 
Because of that, their efficiency remains uncertain.  

A particular type of hexahedral mesh - known as Cartesian mesh - can be generated through a direct 
conversion of CT voxels into eight-node hexahedral elements [19],[24]. This type of mesh provides the advantage 
of a reduced time in both mesh generation and solving phases, but this commonly happens at the cost of a coarse 
representation of the bone surface [1]. However, at the micron resolution levels that are characteristic to μFEMs, 
this type of discretizations represent a viable option, particularly since the small size of the elements tends to 
diminish the – otherwise prominent – surface appearance artifacts. To date, several studies have proved that 
Cartesian meshes could accurately predict the mechanical properties of the trabecular bone as measured through 
physical experiments [8], [9], [18], [20], [22], [23], [27], [28]. 

The generation of a Cartesian mesh from μCT data poses a number of challenges that are primarily derived 
from the large size of the μCT data. As it can be inferred, processing of this amount of data is a time-consuming 
operation, even if performed with powerful hardware. Moreover, the available tools rely on unoptimized codes that 
are subjected to random crashes caused by poor/obsolete memory management routines. As such, robust 
numerical techniques are mandatory in this context since the number of decimal points to be handled exacerbates 
all known flaws associated with the generic and widespread floating-point operations. 

Along these lines, the present study proposes an efficient algorithm that was designed to address the known 
challenge of rapid construction of Cartesian meshes from μCT data. The core idea of the algorithm is that since 
μCT data consist of uniform voxels, it could be stored in a uniform 3D grid. If this grid is determined/known, then 
fast and robust integer operations within the grid coordinates can be used to manage the necessary computations. 
As discussed above, since the small dimensions of the μCT voxels are accurate enough for μFEMs, the algorithm 
was restricted to output only cubes/voxels as simple hexahedral elements, and this should result in significant 
reductions of the computational time. Another prominent feature of the algorithm is related to the use of the hashing 
techniques for indexing of the nodes and materials in the μFEM [10], [21]. The implementation of the hashing 
techniques allows the search operations to run in constant time and this yields a desirable linear time complexity 
of the algorithm, thus making it extremely efficient/suitable for large data sets. More details on the proposed 
numerical implementation are provided in the upcoming sections.  

2 ALGORITHM OVERVIEW 

In order to test the viability of the proposed approach, the developed CT-to-mesh generation algorithm has been 
intentionally tailored to the needs/input of a specific commercial package (Abaqus) that tends to be routinely used 
in the FEA of the biomechanical structures. However, it should be relatively easy to understand that this type of 
particularization does not significantly restricts the generality of the method to be described further. Moreover, at 
the highest conceptual level, the developed algorithm outputs geometrical, topological and material characteristics 
associated with finite element mesh. 

According to the specific mesh importing needs of Abaqus, the algorithm was designed to output an Abaqus-
specific input file which includes four distinct blocks of data: i) 3D coordinates of mesh nodes/vertices, ii) indices of 
the nodes; they are required for elements formation, (3) element-sets; each set is represented by a group of 
elements characterized by identical material properties and (4) indices of the element-sets; they are used to assign 
material properties to each of the element-sets. 

The major phases involved in the developed µFEM generation method are outlined in Fig. 1. First, µCT images 
were exported as 16-bit DICOM files to be then loaded into the commercial Mimics software. The high-frequency 
noise of the raw images was removed by means of a discrete Gaussian filter. As recommended in [4], a specimen-
specific gray-value threshold was used for trabecular bone in order to best preserve its architecture. The image 
segmentation was performed via region growing with embedded “six-connectivity”. This approach ensures the face 
connectivity of hexahedral elements and avoids the generation of nonmanifold geometries.  
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Microscale finite element studies for bones are often performed within the elastic regime with Poisson's ratio 
equal to 0.3 and Young's modulus derived from gray-values intensity, or simply gray-values [7]. Therefore, the gray-
value of each voxel must be passed to the mesh generation algorithm, along with its spatial data. Mimics allows the 

export of this information into a text file in which every row contains the centroid coordinates   3, ,
i i i
x y z  and the 

gray-value 
i
r   of the i-th voxel, where 1 i n   and n  is the of number post-processed µCT voxels.  

 

 
Figure 1:  Flowchart of the developed algorithm. 

