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ABSTRACT
Numerical optimization is becoming an essential industrialmethod in engineering design for shapes
immersed in fluids. High-fidelity optimization requires fine design spaces with many design vari-
ables, which can only be tackled efficiently with gradient-based optimization methods. CAD pack-
ages that are open-source or commercially available do not provide the required shape derivatives,
but impose to compute them with expensive, inaccurate and non-robust finite-differences.

The present work is the first demonstration of obtaining exact shape derivatives with respect to
CAD design parametrization by applying algorithmic differentiation to a complete CAD system, in
this case theOpenCascade Technology (OCCT) CAD-kernel. The extension ofOCCT to perform shape
optimization is shown by using parametric models based on explicit parametrizations of the CAD
model and on implicit parametrizations based on the BRep (NURBS). In addition, we demonstrate
the imposition of geometric constraints for both approaches, a salient part of industrial design, and
an intuitivemethod of storing them in standard CAD format. The proposedmethod is demonstrated
on a turbo-machinery test case, namely the optimization of the TU Berlin Stator.
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1. Introduction

In engineering workflows it is common practice to main-
tain master CAD models, which then serve as a founda-
tion for further design and development. In complex sys-
tem design these base geometries enable cross-discipline
collaboration and therefore minimize the time needed
to bring an industrial component to production. In an
optimization workflow it is hence important to maintain
consistency between CAD model and the meshes of the
analysis disciplines, which is typically done through para-
metric CAD models. Such workflows can be driven by
stochastic optimizers and only require evaluation of the
CAD shape.

High-fidelity shape optimization of immersed bod-
ies subject to fluid dynamics, such as aeroplanes, tur-
bines, vehicles or ducts, requires very rich design spaces
with many design variables. Tackling these rich design
spaces is not computationally feasible with stochastic
optimization methods such as Evolutionary Algorithms:
the convergence to the optimum requires far too many
evaluations of an expensive computational model such as
CFD. Gradient-based optimization has been shown to be
feasible, and has widely been adopted for these problems.
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Significant progress has been made over the past
decades with computing gradients of objective functions
with respect to mesh point perturbation for Computa-
tional Fluid Dynamics (CFD) solvers. In particular, the
adjoint method [5,8,10,12,15] allows to compute these
gradients accurately, consistently and with low compu-
tational cost.

Adjoint CFDmethods can efficiently compute the sen-
sitivity of the objective function w.r.t. a perturbation of
an individual grid node, the next term in the chain-
rule of the gradient computation is the derivative of
the grid node position w.r.t. design parameters, i.e. we
need to define a parametrization and compute its shape
derivative.

A simple parametrization is the node-based approach
where the design variables are the displacement of the
grid nodes on the shape. Although the mesh node
positions present the richest design space that compu-
tational tools can consider, the approach allows sur-
faces with oscillatory high-frequency noize. This can
be addressed by regularization (smoothing) [9]. Alter-
native approaches are Free Form Deformation [14] or
radial basis function [3]. At convergence to the optimum,
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the optimized mesh is re-created in CAD, but this
usually inquires significant approximations and inaccu-
racies degrading the quality of the optimum.

As an alternative, CAD-based methods maintain a
consistent CADmodel throughout the optimization. The
challenge here is to compute the shape sensitivities of
the CAD model. Robinson et al. [13] apply finite differ-
ences to parametric CAD models created in commercial
’black-box’ CAD systems. The CAD sensitivity is com-
puted as the local distances between surface triangula-
tions of the original CAD model and the one with the
perturbed design parameters. A similar approach is fol-
lowed in [4], where finite differences are applied to the
open-source CAD-kernel Open CASCADE Technology
(OCCT). Where feasible the authors compute analyti-
cal derivatives e.g. for CAD primitives and shapes (cube,
sphere, etc.).

If source code is available, algorithmic differentia-
tion (AD) can be used to compute derivatives of any
computational algorithm. In [19] a small in-house CAD
kernel supporting NURBS was automatically differenti-
ated and provides analytical derivatives. In this paper
we exploit recently differentiated version of essentially
complete OCCT kernel [1], [2]. Although differentiation
of a complete CAD-kernel is a non-trivial and time-
consuming task, the differentiation of OCCT allows to
get exact derivatives without numerical noise in any
of CAD modelling algorithms available in OCCT. This
makes the differentiated OCCT practical for a wide
range of parametrizations and geometrical manipula-
tions. Moreover, the efficiency of the computation of
the shape sensitivities is superior to finite differences
and more robust, which encourages shape exploration in
large-dimensional CAD spaces.

The definition of the design space is crucial for aero-
dynamic shape optimization in CAD-based methods: an
optimal result can only be achieved if the relevantmode is
present that can harness the important aspect of the flow
physics. Therefore, widely used parametric CAD models
require from the designer a proper engineering judge-
ment during initial design. To respond to these chal-
lenges, several application-specific parametrization tools
were developed [6], [17]. Taking to account extensive
engineering experience, these tools allow to parametrize
the shapes with conventional and intuitive design param-
eters (trailing/leading edge radius, blade thickness, wing
span, etc.). These parameters are then varied during
the design optimization loop. Furthermore, an explicit
control over design variables also allows to incorporate
geometrical constraints directly in the parametrization.
These approaches, termed here ‘explicit’ parametriza-
tions as they need to be set up manually. They are widely
used for typical case scenarios and flows, good experience

in their definition is available. However, increasingly ‘out
of the box’ designs are required to work in new con-
figurations, work with new materials or better exploit
the interaction between disciplines in multi-disciplinary
optimization. In these situations a good choice of design
parametrization is often not evident.

Alternatively to the previous approach, instead of
changing the parameters of the model’s construction
algorithm, one can directly modify the geometry of
the resulting shape, so-called BRep (Boundary Repre-
sentation) [19], [21]. We term this approach ‘implicit’
parametrizations, as there is no specific user effort to
define the design space. Changes to this BRep data
(control point positions and weights of corresponding
NURBS patches) eliminate the initial parametrization,
but propose rich design spaces, which can straightfor-
wardly be refined adaptively by inserting additional con-
trol points. The resulting design space can be made to
guarantee to include all relevant modes, and combined
with adjoint gradient computation, there is no computa-
tional penalty. However, convergence of the optimising
algorithm such as steepest descent may be slower, and
preconditioning methods will be needed. The NURBS-
basedmethod is CAD-vendor independent, and requires
only a generic CAD-file (STEP, IGES, etc.), eluding prob-
lemswith parametrization tree andmaking the optimiza-
tion more automatic.

The paper proposes two major elements to overcome
obstacles with integration of CAD into the design loop:

a) We describe the application of automatic differ-
entiation to a complete CAD system and demon-
strate the accuracy and efficiency of computation of
the shape sensitivities. These advances allow us to
build gradient-based optimization workflows with
the CAD-model being updated inside the optimiza-
tion loop.

b) We present two alternative approaches that are
supported by this differentiated CAD kernel, both
with their merits and disadvantages. The ‘explicit’
parametrization is closer to current practice in aero-
nautics and turbo-machinery, butmay limit the opti-
mum due to restrictive design spaces. The alterna-
tive ‘implicit’ parametrization allows to automati-
cally derive a sufficiently rich design space, however
may impair convergence to the optimum.

In this paper the differentiated OCCT is used to
optimize TU Berlin Stator test case [23]. A brief intro-
duction to the OCCT differentiation can be found in
Sec. 2. Parametrization of the stator blade with con-
ventional turbomachinery parameters is described in
Sec. 4. Section 5 describes the necessary ingredients
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for NURBS-based optimization including corresponding
constraint impositions, followed by results for both
approaches in Sec. 6.

2. Automatic differentiation of OCCT
CAD-kernel

Geometrical sensitivities of CADmodel w.r.t. its parame-
trization are necessary to perform CAD-based shape
optimization. The exact derivatives are obtained by algo-
rithmic differentiation (AD) of the open-source CAD-
kernel Open CASCADE Technology (OCCT) using the
AD software tool ADOL-C (Automatic Differentiation by
OverLoading in C++) [2]. The ADOL-C tool requires all
variables that may be considered as differentiable quan-
tities to be declared as an adouble type to denote an
active variable. This requires one to replace the type dec-
laration of almost all floating point variables in the source
code to the adouble type. The idea although straight-
forward to implement requires significant man-hours to
fix compile and run-time errors.

ADOL-C [18] provides two kinds of differentiation
options: (i) trace-based and (ii) traceless. Each one imple-
ments a different version of the adouble class leading
to two distinct computational algorithms. In the trace-
based option, operator-overloading is used to generate an
internal representation (trace) of the function to be differ-
entiated. Then the ADOL-C driver routines are executed
on the generated trace to compute the necessary gradi-
ents. In the traceless mode, the gradient computation is
propagated directly during the function evaluation, along
with the function values. This mode is simpler to use
as every overloaded operator embeds both primal and
gradient code in its definition. On the contrary, it is not
as powerful as the trace-based option since only the for-
ward/tangent mode of AD is possible. In the trace-based
option both the forward/tangent and reverse/adjoint
mode of AD are possible, where reverse mode of AD can
dramatically reduce the temporal complexity of the gra-
dient computation. The theory behind the forward and
reverse mode can be found in reference [7].

We successfully differentiatedOCCTusing both trace-
based and traceless modes provided by ADOL-C. Hence
it is possible to compute the CAD sensitivities (i.e., gradi-
ents of CAD surface points w.r.t. design parameters of the
model) both in the forward and reverse mode of AD. We
verified the correctness of the differentiated CAD kernel
against (central difference) finite difference results. The
geometric algorithms involved in the TU Berlin Stator
blade parametrization in OCCT were also individually
verified for correctness against finite difference. A qual-
itative comparison of AD and FD surface sensitivities
w.r.t. one design parameter is shown in Fig. 2. In order

(a) Original stator blade shape (b) Perturbed stator blade shape

Figure 1. CAD optimization with two stator blades

to validate the reverse mode differentiation of OCCT
against the forward mode of AD, we developed an opti-
mization test case within the CAD system. It is organized
as follows:

1. Construct two blades: original and perturbed one,
see Fig. 1.

2. Sample final NURBS surfaces with 20K pairs of (u,
v) parametric coordinates. These parametric coordi-
nates are later used inNURBS algorithms to evaluate
the corresponding three-dimensional points (x, y, z).