 
The choice of Mimics for data preparation was merely determined by its availability. Alternatively, it is also 

possible to read the voxel data directly from DICOM files and then feed it into the algorithm. However, since µCT 
images often require manual segmentation in order to extract the region of interest, the need for a powerful image 
processing tool remains valid [29]. 

The developed µFEM generation algorithm is comprised of three main components. More specifically, after 
the input text file is loaded, the algorithm constructs a structured 3D grid that embeds all µCT voxels. This allows 
for the implicit identification of each voxel by means of efficient integer operations. This grid is then passed to the 
Geometry and Topology Formation block, in which an explicit representation of the mesh is generated. Then, 
Material Processing block constructs distinct element-sets and assigns each element-set with a material property 
that is inferred from the gray-values of each voxel. This completes the mesh generation process such that the 
resulting information can be then transferred to Abaqus for the remainder of the FEA steps. 

3 GRID GENERATION AND CONSTRUCTION 

A structured uniform grid can be uniquely identified by means of its voxel size, minimum corner and the number of 

voxels to be stored in each direction (sometimes termed “grid dimension”). Evidently, the size of the voxel (  3s ) 
is a priori known by the resolution of the μCT. By contrast, the last two parameters from the aforementioned list of 
three can be easily inferred from the centroid of the voxels, an operation to take place directly during the file stream. 

The minimum 
min
c  and maximum 

max
c  corners of the grid can be easily derived from the all voxels centroids. Then, 

Mimics Environment 

Filtering Thresholding Segmentation 

DICOM files 

Export  
text file 

1 1 1 1

2 2 2 2

3 3 3 3

, , ,

, , ,

, , ,

, , ,
n n n n

x y z r

x y z r

x y z r

x y z r

Create 
Hexahedrons 

Index Nodes 

Calculate 
Materials Bin Materials Create 

Element-Sets 

Read from 
Disk 

Create Grid 

Resize 
Voxels Grid parameters 

Density array 

1. Geometry 
2. Topology 
3. Element-sets 
4. Materials 

Grid Construction Geometry and Topology Formation 

Materials Modeling 

Output μFEM  r
threshold 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 16(1), 2019, 161-171 
© 2019 CAD Solutions, LLC, http://www.cad-journal.net 

 

164 

the grid dimension is computed by the element-wise calculation of  3max min


 
c c

d
s

. As a result, the total number 

of voxels within a grid 
min

( , , )s c d  can be expressed as 
max x y z
n d d d .  

Once the grid is identified, the algorithm proceeds with dynamic allocation of a linear array of integers whose 

length is 
max
n . This array, hereafter referred to as the density array, provides a memory-efficient way to describe 

the spatial occupancy of the grid. In particular, each element of the array stores the gray-value of an individual voxel 
whereas the indices of these elements encode the coordinates. As a result, each voxel can be easily identified by 

means of a few elementary integer operations. Specifically, a voxel  with integer grid coordinates 3( , , )u v w , 

ranging from 
3o  to ( 1, 1, 1)x y zd d d , maps to the i-th element given by  

 x x yi u v d w d d . (3.1) 

Conversely, for a given index i, the voxel coordinates can be calculated by  

 
x y

i
w

d d
, 

x y

x

i wd d
v

d
 and x y x

u i w d d v d . (3.2) 

Therefore, the center coordinates of a voxel can be readily computed by 

 min , ( , , )u v wc c s  (3.3) 

Where 3c  denotes center coordinates and ,  represents the dot product. As the above equations only 

involve integers, the use of the density array minimizes the need for floating-point operations that – given the number 
of decimal places associated with μCT data – are known to be both error-prone as well as slow. 

For many FEA applications, one hexahedral element per μCT voxel represents an acceptable resolution. 
Nevertheless, if finer meshes are needed, the uniform grid was designed to be passed to the voxel up-sampling 
step where sub-voxel mesh resolutions can be generated. To ensure the conservation of the model volume, the 

voxel size of the grid has to be a divisor of the μCT voxel size: ,k ks s  . Then, the minimum corner of the 

new grid is placed at the minimum corner of the previous grid, but a new density array is constructed with a length 

of x y z
d d d   , where k d d . The gray-values of the new voxels are obtained through the linear interpolation of the 

native μCT gray-values via iterations performed over the new density array. Finally, the new density array along 
with new grid parameters are passed to the next processing phase to be outlined further.  