3. Define an objective function as the sum of squared
distances of all (x, y, z) point pairs.

4. Declare the original design parameters as indepen-
dent variables of the system.

5. Minimize the objective function by using the
limited-memory BFGS optimization algorithm with
boundary constraints (L-BFGS-B) [22].

The primary objective of this test case is to match the
surfaces of two blades by modifying the design param-
eters of the original blade. Since we have two versions
of differentiated OCCT kernel, one compiled with trace-
less and another one with trace-based ADOL-C head-
ers, the optimization was performed twice. We observed
small differences between the gradients obtained from
the two modes of AD, as shown in Fig. 3. Similar differ-
ences (same order of magnitude) were present in the pri-
mal results. We attribute the difference to floating-point
round-off errors, since the floating point operations (and
order) differ between traceless and trace-based ADOL-C
headers. The differences relative to the objective func-
tion value, which is O(105) are quite insignificant. The
high peaks in differences occur, for example near gradi-
ent index 100 (Fig. 3), in the regions of low sensitivity
values where round-off errors dominate.

The run-time ratios of the optimization test case for
both forward and reverse mode AD are shown in Table 1.
Note that the run-time ratio is defined as the ratio



COMPUTER-AIDED DESIGN & APPLICATIONS 919

Figure 2. Blade sensitivities evaluated by AD (left) and Finite Differences (right)

Figure 3. Gradient differences between two modes of AD for
initial blade optimization iteration

Table 1. Timings for initial bladeoptimization iterationdonewith
original and differentiated (AD) sources

Original
sources

AD Forward mode
(traceless)

AD Reverse mode
(trace-based)

Avg. time (seconds) 0.09 13.27 6.99
Run-time ratio 147.44 77.67

between the original and differentiated OCCT sources.
The trace-based reverse mode AD is quite efficient and it
is overall 47% faster than the traceless forward mode for
the optimization test case.

3. Differentiated OCCT and adjoint CFD
coupling

In a typical aerodynamic shape optimization process one
minimizes a cost function J (usually scalar like lift, drag,
etc.) with respect to the CAD geometry with design
parameters α and subject to geometry and flow con-
straints R [8]:

min
α

J(U(X(α)),X(α),α) (1)

R(U(X(α)),X(α)) = 0. (2)

Equation (2) describes the flowfieldwithin the domain of
interest by system of Reynolds-Averaged Navier-Stokes
equations, with the state variable U and a computational
mesh coordinates X, which depend on design param-
eters α. In case of large amount of design parameters
(usually the case in industrial applications) the adjoint
method proves to be computationally efficient and could
be derived by application of a chain rule to the system (1)-
(2) yielding:

dJ
dα

=
[ dJ
dX

+ νTf
]∂X
∂α

, (3)

where

f = − ∂R
∂X

. (4)

Here ν represents the solution of adjoint equations:

( ∂R
∂U

)T
ν = ∂J

∂U
. (5)

After computing the solution of primal and adjoint equa-
tions (2),(5), one can rewrite cost function gradient in
terms of surface grid points derivatives:

dJ
dα

= dJ
dXS

dXS

dα
. (6)

Here, the relation (spring analogy, inverse distance
weighting) between volume and surface grid points dis-
placement is used X = X(XS). The first term in (6),
usually called CFD sensitivity, corresponds to the flow
sensitivity in the surface grid points XS. These deriva-
tives could be calculated by several available CFD solvers
that have implemented the adjoint method. In this work
we use our in-house discrete adjoint solver STAMPS
(previouslymgopt) [20].

The second term (CAD sensitivity) represents the
derivative of the surface grid points XS with respect to
the CAD model design parameters. This part is calcu-
lated in the automatically differentiated version of OCCT
[1]. The differentiated OCCT provides the derivatives for
almost every possible CAD parametrization and geomet-
rical manipulation.
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Equipped with these derivatives, we compose them in
the total gradient, which is thenused in iterative gradient-
based optimization loop:

α(n+1) = A
(
α(n),

dJ
dα

(α(n))
)
, (7)

with A as an optimization algorithm. Next sections
describe two cases of the above mentioned method,
depending on the nature of CAD design parameter
α: as design variable in parametric CAD model or
BRep/NURBS parametrization.

4. Parametric CAD-model for TU Berlin Stator
and constraints

The TU Berlin TurboLab Stator Blade [23] is a typical
turbomachinery optimization test case, where geomet-
rical constraints strongly influence the final optimized
shape. The test case prescribes the following geometri-
cal constraints on the blade: (i) minimum radius of the
leading and the trailing edge, (ii) minimum thickness
of the blade (iii) minimum thickness near the hub and
the shroud to accommodate the four mounting bolts and
(iv) constant axial chord length. In the present work, we
re-parametrized the blade in OCCT such that all con-
straints except the thickness constrains for the mount-
ing bolts are explicitly embedded in the parametrization.
These constrains can readily be provided to any optimizer
workflow.

4.1. 2D Profile parametrization

The blade parametrization starts by defining a 2d pro-
file. We used B-spline curves to represent the 2d blade
profiles, since they provide a rich and flexible space for
the parametrization [17]. The 2d blade profile is gener-
ated using a camber-line (shown in Fig. 4) represented
by a B-spline curve and characterized by seven control
points. We distribute eight reference points (P1, . . . ,P8),
as shown in Fig. 4, along the camber line using a cosine
function. The cosine function is used to cluster points
near the leading and trailing edge (LE and TE) of the
camber-line. The control points for the suction and pres-
sure side B-splines curves are generated as equidistant
offsets of the reference points normal to the camber-line
(Fig. 4). Finally, the suction and pressure side curves are
smoothly joined using the specified radius of curvature
satisfying G2 continuity.

The AB length (Fig. 4) in a B-spline curve of degree n
is:

AB =
√
curvature · CH · n − 1

n
(8)

Figure 4. Left: Camber-line (blue) with corresponding control
polygon (red) and uniform point distribution; Right: Construction
of pressure/suction control points; Imposition of curvature (G2
continuity) at the LE

Figure 5. Section parameters

where AB is the distance between control point A and B
and CH is the distance of control point C from the AB
line. Therefore, it is possible to impose the curvature in
the point A.

This approach is applied to suction and pressure B-
splines. In particular, the two curves have the same radius
of curvature at the LE. This radius is controlled as design
parameter of the optimization. The same approach is also
used for the TE radius. Thus the G2 continuity is kept
along all the section.

In summary, the 2d profile consists of 23 parameters of
which, (i) 10 parameters control thickness (2 of them are
the radii of TE and LE) and (ii) 13 parameters control the
camber-linemovement and, therefore, its angle, as shown
in Fig. 5.

4.2. 3D Parametrization

The 3d blade parametrization is based on a cross-
sectional design approach - the lofting. This approach
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Figure 6. Blade skeleton and TE law of evolution in the 3D
domain

takes n-slices (2d profiles) as input and constructs final
B-spline surface using anOCCT approximation tool. The
slices are generated along a blade span defined as a B-
spline curve, the path-line. Each 2d profile parameter is
characterized by a law of evolution along the path-line.
The laws are defined as B-spline curves, consisting of 8
control points each. These control points are the design
parameters of the optimization. Their total number is
184 (23 · 8). An example of the blade construction using
seven slices is shown in Fig. 6.

4.3. Optimization constraints

The limited memory BFGS algorithm with boundary
constraints (L-BFGS-B) is used as optimizer. The con-
straints specified in the L-BFGS-B are as follows:

• G2 continuity: imposed along all the section based on
the geometrical construction.

• Axial chord: the axial-coordinate of the last camber-
line control point is set equal to the axial-coordinate
of the first control point plus the constant axial chord
value.

• Thickness distribution: the thickness between the
suction and pressure surface is approximated using
the corresponding B-Spline control point distances.
Therefore this constraint has to be verified a posteri-
ori.

• LE and TE radii: The lower bound values are specified.

5. NURBS-based optimizations and constraints

The NURBS-based optimization technique with con-
tinuity and geometrical constraints (so-called NSPCC
approach) was initially proposed in [19] and [21]. In this
paper, we extend and automate the NSPCC method fur-
ther. The authors in [19] use a modest in-house CAD
kernel, but we substitute it with a comprehensive OCCT
CAD kernel and benefit from the extensive CAD func-
tionality. The major updates and novelties are related
to the refinement of the CAD-space, new constraints
capabilities (curvature), recovery of the violated geomet-
rical constraints and the storage of the constraints in
standard CAD formats. In the current NSPCC version
the role of the CAD tool is more profound, while the
amount of manual constraint set-up is reduced. This
brings NURBS-based optimization closer to the indus-
trial workflows and creates an alternative to parametric
CAD-models optimization.

5.1. NURBS-based design

The advantage of NURBS-based approach is that in
most cases no preprocessing (understanding of initial
parametrization tree, re-parametrization in another tool,
aerodynamic intuition to define proper CAD space, etc.)
is needed. CAD-vendor neutral boundary representation
could be retrieved directly from the standard CAD files
(STEP, IGES, etc.), which usually contain collection of
NURBS patches.

Since OCCT is already equipped with an efficient
reader of standard CAD formats, its differentiated ver-
sion allows to compute the sensitivity information in any
point of the surface with respect to control points posi-
tion of governing NURBS. Therefore the CAD sensitivity
defined in Eq. 6 is obtained for every surface:

∂XS

∂α
= ∂XS

∂P
=

= 3×M

⏐⏐⏐⏐⏐⏐⏐⏐⏐


3 × N−−−−−−−−−−−−−−−−−−−−−−−→⎛
⎜⎜⎜⎜⎝

∂XS1

∂P1
∂XS1

∂P2
· · · ∂XS1

∂PN
...

...
. . .