4 GENERATION OF GEOMETRY AND TOPOLOGY 

As a general rule, Cartesian mesh is comprised of eight-node hexahedral elements. Node coordinates can be 
computed by means of the centroid coordinates of the corresponding μCT voxels. For this purpose, the algorithm 
loops over the density array, calculates the centroid coordinates of occupied voxels via Eq. (3.2) and (3.3), and 

generates eight nodes in an order shown in Fig. 2. The resulting nodes are stored in an array of 8n  length where 

n  is the number of hexahedral elements and the elements spanning from 8i  to 8 7i   correspond to the i-th 

hexahedral element. This array captures unequivocally and concurrently both the geometry and topology of the 
mesh. The main advantage of this approach resides in that the knowledge of the adjacent nodes is not required 
since nodes are constructed independently for each of the elements. This is potentially beneficial for out-of-core as 
well as parallel extensions of the algorithm to become valuable additions in the management of large models. 
However, this approach will inevitably lead to duplicate nodes that are unacceptable for many FEA solvers. 
Therefore, the main purpose of the node indexing step is to ensure the uniqueness of the each of the nodes by also 
ensuring their connectivity.  

Evidently, one of the simplest way to remove duplicates would rely on nested loops that would be set to 
continuously iterate over the array in order to identify the identical/duplicate elements to be subsequently 
eliminated. However, since the average time complexity for array searching is linear, the worst-case time complexity 
associated with this method would end up being quadratic and thereby rendering a poor performance in the present 
large dataset context. To accelerate this particular phase, the developed algorithm incorporates a more efficient 
searching technique called hash mapping.  
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Figure 2: Topology of the hexahedral element of the Cartesian mesh. 

 

In brief, a hash map is a data container that stores every node coordinate while pairing it with a key value. These 
key values are computed by a hash function assigned to the hash map. While a linear array will inevitably stores 
its elements in a sequential, the hash map places the elements based on their keys. As a result, searches performed 
on hash maps will always yield a constant time complexity since the algorithm will only iterate once over each node. 
At each iteration, all duplicate nodes are identified and removed from the hash table. This leads to an overall linear 
time complexity that in turn translates into significant computing time decreases when compared to the conventional 
nested-loop approach (Tab. 1). The resulting nodes and indices will form the explicit representation of the final 
μFEM. 

 

Number of μCT 
voxels 

Total number of 
nodes 

Number of 
duplicate nodes 

Runtime (ms) 
Nested loops Hash mapping 

500 4,000 3,147 2.696 0.212 

1,000 8,000 7,167 10.476 0.435 

5,000 40,000 33,735 162.167 1.795 

15,000 120,000 101,123 15,92.704 6.175 

40,000 320,000 270,113 10,986.821 15.416 

 
Table 1: Comparative assessment of hash mapping efficiency. 

5 MATERIAL MODEL 

While gray-values can provide precise information about the density of an object, additional processing is required 
in order convert them into meaningful material properties. While presently there is no generally accepted mapping 
between gray-values and bone elasticity, most conversion methods advocate for the need of an user-defined 

function ( )m f r  that maps the gray-value r  into a particular material property m  [25]. For trabecular structures, 

this function might be defined as a linear mapping ( )f r ar b   where a  and b  are constants [3]. This function is 

implemented in the Calculate Material block and essentially converts the CT gray-value into a corresponding 
Young’s modulus. Then, in the optional material binning step, the computed moduli are categorized into bins of 
user-defined widths. Subsequently, materials belonging to the same bin are substituted by the center of their bin. 
This process decimates the number of materials derived from μCT in order to reduce the complexity of the resulting 
μFEM in an attempt to speed up the FEA computations. The final material models are then listed in the output 
μFEM, however, they are to be linked first to the mesh elements that were produced in the anterior step.  