...
∂XSM

∂P1
∂XSM

∂P2
· · · ∂XSM

∂PN

⎞
⎟⎟⎟⎟⎠ . (9)

Here M and N are the total number of surface mesh
points XS and control points P respectively. Moreover,
with OCCT one can easily and intuitively refine design
space by adding extra control points with knot insertion
algorithm [11]. This operation does not change the shape
or degree of the surface, but establishes more local con-
trol due to local support properties of the splines. This is



922 O. MYKHASKIV ET AL.

Figure 7. Left: Initial (9x22) and refined(18x22) Control Point Net of TUB Stator; Right: Corresponding changes in CAD Surface Sensitivity
with respect to movement of the single control point

clearly visible in the changing pattern of the CAD sen-
sitivities shown in Fig. 7. These very narrow sensitivities
potentially could cope better with small flow features not
’visible’ for more global parametric sensitivity (Fig. 2).

At the moment, the refinement is performed manu-
ally prior to the optimization, but this process can be
automated with the CFD sensitivity field as a sensor for
refinement.

It is important to note that in some cases the NURBS
surfaces extracted from standard files are not suitable
for direct NURBS-based optimization due to enormous
clustering of control points (sometimes as fine as the
computational mesh). The root of this problem lies in
the creation of the initial shape (morphed from STL,
extensive surface trimming, etc.). In these cases reverse
engineering and re-approximation of the surfaces might
be required.

5.2. Constraints

CADmodels are usually constructed frommultiple adja-
cent patches. Therefore, modifications of control points
individually on patches can violate (i) patch-continuity
(holes between the CAD faces, non-smooth shapes) or
(ii) other geometrical constraints. We alleviate this prob-
lem by filtering out the shape modes with undesired con-
straints violations using discrete spaces constructed using
test-points [19]. Conceptually, the approach requires that
the constraints are satisfied on the particular set of points
defined on the surface (test-points). We avoid distin-
guishing the continuity and the geometrical constraints
by bringing them under one framework.

In the TU Berlin Stator test case, several geometri-
cal constraints are present and were introduced in the
previous section. Several methods were devized to accel-
erate and automate the process of test-point distribution.
Firstly, we identify topological entities (e.g. edges, parts

of surfaces, etc.) necessary for constraint imposition. For
instance, to distribute test-points along the leading edge
(curvature and continuity constraints), we use OCCT to
find two parametric curves (PCurves) of the edge on two
adjacent faces (Fig. 8). Then we use OCCT to uniformly
distributes points (in 1d parametric space) along each
PCurve. As a result two pairs of test-points are generated
each belonging to the respective PCurves. The test-point
pairs along the edge1 (LE) and edge2 (TE) are then used
to impose continuity and curvature constraints. It is also
possible to generate test-point pairs on PCurves at arbi-
trary location on a given patch face (connect the prede-
fined endpoints (u1, v1) and (u2, v2) in the parametric
space of the face). The generated test-points pairs are then
used to impose thickness constraints between the two
patches of the Stator. The treatment of constraints on a
topological level allows to store these PCurves in a stan-
dard CAD file. This enables visualization and inspection
of the constraints during optimization. For example in
Fig. 9 the pairs ofPCurves are shown,wherePCurvespairs
are identically colored. In addition, the PCurves can be
stored and visualized as wire-frame objects with vertices
as test-points.

Once all necessary test-points are distributed, stan-
dard OCCT geometric algorithms (distance, curvature,
normal, etc.) can be used to compute the following con-
straints:

• Distance constraints
To fix the distance dr between two test-points
(Xt1,Xt2), the following function is constructed:

Cd = distance(Xt1,Xt2) − dr = 0 . (10)

This constraint is used to ensureG0 continuity (dr =
0 is then used) and the constant axial chord length.
Similarly, the minimum thickness (Tmin) constraint,
which is required in the middle of the blade and for
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Figure 8. Left: TUB Stator Topology; Middle: Test-points distribution along PCurves of the common edge; Right: Test-points on generic
PCurves of surfaces

Figure 9. Left: Constraint visualization from the STEP file; Right: Constraints computation on the testpoints

the bolts, corresponds to inequality constraint and is
represented with:

Cd = 1 − min
(
1,
distance(Xt1,Xt2)

Tmin

) = 0 . (11)

• Radius of curvature constraint
OCCT allows to compute minimum and maximum
curvature in any point of the surface. Therefore,
the radius in the test-point corresponding to TE
and LE can be calculated as r = 1/curvature(Xt1).
Constraint function bounding the minimum radius
value to (rmin) is:

Cr = 1 − min
(
1,

r
rmin

) = 0 . (12)

• Smoothness constraint
G1 continuity can be imposed as:

Cs = normal(Xt1) × normal(Xt2) = 0 . (13)

The min operator in Eq. 11 and Eq. 12 is used
to ’activate’ inequality constraint if it gets violated,
and ’deactivate’ it (constraint value is zero) otherwize.
With differentiated OCCT we assemble derivatives of all
constraint-functions into the constraint matrix:

C = ∂Cx

∂P
=

3×N

⏐⏐⏐⏐⏐⏐⏐


T−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→⎛
⎜⎜⎝

∂Cd1
∂P1

∂Cd2
∂P1 · · · ∂Ccr1

∂P1
∂Ccr2
∂P1 · · · ∂Ccr

∂P1
...

...
. . .

...
...

. . .
...

∂Cd1
∂PN

∂Cd2
∂PN · · · ∂Ccr1

∂PN
∂Ccr2
∂PN · · · ∂Ccr

∂PN

⎞
⎟⎟⎠ .

(14)

Here T correspond to the number of all above-mentioned
constraints. Afterwards, the constraint matrix is used in
the finite step update:

Pn+1 = Pn + t · Ker(C)
[
(∇J)Ker(C)

]T
, (15)

where

∇J = ∂J
∂XS

∂XS

∂P
. (16)
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The last equation is equivalent to one step of a projected
gradient method with a step size of t. Here Ker(C) is
the kernel of the constraint matrix. This ensures that the
control point perturbations are in the null space of the
constraint matrix i.e., control points are modified with-
out violating the constraints (at least for infinitesimal
step-size).

5.3. Constraint recovery

Due to non-linearity of constraints (G1, curvature) and
inequality constraints (some constraints are inactive)
they could be violated after the finite step - Eq. (15). To
overcome this, we have extended the continuity recov-
ery method proposed previously in [19] to all type of
constraints.

First, by means of OCCT we indicate constraints
that are indeed violated (|δGd,r,s| = |Cd,r,s| > ε) and
input them into violation vector δGviolated = (δG1, . . . ,
δGNviolations). We decompose constraint matrix into two
matrices C = Cviolated ∪ Csatisfied with columns entries
corresponding to violated or satisfied constraints respec-
tively. Afterwards, the necessary control point update
could be defined:

CviolatedδPupd + δGviolated = 0, (17)

which also have to satisfy the rest of the constraints:

δPupd = Ker(Csatisfied)δα, (18)

where α corresponds to the coefficients of linear com-
bination of null space vectors. This could be further
developed as:

δPupd = −Ker(Csatisfied)
[
CviolatedKer(Csatisfied)

]+
δGviolated. (19)

Here, superscript + corresponds to the pseudoinverse of
rectangular matrix and usually only few Newton steps
are needed to recover constraints. The implications of
this approach goes beyond shape optimization and could
be applied directly on CAD shapes, which does not sat-
isfy some certain requirements. We have used the TU
Berlin Stator model with TE radius r=0.7 and imposed
minimum curvature/radius constraint there r=1. This
created constraints violations corresponding to every
test-point located on the TE. Results of the recovery step
with single Newton step are shown in Fig. 10, with all
constraints satisfied for the updated red surface.

Figure 10. Recovery/Increase of TE radius from initial (grey) to
updated (red)

6. Aerodynamic shape optimization of TU Berlin
Stator

6.1. Optimization workflow

This subsection summarizes the main steps that we use
for redesign of the TU Berlin Stator. The algorithm is
generic and can be applied without major changes to any
other aerodynamic shape optimization problem. To set
up a new test case, one has to provide new parametriza-
tion and the corresponding CFD mesh. We refer to two
aforementioned parametrization as a) for parametric and
b) for BRep. Both of them could be used in two distinct
optimization procedures:

1. Define parametrization and design surfaces.
2. Perform mesh point inversion (find mesh points XS

that belong to the design surfaces).
3. Run primal and adjoint CFD (get cost function

value), compute CFD sensitivity: dJ
dXS

.
4. Compute CAD sensitivity dXS

dα depending on the
chosen parametrization:
4.a) parametric approach: use differentiated OCCT

to get sensitivities w.r.t the explicit design
parameters (Sec. 4);

4.b) NURBS-based approach: use differentiated
OCCT to compute gradients w.r.t. the control
points positions and to construct correspond-
ing constraint matrix C (Sec. 5).

5. Compose total gradient dJ
dα = dJ

dXS
dXS
dα .

6. Update design parameters using dJ
dα , change CAD

geometry and corresponding mesh:
6.a) update design parameters using L-BFGS-Bopti-

mizer. Geometrical constraints are automati-
cally satisfied and lie within prescribed bound-
ing values (Eq. 7);

6.b) update control points positions. Geometrical
constraints are satisfied due to the projected



COMPUTER-AIDED DESIGN & APPLICATIONS 925

Figure 11. Left: Initial TU Stator (red), Optimized Parametric model (blue) and Optimized NURBS (green); Right: Comparison of mid-
sections

gradient. Constraint matrix ’filter’ ensures
updates do not violate constraints (Eq. 15).

7. Repeat 3-6 until no further cost function improve-
ment is possible.

8. Retrieve the optimized shape directly in the CAD
format.

6.2. Optimization results

The main focus of this paper is to demonstrate a fea-
sible approach to include a complex CAD model in a
gradient-based optimization chain. At this stage we use
low-fidelity CFD simulations, but without any limita-
tion this allows to test and demonstrate the strength
of both aforementioned CAD parametrizations in the
design chain, however restrain us from the detailed dis-
cussions on the physics of the initial and optimized flow
results. Therefore, we generated a coarse computational
grid with ICEM CFD from the existing CAD model and
used it for flow simulations in the STAMPS solver.