To do that, a second hash map technique was utilized to identify all elements characterized by identical 
material properties to be then grouped as distinct element sets. Following this, the elasticity of each set was linked 
to the computed list of materials by means of indices. As a result, material characteristics of all mesh elements 
could be generated.  
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6 RESULTS AND DISCUSSION 

Several μCT samples were used to test the performance of the proposed numerical technique. C++ language 
was used as the programming platform and computing time was measured by means of the chrono timer that is 
available in C++ standard library [15]. The hardware used for the tests included a standard Core-i7 6700K CPU 
equipped with 16 GB RAM. The models used for the tests include three μCT datasets as well as a clinical CT image 
of scapula bone. Details on these models are provided in Tab. 2, below.  

 
  

Model Voxel Size 
Voxel Grid 
Dimension 

Number of 
Occupied Voxels 

Text File Size 
on Disk 

Trabecular Specimen 32μm isotropic 281372353 1.7 M 84.8 MB 

Cellular foam  32μm isotropic 422629652 12.4 M 746 MB 

Glenoid 64μm isotropic 1021548742 36.2 M 1.68 GB 

Scapula (0.47, 0.47, 1) mm 311284169 558 K 33.5 MB 

 
Table 2: Characteristics of the models used for testing. 

6.1 Running Time Breakdown – Fixed Voxel Size 

Initially, the resolution of the hexahedral FE mesh was set to match that of the acquired CT scan. The material 
properties of the larger samples (e.g., cellular foam and cadaveric glenoid) were binned with a bucket size of 10. 
Tab. 3 shows the breakdown of the running time for different steps of the algorithm. To eliminate confounding errors, 
I/O times were not considered. Given the comparison results in Tab. 1 and the number of μCT voxels in the studied 
samples, it is easy to infer that the use of hash tables is significantly advantageous for the overall performance of 
the algorithm, even though indexing operations continue to remain one of the major bottlenecks. 

 
 

Phase 
Runtime (ms) 

Trabecular specimen  
(1.7M voxels) 

Cellular foam 
(12.4M voxels) 

Glenoid 
(36.2M voxels) 

Scapula 
(558K voxels) 

Create Voxel Grid 25.057 189.135 641.875 17.358 

Create Hexahedral 196.085 1,383.37 4631.19 69.359 

Nodes Indexing 1,354.804 12,888.198 37,013.259 343.325 

Calculate Material 15.743 147.407 500.394 9.335 

Material Binning N/A 35.414 97.415 N/A 

Material Indexing 387.306 3,301.615 12,279.429 109.241 

Sum 1,978.995 17,945.139 55,163.562 548.798 

 
Table 3: Breakdown of runtime time for different phases of the proposed algorithm. 

 

Peak memory usage for each model is reported in Tab. 4. While the algorithm did not run out of memory in none 
of the analyzed cases, it is expected that the larger models will require excessive computing memory. On the other 
hand, since the construction of each hexahedral element is independent from the rest of the elements, it is 
practically possible to use out-of-core implementations in order to accommodate meshing larger models. However, 
it is reasonable to expect that the slower access to auxiliary/external-to-CPU memory will negatively impact the 

overall computing time. Figure 3 depicts the algorithm-generated -FEMs. 

 
 

Model Peak memory usage 
Trabecular Specimen 359.4 MB 

Cellular foam 3.65 GB 

Glenoid 10.83 GB 

Scapula 213 MB 

 
Tab. 4: Peak memory usage for the tested models 
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(a) (b) 

  

(c) (d) 
 

Figure 3: Generated -FEM for: (a) trabecular, (b) cellular foam, (c) glenoid, and (d) scapula samples. 
 

6.2 Running Time Break Down - Voxel Up Sampling 

To investigate the effect of voxel resizing on algorithm runtime, a new μFEM was generated by fragmenting each 
μCT voxel into 8 smaller voxels. This results in an isotropic resolution of 16 μm. The gray-values of the new voxels 
were obtained through linear interpolation of the gray-values obtained from the native μCT voxels. As shown in Tab. 
5, the voxel resizing step – tested on the trabecular specimen - needed only an additional 4.54 s in order to up-
sample more than 1.7M voxels. However, the overall computing time of the algorithm has experienced a significant 
increase due to the considerably smaller size of the mesh that was generated at this time. Nevertheless, the total 
runtime of 20.74 s remains remarkable, particularly when considering that the total size of the mesh is in excess of 
13.6M hexahedrons/FE elements.  The results suggest that the parameter that significantly affects the algorithm 
performance is represented by the model size, i.e., the sheer number of μCT voxels to be processed/converted into 
hexahedral elements.  
 