We perform two optimizations (explicit Parametric-
based and implicit NURBS-based) to minimize the total
pressure losses between the inlet and the outlet of the
TU Berlin Stator. Two different optimizers were used, L-
BFGS-B for the explicit and Steepest-Descent (with pro-
jected gradient) for the implicit parametrization. The cor-
responding optimized CADmodels are shown in Fig. 11
together with the initial shape. In both cases we observe
similar patterns of decrease of the leading edge and trail-
ing edge radius and reduction of the blade thickness,
while all geometrical constraints are satisfied. The opti-
mized parametric and NURBS models improve the cost
function by 14% and 13% respectively.

As highlighted in the comparison (Fig. 11) at the mid-
section, the two optimized shapes are different, which
originates from the differences in parametrizations and

constraints. Judging by the CAD sensitivities (NURBS
space generates very local sensitivities) the NUBRS-
based approach could actually provide superior results.
But contrary to the parametric model, it includes addi-
tional constraints for the mounting bolts. This results in
a thicker blade towards the shroud and hub ends of the
blade where the bolts are located. The imposition of iden-
tical constraints and use of high-fidelity CFD (increases
the impact of CAD sensitivity locality) could enable fur-
ther investigation of the occurring differences between
two parametrizations.

7. Conclusions

We have successfully demonstrated the integration of a
large-scale CAD system into the design chain for shape
optimization of immersed bodies. The OCCT CAD ker-
nel that is algorithmically differentiated to compute shape
derivatives is the cornerstone ingredient: it provides the
necessary CAD sensitivities efficiently, accurately and
robustly. The approach allows to maintain CAD-models
throughout the optimization loop thus enabling work
in a multi-disciplinary framework. In addition to aero-
dynamic shape optimization, the coupling of the differ-
entiated OCCT with structural analysis, conjugate heat
transfer and robust design problems will be investigated
in the future. The derivative information available in
OCCT is also useful in a purely CAD context: (i) re-
parametrization of the models (formulated as the opti-
mization problem that tweaks parameters values to find
the best ’fit’ to the target geometry); (ii) recovery of the
violated geometrical constraints.

Two different parametrization techniques for aero-
dynamic shape optimization of an industrial turboma-
chinery blade were proposed. For both of them the
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recipes for imposing manufacturing (geometrical) con-
straints were detailed. The storage of constraints in the
standard CAD files and hence their visualization and
inspection is possible for the NURBS-based approach.
The choice of either of the parametrization for optimiza-
tion of an arbitrary CAD-model is case-dependent, since
both approaches perform design explorations in the dif-
ferent spaces. The parametric CAD models are useful
for the applications when decent parametrizations are
well established through the previous engineering expe-
rience. The NURBS-based approach could then serve as
the complementary or the alternative technique which is
advantageous for the optimization of non-conventional
components.

Acknowledgements

This research is a part of the IODA project - Industrial Opti-
mal Design using Adjoint CFD. IODA is Marie Sklodowska-
Curie Innovative Training Network. This work was supported
by European Commission [Grant Agreement Number 6429].

References

[1] Auriemma, S.; Banovic, M.; Mykhaskiv, O.; Legrand, H.;
Müller, J.D.; Walther, A.: Optimization of a U-bend using
CAD-based adjoint method with differentiated CAD ker-
nel, ECCOMAS Congress, 2016. https://doi.org/10.7712/
100016.2089.10065

[2] Banovic, M.; Mykhaskiv, O.; Auriemma, S.; Walther,
A.; Legrand, H.; Müller, J. F.: Automatic Differentia-
tion of the Open CASCADE Technology CAD Sys-
tem and its coupling with an Adjoint CFD Solver,
http://www.optimization-online.org/DB_HTML/2017/
03/5931.html

[3] De Boer, A.; Van der Schoot, M. S.; Bijl, H.: New method
for mesh moving based on radial basis function inter-
polation, In ECCOMAS CFD 2006: Proceedings of the
European Conference on Computational Fluid Dynam-
ics, 2006.

[4] Dannenhoffer, J.; Haimes, R.: Design sensitivity calcula-
tions directly on CAD-based geometry. In 53rd AIAA
Aerospace Sciences Meeting, 2015. https://doi.org/10.
2514/6.2015-1370

[5] Economon, T. D.; Palacios, F.; Copeland, S. R.; Lukaczyk,
T. W.; Alonso, J. J.: SU2: An Open-Source Suite for Mul-
tiphysics Simulation and Design, AIAA Journal, 2015,
54(3), 828–846.

[6] Gräsel, J.; Keskin, A.; Swoboda, M.; Przewozny, H.;
Saxer, A.: A full parametric model for turbomachinery
blade design and optimization, In ASME 2004 Interna-
tional Design Engineering Technical Conferences and
Computers and Information in Engineering Conference,
2004,907–914.