Phase Runtime (ms) 
Create Voxel Grid 23.163 

Resizing Voxels 4,542.848 

Create Hexahedral 1,470.698 

Nodes Indexing 11,330.332 
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Calculate Material 122.155 

Material Indexing 3,255.170 

Sum 20,744.366 

 
Table 5: Breakdown of the running time for trabecular specimen undergoing up-sampling. 

6.3 Time Complexity Analysis 

To further investigate the functional relationship between the model size n  and the algorithm runtime t , various 

decimations of the glenoid model were tested such that their log-log dependence could be graphically represented. 
Figure 4 reveals that for large datasets, the slope of the plot approaches unity: 

 2 2 2 2

1 1 1 1

log log
t n t n

t n t n
, (3.4) 

 
This practically implies that runtime increases linearly with the size of the input, a finding that echoes well the linear 
time complexity that mentioned in the previous sections. Figure 4 also seems to suggest  

 
 

Figure 4: Relationship between the model size n  and the algorithm runtime t  measured in milliseconds. 

 
that small datasets are characterized by a constant time complexity which might be nothing but a consequence of 
the dominant initialization overhead on the overall small runtime associated with small datasets.  

7 DISCUSSION 

As revealed by several numerical tests, the algorithm is capable to reduce the mesh generation time to under 
minute values for models comprised with as much as 36M voxels. Perhaps even more importantly, all tests were 
run on mid/low end/inexpensive computer hardware. Evidently, this level of performance is primarily owed to the 
implementation of grid-based approaches as well as hashing techniques that have enabled the concurrent 
achievement of a number of desirable software characteristics such as: memory efficiency, minimal number of 
floating point operations, fast and robust computations, implicit definitions of μCT voxels, facile up-sample of the 
voxels, etc. Above all, the linear time complexity behavior is set to guarantee the performance of the algorithm even 
for very large datasets. 

Another important feature of the proposed method resides in its flexibility to be further enhanced in different 

directions. For example, since hexahedral elements are constructed independently per CT voxel, construction of 
the mesh geometry can be effectively accelerated by a multi-threaded implementation using either CPU or GPU 
parallel computing platforms. It is also easy to utilize out-of-core methods in order to manage large models with 
minimal memory needs. Furthermore, the algorithm allows the incorporation of different material mapping methods 
in order to better replicate the structural characteristics of the model. The proposed approach also lends well to 
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direct conversions of CT data into finite element models. Although the automatic segmentation of CT images 
remains a challenge, the integration of image processing techniques could reduce data preprocessing time with 
further positive implications on the productivity of the downstream FEA analysis.  

One of the possible limitations of the proposed method is represented by the fact that the generated mesh is 
constrained to have equally shaped and sized elements. Even though this type of limitation would be widely 
preferred over the conventional tetrahedral mesh alternative, one of the possible extensions of the current work 
could be focused on the generation of adaptively-sized hexahedral elements (possibly dimensioned through 
geometry curvature tracking algorithms), particularly since this would translate into a higher modeling accuracy of 

the generated FEM. However, it can be anticipated that this possible enhancement direction is far from being 
trivial, particularly in order to address the occurrence of mismatched/hanging mesh nodes/vertices. Evidently, all 
these future investigational scenarios would lead to the generation of “true” (i.e., nonuniform/uneven) hexahedral 
meshes as opposed to their present Cartesian aspect. 

8 CONCLUSION 

The primary objective of the present study was to develop a fast and simple algorithm to facilitate the tedious 

process of deriving FEMs from CT data. The developed algorithm leverages several simple yet effective data 
structures and methods, primarily in the form of grid-based and hash mapping techniques, to speed up mesh 
generation processes that would otherwise crash the commercially available FEA software used for similar 
purposes. The developed algorithm is insensitive to geometrical complexity of the models and can generate 
hexahedral instead of tetrahedral elements. Of note, all the aforementioned features are practically lacking from 
any of the commercial FEA platforms that were scrutinized/reviewed prior to the start of this work. The algorithm 
can be regarded as a step forward towards the achievement of a superior level of performance/productivity during 

the structural FEA of biomechanical osseous models derived from CT data. 
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