[7] Griewank, A.;Walther, A.: Evaluating Derivatives: Princi-
ples and Techniques of Algorithmic Differentiation, 2nd

ed., Society for Industrial Mathematics, 2008. https://doi.
org/10.1137/1.9780898717761

[8] Jameson, A.: Aerodynamic Design via Control Theory,
Journal of ScientificComputing, 3, 1988, 233–260. https://
doi.org/10.1007/BF01061285

[9] Jameson, A.; Vassberg, J. C.: Studies of alternative numer-
ical optimization methods applied to the brachistochrone
problem, Computational Fluid Dynamics Journal, 9(3),
2000, 281–296.

[10] Jones, D.; Müller, J. D.; Christakopoulos, F.: Preparation
and assembly of discrete adjoint CFD codes, Computers
& Fluids, 46(1), 2011, 282–286. https://doi.org/10.1016/j.
compfluid.2011.01.042

[11] Piegl, L.; Tiller, W.: The NURBS book, Springer Science &
Business Media, 2012.

[12] Pironneau, O.: On optimum design in fluid mechanics,
Journal of Fluid Mechanics, 64, 1974, 97–100.

[13] Robinson, T. T; Armstrong, C.G.; Chua, H. S.; Othmer,
C.; Grahs, T.: Optimizing parameterized CAD geometries
using sensitivities based on adjoint functions, Computer-
Aided Design and Applications, 9(3), 2012, 253–268.
https://doi.org/10.3722/cadaps.2012.253-268

[14] Samareh, J.: Aerodynamic shape optimization based on
free-form deformation, 10th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference, 2004.

[15] Stück, A.: Adjoint Navier-Stokes methods for hydro-
dynamic shape optimization. Ph.D. Thesis, Technical
University of Hamburg-Harburg, 2012.https://doi.org/10.
2514/6.2004-4630

[16] Vasilopoulos, I. Flassig; Reiche, K.: Aerodynamic Opti-
mization of the TurboLab Stator: A Comparative Study
between Conventional and Adjoint-based Approaches,
In International Conference on Numerical Optimization
Methods for Engineering Design NOED, 2016.

[17] Verstraete, T.: CADO: a computer aided design and opti-
mization tool for turbomachinery applications, In 2nd Int.
Conf. on Engineering Optimization, 2010, 6–9.

[18] Walther, A.; Griewank, A.: Getting Started with ADOL-
C, In Combinatorial scientific computing, Chapman
& Hall/CRC Computational Science, Dagstuhl Semi-
nar Proceedings, 2012, 181–202. https://doi.org/10.1201/
b11644-8

[19] Xu, S.; Wolfram, J.; Müller, J. D.: CAD-based shape opti-
mization with CFD using a discrete adjoint, International
Journal for Numerical Methods in Fluids, 74(3), 2013,
153–168. https://doi.org/10.1002/fld.3844

[20] Xu, S.: CAD-based CFD shape optimization using dis-
crete adjoint solvers, Ph.D. Thesis, Queen Mary Univer-
sity of London, 2015.

[21] Xu, S.; Radford, D.; Müller, J.-D.: CAD-based adjoint
shape optimization of a one-stage turbine with geometric
constraints, ASME Turbo Expo, 2015

[22] Zhu, C.; Byrd, R.H.; Lu, P.; Nocedal, J.: Algorithm
778: L-bfgs-b: Fortran subroutines for large-scale bound-
constrained optimization, ACM Transactions on Math-
ematical Software, 23, 1997, 550–560. https://doi.org/10.
1145/279232.279236

[23] TU Berlin Stator test case: http://aboutflow.sems.qmul.ac.
uk/events/munich2016/benchmark/testcase3

https://doi.org/10.7712/100016.2089.10065
https://doi.org/10.7712/100016.2089.10065
http://www.optimization-online.org/DB_HTML/2017/03/5931.html
http://www.optimization-online.org/DB_HTML/2017/03/5931.html
https://doi.org/10.2514/6.2015-1370
https://doi.org/10.2514/6.2015-1370
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1007/BF01061285
https://doi.org/10.1007/BF01061285
https://doi.org/10.1016/j.compfluid.2011.01.042
https://doi.org/10.1016/j.compfluid.2011.01.042
https://doi.org/10.3722/cadaps.2012.253-268
https://doi.org/10.2514/6.2004-4630
https://doi.org/10.2514/6.2004-4630
https://doi.org/10.1201/b11644-8
https://doi.org/10.1201/b11644-8
https://doi.org/10.1002/fld.3844
https://doi.org/10.1145/279232.279236
https://doi.org/10.1145/279232.279236
http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3
http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3

	1. Introduction
	2. Automatic differentiation of OCCT CAD-kernel
	3. Differentiated OCCT and adjoint CFD coupling
	4. Parametric CAD-model for TU Berlin Stator and constraints
	4.1. 2D Profile parametrization
	4.2. 3D Parametrization
	4.3. Optimization constraints

	5. NURBS-based optimizations and constraints
	5.1. NURBS-based design
	5.2. Constraints
	5.3. Constraint recovery

	6. Aerodynamic shape optimization of TU Berlin Stator
	6.1. Optimization workflow
	6.2. Optimization results

	7. Conclusions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [609.704 794.013]
>> setpagedevice


